#pragma ident "@(#)xlate.m4 1.8 94/10/21 SMI" /* SVr4.0 1.14 */ /*LINTLIBRARY*/ #ifdef __STDC__ #pragma weak elf32_fsize = _elf32_fsize #pragma weak elf_version = _elf_version #pragma weak elf32_xlatetof = _elf32_xlatetof #pragma weak elf32_xlatetom = _elf32_xlatetom #endif #include "syn.h" #include #include #include #include "decl.h" #include "error.h" /* ELF translation routines * These routines make a subtle implicit assumption. * The file representations of all structures are "packed," * meaning no implicit padding bytes occur. This might not * be the case for the memory representations. Consequently, * the memory representations ALWAYS contain at least as many * bytes as the file representations. Otherwise, the memory * structures would lose information, meaning they're not * implemented properly. * * The words above apply to structures with the same members. * If a future version changes the number of members, the * relative structure sizes for different version must be * tested with the compiler. */ #define HI32 0x80000000L #define LO31 0x7fffffffL /* These macros create indexes for accessing the bytes of * words and halfwords for ELFCLASS32 data representations * (currently ELFDATA2LSB and ELFDATA2MSB). In all cases, * * w = (((((X_3 << 8) + X_2) << 8) + X_1) << 8) + X_0 * h = (X_1 << 8) + X_0 * * These assume the file representations for Addr, Off, * Sword, and Word use 4 bytes, but the memory def's for * the types may differ. * * Naming convention: * ..._L ELFDATA2LSB * ..._M ELFDATA2MSB * * enuma_*(n) define enum names for addr n * enumb_*(n) define enum names for byte n * enumh_*(n) define enum names for half n * enumo_*(n) define enum names for off n * enumw_*(n) define enum names for word n * tofa(d,s,n) xlate addr n from mem s to file d * tofb(d,s,n) xlate byte n from mem s to file d * tofh(d,s,n) xlate half n from mem s to file d * tofo(d,s,n) xlate off n from mem s to file d * tofw(d,s,n) xlate word n from mem s to file d * toma(s,n) xlate addr n from file s to expression value * tomb(s,n) xlate byte n from file s to expression value * tomh(s,n) xlate half n from file s to expression value * tomo(s,n) xlate off n from file s to expression value * tomw(s,n) xlate word n from file s to expression value * * tof*() macros must move a multi-byte value into a temporary * because ``in place'' conversions are allowed. If a temp is not * used for multi-byte objects, storing an initial destination byte * may clobber a source byte not yet examined. * * tom*() macros compute an expression value from the source * without touching the destination; so they're safe. */ define(enuma_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl define(enuma_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl define(enumb_L, `$1_L')dnl define(enumb_M, `$1_M')dnl define(enumh_L, `$1_L0, $1_L1')dnl define(enumh_M, `$1_M1, $1_M0')dnl define(enumo_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl define(enumo_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl define(enumw_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl define(enumw_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl define(tofa, `{ register Elf32_Addr _t_ = $2; ($1)[$3`'0] = (unsigned char)_t_, ($1)[$3`'1] = (unsigned char)(_t_>>8), ($1)[$3`'2] = (unsigned char)(_t_>>16), ($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl define(tofb, `($1)[$3] = (unsigned char)($2)')dnl define(tofh, `{ register Elf32_Half _t_ = $2; ($1)[$3`'0] = (unsigned char)_t_, ($1)[$3`'1] = (unsigned char)(_t_>>8); }')dnl define(tofo, `{ register Elf32_Off _t_ = $2; ($1)[$3`'0] = (unsigned char)_t_, ($1)[$3`'1] = (unsigned char)(_t_>>8), ($1)[$3`'2] = (unsigned char)(_t_>>16), ($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl define(tofw, `{ register Elf32_Word _t_ = $2; ($1)[$3`'0] = (unsigned char)_t_, ($1)[$3`'1] = (unsigned char)(_t_>>8), ($1)[$3`'2] = (unsigned char)(_t_>>16), ($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl define(toma, `(((((((Elf32_Addr)($1)[$2`'3]<<8) +($1)[$2`'2])<<8) +($1)[$2`'1])<<8) +($1)[$2`'0])')dnl define(tomb, `((unsigned char)($1)[$2])')dnl define(tomh, `(((Elf32_Half)($1)[$2`'1]<<8)+($1)[$2`'0])')dnl define(tomo, `(((((((Elf32_Off)($1)[$2`'3]<<8) +($1)[$2`'2])<<8) +($1)[$2`'1])<<8) +($1)[$2`'0])')dnl define(tomw, `(((((((Elf32_Word)($1)[$2`'3]<<8) +($1)[$2`'2])<<8) +($1)[$2`'1])<<8) +($1)[$2`'0])')dnl /* ELF data object indexes * The enums are broken apart to get around deficiencies * in some compilers. */ define(Addr, ` enum { enuma_$1(A)`'ifelse(`$2', `', `', `, A_sizeof') };') Addr(L) Addr(M,1) define(Half, ` enum { enumh_$1(H)`'ifelse(`$2', `', `', `, H_sizeof') };') Half(L) Half(M,1) define(Off, ` enum { enumo_$1(O)`'ifelse(`$2', `', `', `, O_sizeof') };') Off(L) Off(M,1) define(Word, ` enum { enumw_$1(W)`'ifelse(`$2', `', `', `, W_sizeof') };') Word(L) Word(M,1) define(Dyn_1, ` enum { enumw_$1(D1_tag), enumw_$1(D1_val)`'ifelse(`$2', `', `', `, D1_sizeof') };') Dyn_1(L) Dyn_1(M,1) #define E1_Nident 16 define(Ehdr_1, ` enum { ifelse(`$2', `', `E1_ident, ')E1_ident_$1_Z = E1_Nident - 1, enumh_$1(E1_type), enumh_$1(E1_machine), enumw_$1(E1_version), enuma_$1(E1_entry), enumo_$1(E1_phoff), enumo_$1(E1_shoff), enumw_$1(E1_flags), enumh_$1(E1_ehsize), enumh_$1(E1_phentsize), enumh_$1(E1_phnum), enumh_$1(E1_shentsize), enumh_$1(E1_shnum), enumh_$1(E1_shstrndx)`'ifelse(`$2', `', `', `, E1_sizeof') };') Ehdr_1(L) Ehdr_1(M,1) define(Phdr_1, ` enum { enumw_$1(P1_type), enumo_$1(P1_offset), enuma_$1(P1_vaddr), enuma_$1(P1_paddr), enumw_$1(P1_filesz), enumw_$1(P1_memsz), enumw_$1(P1_flags), enumw_$1(P1_align)`'ifelse(`$2', `', `', `, P1_sizeof') };') Phdr_1(L) Phdr_1(M,1) define(Rel_1, ` enum { enuma_$1(R1_offset), enumw_$1(R1_info)`'ifelse(`$2', `', `', `, R1_sizeof') };') Rel_1(L) Rel_1(M,1) define(Rela_1, ` enum { enuma_$1(RA1_offset), enumw_$1(RA1_info), enumw_$1(RA1_addend)`'ifelse(`$2', `', `', `, RA1_sizeof') };') Rela_1(L) Rela_1(M,1) define(Shdr_1, ` enum { enumw_$1(SH1_name), enumw_$1(SH1_type), enumw_$1(SH1_flags), enuma_$1(SH1_addr), enumo_$1(SH1_offset), enumw_$1(SH1_size), enumw_$1(SH1_link), enumw_$1(SH1_info), enumw_$1(SH1_addralign), enumw_$1(SH1_entsize)`'ifelse(`$2', `', `', `, SH1_sizeof') };') Shdr_1(L) Shdr_1(M,1) define(Sym_1, ` enum { enumw_$1(ST1_name), enuma_$1(ST1_value), enumw_$1(ST1_size), enumb_$1(ST1_info), enumb_$1(ST1_other), enumh_$1(ST1_shndx)`'ifelse(`$2', `', `', `, ST1_sizeof') };') Sym_1(L) Sym_1(M,1) define(Verdef_1, ` enum { enumh_$1(VD1_version), enumh_$1(VD1_flags), enumh_$1(VD1_ndx), enumh_$1(VD1_cnt), enumw_$1(VD1_hash), enumw_$1(VD1_aux), enumw_$1(VD1_next)`'ifelse(`$2', `', `', `, VD1_sizeof') };') Verdef_1(L) Verdef_1(M,1) define(Verdaux_1, ` enum { enuma_$1(VDA1_name), enumw_$1(VDA1_next)`'ifelse(`$2', `', `', `, VDA1_sizeof') };') Verdaux_1(L) Verdaux_1(M,1) define(Verneed_1, ` enum { enumh_$1(VN1_version), enumh_$1(VN1_cnt), enuma_$1(VN1_file), enumw_$1(VN1_aux), enumw_$1(VN1_next)`'ifelse(`$2', `', `', `, VN1_sizeof') };') Verneed_1(L) Verneed_1(M,1) define(Vernaux_1, ` enum { enumw_$1(VNA1_hash), enumh_$1(VNA1_flags), enumh_$1(VNA1_other), enuma_$1(VNA1_name), enumw_$1(VNA1_next)`'ifelse(`$2', `', `', `, VNA1_sizeof') };') Vernaux_1(L) Vernaux_1(M,1) /* Translation function declarations. * * __tof * __tom * where * 2L ELFDATA2LSB * 2M ELFDATA2MSB */ static void addr_2L_tof(), addr_2L_tom(), addr_2M_tof(), addr_2M_tom(), byte_to(), dyn_2L11_tof(), dyn_2L11_tom(), dyn_2M11_tof(), dyn_2M11_tom(), ehdr_2L11_tof(), ehdr_2L11_tom(), ehdr_2M11_tof(), ehdr_2M11_tom(), half_2L_tof(), half_2L_tom(), half_2M_tof(), half_2M_tom(), off_2L_tof(), off_2L_tom(), off_2M_tof(), off_2M_tom(), phdr_2L11_tof(), phdr_2L11_tom(), phdr_2M11_tof(), phdr_2M11_tom(), rel_2L11_tof(), rel_2L11_tom(), rel_2M11_tof(), rel_2M11_tom(), rela_2L11_tof(), rela_2L11_tom(), rela_2M11_tof(), rela_2M11_tom(), shdr_2L11_tof(), shdr_2L11_tom(), shdr_2M11_tof(), shdr_2M11_tom(), sword_2L_tof(), sword_2L_tom(), sword_2M_tof(), sword_2M_tom(), sym_2L11_tof(), sym_2L11_tom(), sym_2M11_tof(), sym_2M11_tom(), word_2L_tof(), word_2L_tom(), word_2M_tof(), word_2M_tom(), verdef_2L11_tof(), verdef_2L11_tom(), verdef_2M11_tof(), verdef_2M11_tom(), verneed_2L11_tof(), verneed_2L11_tom(), verneed_2M11_tof(), verneed_2M11_tom(); /* x32 [dst_version - 1] [src_version - 1] [encode - 1] [type] */ static struct { void (*x_tof)(), (*x_tom)(); } x32 [EV_CURRENT] [EV_CURRENT] [ELFDATANUM - 1] [ELF_T_NUM] = { { { { /* [1-1][1-1][2LSB-1][.] */ /* BYTE */ { byte_to, byte_to }, /* ADDR */ { addr_2L_tof, addr_2L_tom }, /* DYN */ { dyn_2L11_tof, dyn_2L11_tom }, /* EHDR */ { ehdr_2L11_tof, ehdr_2L11_tom }, /* HALF */ { half_2L_tof, half_2L_tom }, /* OFF */ { off_2L_tof, off_2L_tom }, /* PHDR */ { phdr_2L11_tof, phdr_2L11_tom }, /* RELA */ { rela_2L11_tof, rela_2L11_tom }, /* REL */ { rel_2L11_tof, rel_2L11_tom }, /* SHDR */ { shdr_2L11_tof, shdr_2L11_tom }, /* SWORD */ { sword_2L_tof, sword_2L_tom }, /* SYM */ { sym_2L11_tof, sym_2L11_tom }, /* WORD */ { word_2L_tof, word_2L_tom }, /* VERDEF */ { verdef_2L11_tof, verdef_2L11_tom}, /* VERNEED */ { verneed_2L11_tof, verneed_2L11_tom}, }, { /* [1-1][1-1][2MSB-1][.] */ /* BYTE */ { byte_to, byte_to }, /* ADDR */ { addr_2M_tof, addr_2M_tom }, /* DYN */ { dyn_2M11_tof, dyn_2M11_tom }, /* EHDR */ { ehdr_2M11_tof, ehdr_2M11_tom }, /* HALF */ { half_2M_tof, half_2M_tom }, /* OFF */ { off_2M_tof, off_2M_tom }, /* PHDR */ { phdr_2M11_tof, phdr_2M11_tom }, /* RELA */ { rela_2M11_tof, rela_2M11_tom }, /* REL */ { rel_2M11_tof, rel_2M11_tom }, /* SHDR */ { shdr_2M11_tof, shdr_2M11_tom }, /* SWORD */ { sword_2M_tof, sword_2M_tom }, /* SYM */ { sym_2M11_tof, sym_2M11_tom }, /* WORD */ { word_2M_tof, word_2M_tom }, /* VERDEF */ { verdef_2M11_tof, verdef_2M11_tom}, /* VERNEED */ { verneed_2M11_tof, verneed_2M11_tom}, }, }, }, }; /* size [version - 1] [type] */ static const struct { size_t s_filesz, s_memsz; } fmsize [EV_CURRENT] [ELF_T_NUM] = { { /* [1-1][.] */ /* BYTE */ { 1, 1 }, /* ADDR */ { A_sizeof, sizeof(Elf32_Addr) }, /* DYN */ { D1_sizeof, sizeof(Elf32_Dyn) }, /* EHDR */ { E1_sizeof, sizeof(Elf32_Ehdr) }, /* HALF */ { H_sizeof, sizeof(Elf32_Half) }, /* OFF */ { O_sizeof, sizeof(Elf32_Off) }, /* PHDR */ { P1_sizeof, sizeof(Elf32_Phdr) }, /* RELA */ { RA1_sizeof, sizeof(Elf32_Rela) }, /* REL */ { R1_sizeof, sizeof(Elf32_Rel) }, /* SHDR */ { SH1_sizeof, sizeof(Elf32_Shdr) }, /* SWORD */ { W_sizeof, sizeof(Elf32_Sword) }, /* SYM */ { ST1_sizeof, sizeof(Elf32_Sym) }, /* WORD */ { W_sizeof, sizeof(Elf32_Word) }, /* VERDEF */ { 1, 1}, /* because bot VERDEF & VERNEED have varying */ /* VERNEED */ { 1, 1}, /* sized structures we set their sizes */ /* to 1 byte */ }, }; /* memory type [version - 1] [section type] */ static const Elf_Type mtype[EV_CURRENT][SHT_NUM] = { { /* [1-1][.] */ /* NULL */ ELF_T_BYTE, /* PROGBITS */ ELF_T_BYTE, /* SYMTAB */ ELF_T_SYM, /* STRTAB */ ELF_T_BYTE, /* RELA */ ELF_T_RELA, /* HASH */ ELF_T_WORD, /* DYNAMIC */ ELF_T_DYN, /* NOTE */ ELF_T_BYTE, /* NOBITS */ ELF_T_BYTE, /* REL */ ELF_T_REL, /* SHLIB */ ELF_T_BYTE, /* DYNSYM */ ELF_T_SYM, }, }; size_t _elf32_entsz(shtype, ver) register Elf32_Word shtype; unsigned ver; { register Elf_Type ttype; if (shtype >= sizeof(mtype[0]) / sizeof(mtype[0][0]) || (ttype = mtype[ver - 1][shtype]) == ELF_T_BYTE) return 0; return fmsize[ver - 1][ttype].s_filesz; } size_t elf32_fsize(type, count, ver) Elf_Type type; size_t count; unsigned ver; { if (--ver >= EV_CURRENT) { _elf_err = EREQ_VER; return 0; } if ((unsigned)type >= ELF_T_NUM) { _elf_err = EREQ_TYPE; return 0; } return fmsize[ver][type].s_filesz * count; } size_t _elf32_msize(type, ver) Elf_Type type; unsigned ver; { return fmsize[ver - 1][type].s_memsz; } Elf_Type _elf32_mtype(shtype, ver) register Elf32_Word shtype; unsigned ver; { if (shtype < SHT_NUM) return mtype[ver - 1][shtype]; switch (shtype) { case SHT_SUNW_verdef: return ELF_T_VDEF; case SHT_SUNW_verneed: return ELF_T_VNEED; case SHT_SUNW_versym: return ELF_T_HALF; }; return ELF_T_BYTE; } unsigned elf_version(ver) register unsigned ver; { register unsigned j; union { Elf32_Word w; unsigned char c[W_sizeof]; } u; if (ver == EV_NONE) return EV_CURRENT; if (ver > EV_CURRENT) { _elf_err = EREQ_VER; return EV_NONE; } if (_elf_work != EV_NONE) { j = _elf_work; _elf_work = ver; return j; } _elf_work = ver; /* This assumes signed and unsigned objects of the same * size use the same representation. It also assumes * that 4-byte compatibility implies 2-byte compatibility. */ for (j = 0; j < ELF_T_NUM; ++j) if (fmsize[0][j].s_filesz != fmsize[0][j].s_memsz) return ver; u.w = 0x10203; /*CONSTANTCONDITION*/ if (~(Elf32_Word)0 == -(Elf32_Sword)1 && tomw(u.c, W_L) == 0x10203) _elf_encode = ELFDATA2LSB; /*CONSTANTCONDITION*/ else if (~(Elf32_Word)0 == -(Elf32_Sword)1 && tomw(u.c, W_M) == 0x10203) _elf_encode = ELFDATA2MSB; return ver; } static Elf_Data * xlate(dst, src, encode, tof) Elf_Data *dst; const Elf_Data *src; unsigned encode; int tof; /* !0 -> xlatetof */ { size_t cnt, dsz, ssz; unsigned type; unsigned dver, sver; void (*f)(); if (dst == 0 || src == 0) return 0; if (--encode >= (ELFDATANUM - 1)) { _elf_err = EREQ_ENCODE; return 0; } if ((dver = dst->d_version - 1) >= EV_CURRENT || (sver = src->d_version - 1) >= EV_CURRENT) { _elf_err = EREQ_VER; return 0; } if ((type = src->d_type) >= ELF_T_NUM) { _elf_err = EREQ_TYPE; return 0; } if (tof) { dsz = fmsize[dver][type].s_filesz; ssz = fmsize[sver][type].s_memsz; f = x32[dver][sver][encode][type].x_tof; } else { dsz = fmsize[dver][type].s_memsz; ssz = fmsize[sver][type].s_filesz; f = x32[dver][sver][encode][type].x_tom; } cnt = src->d_size / ssz; if ( dst->d_size < dsz * cnt) { _elf_err = EREQ_DSZ; return 0; } if (_elf_encode == (encode + 1) && dsz == ssz) { /* * ld(1) frequently produces empty sections (eg. .dynsym, * .dynstr, .symtab, .strtab, etc) so that the initial * output image can be created of the correct size. Later * these sections are filled in with the associated data. * So that we don't have to pre-allocate buffers for * these segments, allow for the src destination to be 0. */ if (src->d_buf && src->d_buf != dst->d_buf) (void)memcpy(dst->d_buf, src->d_buf, src->d_size); dst->d_type = src->d_type; dst->d_size = src->d_size; return dst; } if ( cnt ) (*f)(dst->d_buf, src->d_buf, cnt); dst->d_size = dsz * cnt; dst->d_type = src->d_type; return dst; } Elf_Data * elf32_xlatetof(dst, src, encode) Elf_Data *dst; const Elf_Data *src; unsigned encode; { return xlate(dst, src, encode, 1); } Elf_Data * elf32_xlatetom(dst, src, encode) Elf_Data *dst; const Elf_Data *src; unsigned encode; { return xlate(dst, src, encode, 0); } /* xlate to file format * * ..._tof(name, data) -- macros * * Recall that the file format must be no larger than the * memory format (equal versions). Use "forward" copy. * All these routines require non-null, non-zero arguments. */ define(addr_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Addr *src; size_t cnt; { register Elf32_Addr *end = src + cnt; do { tofa(dst, *src, A_$2); dst += A_sizeof; } while (++src < end); }') addr_tof(addr_2L_tof,L) addr_tof(addr_2M_tof,M) static void byte_to(dst, src, cnt) unsigned char *dst, *src; size_t cnt; { if (dst != src) (void)memcpy(dst, src, cnt); } define(dyn_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Dyn *src; size_t cnt; { Elf32_Dyn *end = src + cnt; do { tofw(dst, src->d_tag, D1_tag_$2); tofo(dst, src->d_un.d_val, D1_val_$2); dst += D1_sizeof; } while (++src < end); }') dyn_11_tof(dyn_2L11_tof,L) dyn_11_tof(dyn_2M11_tof,M) define(ehdr_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Ehdr *src; size_t cnt; { Elf32_Ehdr *end = src + cnt; do { if (&dst[E1_ident] != src->e_ident) (void)memcpy(&dst[E1_ident], src->e_ident, E1_Nident); tofh(dst, src->e_type, E1_type_$2); tofh(dst, src->e_machine, E1_machine_$2); tofw(dst, src->e_version, E1_version_$2); tofa(dst, src->e_entry, E1_entry_$2); tofo(dst, src->e_phoff, E1_phoff_$2); tofo(dst, src->e_shoff, E1_shoff_$2); tofw(dst, src->e_flags, E1_flags_$2); tofh(dst, src->e_ehsize, E1_ehsize_$2); tofh(dst, src->e_phentsize, E1_phentsize_$2); tofh(dst, src->e_phnum, E1_phnum_$2); tofh(dst, src->e_shentsize, E1_shentsize_$2); tofh(dst, src->e_shnum, E1_shnum_$2); tofh(dst, src->e_shstrndx, E1_shstrndx_$2); dst += E1_sizeof; } while (++src < end); }') ehdr_11_tof(ehdr_2L11_tof,L) ehdr_11_tof(ehdr_2M11_tof,M) define(half_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Half *src; size_t cnt; { register Elf32_Half *end = src + cnt; do { tofh(dst, *src, H_$2); dst += H_sizeof; } while (++src < end); }') half_tof(half_2L_tof,L) half_tof(half_2M_tof,M) define(off_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Off *src; size_t cnt; { register Elf32_Off *end = src + cnt; do { tofo(dst, *src, O_$2); dst += O_sizeof; } while (++src < end); }') off_tof(off_2L_tof,L) off_tof(off_2M_tof,M) define(phdr_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Phdr *src; size_t cnt; { Elf32_Phdr *end = src + cnt; do { tofw(dst, src->p_type, P1_type_$2); tofo(dst, src->p_offset, P1_offset_$2); tofa(dst, src->p_vaddr, P1_vaddr_$2); tofa(dst, src->p_paddr, P1_paddr_$2); tofw(dst, src->p_filesz, P1_filesz_$2); tofw(dst, src->p_memsz, P1_memsz_$2); tofw(dst, src->p_flags, P1_flags_$2); tofw(dst, src->p_align, P1_align_$2); dst += P1_sizeof; } while (++src < end); }') phdr_11_tof(phdr_2L11_tof,L) phdr_11_tof(phdr_2M11_tof,M) define(rel_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Rel *src; size_t cnt; { Elf32_Rel *end = src + cnt; do { tofa(dst, src->r_offset, R1_offset_$2); tofw(dst, src->r_info, R1_info_$2); dst += R1_sizeof; } while (++src < end); }') rel_11_tof(rel_2L11_tof,L) rel_11_tof(rel_2M11_tof,M) define(rela_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Rela *src; size_t cnt; { Elf32_Rela *end = src + cnt; do { tofa(dst, src->r_offset, RA1_offset_$2); tofw(dst, src->r_info, RA1_info_$2); /*CONSTANTCONDITION*/ if (~(Elf32_Word)0 == -(Elf32_Sword)1) /* 2s comp */ { tofw(dst, src->r_addend, RA1_addend_$2); } else /* other */ { register Elf32_Word w; if (src->r_addend < 0) { w = - src->r_addend; w = ~w + 1; } else w = src->r_addend; tofw(dst, w, RA1_addend_$2); } dst += RA1_sizeof; } while (++src < end); }') rela_11_tof(rela_2L11_tof,L) rela_11_tof(rela_2M11_tof,M) define(shdr_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Shdr *src; size_t cnt; { Elf32_Shdr *end = src + cnt; do { tofw(dst, src->sh_name, SH1_name_$2); tofw(dst, src->sh_type, SH1_type_$2); tofw(dst, src->sh_flags, SH1_flags_$2); tofa(dst, src->sh_addr, SH1_addr_$2); tofo(dst, src->sh_offset, SH1_offset_$2); tofw(dst, src->sh_size, SH1_size_$2); tofw(dst, src->sh_link, SH1_link_$2); tofw(dst, src->sh_info, SH1_info_$2); tofw(dst, src->sh_addralign, SH1_addralign_$2); tofw(dst, src->sh_entsize, SH1_entsize_$2); dst += SH1_sizeof; } while (++src < end); }') shdr_11_tof(shdr_2L11_tof,L) shdr_11_tof(shdr_2M11_tof,M) define(sword_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Sword *src; size_t cnt; { register Elf32_Sword *end = src + cnt; do { /*CONSTANTCONDITION*/ if (~(Elf32_Word)0 == -(Elf32_Sword)1) /* 2s comp */ { tofw(dst, *src, W_$2); } else /* unknown */ { register Elf32_Word w; if (*src < 0) { w = - *src; w = ~w + 1; } else w = *src; tofw(dst, w, W_$2); } dst += W_sizeof; } while (++src < end); }') sword_tof(sword_2L_tof,L) sword_tof(sword_2M_tof,M) define(sym_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Sym *src; size_t cnt; { Elf32_Sym *end = src + cnt; do { tofw(dst, src->st_name, ST1_name_$2); tofa(dst, src->st_value, ST1_value_$2); tofw(dst, src->st_size, ST1_size_$2); tofb(dst, src->st_info, ST1_info_$2); tofb(dst, src->st_other, ST1_other_$2); tofh(dst, src->st_shndx, ST1_shndx_$2); dst += ST1_sizeof; } while (++src < end); }') sym_11_tof(sym_2L11_tof,L) sym_11_tof(sym_2M11_tof,M) define(word_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Word *src; size_t cnt; { register Elf32_Word *end = src + cnt; do { tofw(dst, *src, W_$2); dst += W_sizeof; } while (++src < end); }') word_tof(word_2L_tof,L) word_tof(word_2M_tof,M) define(verdef_11_tof, ` static void $1(dst,src,cnt) register unsigned char *dst; register Elf32_Verdef *src; size_t cnt; { register Elf32_Verdef *end = (Elf32_Verdef *)((char *)src + cnt); do { Elf32_Verdef *next_verdef; Elf32_Verdaux *vaux; Elf32_Half i; unsigned char * vaux_dst; unsigned char * dst_next; next_verdef = (Elf32_Verdef *)(src->vd_next ? (char *)src + src->vd_next : (char *)end); dst_next = dst + src->vd_next; vaux = (Elf32_Verdaux *)((char *)src + src->vd_aux); vaux_dst = dst + src->vd_aux; /* * Convert auxilary structures */ for (i = 0; i < src->vd_cnt; i++) { Elf32_Verdaux *vaux_next; unsigned char *vaux_dst_next; /* * because our source and destination can be * the same place we need to figure out the next * location now. */ vaux_next = (Elf32_Verdaux *)((char *)vaux + vaux->vda_next); vaux_dst_next = vaux_dst + vaux->vda_next; tofa(vaux_dst, vaux->vda_name, VDA1_name_$2); tofw(vaux_dst, vaux->vda_next, VDA1_next_$2); vaux_dst = vaux_dst_next; vaux = vaux_next; } /* * Convert Elf32_Verdef structure. */ tofh(dst, src->vd_version, VD1_version_$2); tofh(dst, src->vd_flags, VD1_flags_$2); tofh(dst, src->vd_ndx, VD1_ndx_$2); tofh(dst, src->vd_cnt, VD1_cnt_$2); tofw(dst, src->vd_hash, VD1_hash_$2); tofw(dst, src->vd_aux, VD1_aux_$2); tofw(dst, src->vd_next, VD1_next_$2); src = next_verdef; dst = dst_next; } while (src < end); }') verdef_11_tof(verdef_2L11_tof, L) verdef_11_tof(verdef_2M11_tof, M) define(verneed_11_tof, ` static void $1(dst, src, cnt) register unsigned char *dst; register Elf32_Verneed *src; size_t cnt; { register Elf32_Verneed *end = (Elf32_Verneed *)((char *)src + cnt); do { Elf32_Verneed * next_verneed; Elf32_Vernaux * vaux; Elf32_Half i; unsigned char * vaux_dst; unsigned char * dst_next; next_verneed = (Elf32_Verneed *)(src->vn_next ? (char *)src + src->vn_next : (char *)end); dst_next = dst + src->vn_next; vaux = (Elf32_Vernaux *)((char *)src + src->vn_aux); vaux_dst = dst + src->vn_aux; /* * Convert auxilary structures first */ for (i = 0; i < src->vn_cnt; i++) { Elf32_Vernaux * vaux_next; unsigned char * vaux_dst_next; /* * because our source and destination can be * the same place we need to figure out the * next location now. */ vaux_next = (Elf32_Vernaux *)((char *)vaux + vaux->vna_next); vaux_dst_next = vaux_dst + vaux->vna_next; tofw(vaux_dst, vaux->vna_hash, VNA1_hash_$2); tofh(vaux_dst, vaux->vna_flags, VNA1_flags_$2); tofh(vaux_dst, vaux->vna_other, VNA1_other_$2); tofa(vaux_dst, vaux->vna_name, VNA1_name_$2); tofw(vaux_dst, vaux->vna_next, VNA1_next_$2); vaux_dst = vaux_dst_next; vaux = vaux_next; } /* * Convert Elf32_Verneed structure. */ tofh(dst, src->vn_version, VN1_version_$2); tofh(dst, src->vn_cnt, VN1_cnt_$2); tofa(dst, src->vn_file, VN1_file_$2); tofw(dst, src->vn_aux, VN1_aux_$2); tofw(dst, src->vn_next, VN1_next_$2); src = next_verneed; dst = dst_next; } while (src < end); }') verneed_11_tof(verneed_2L11_tof, L) verneed_11_tof(verneed_2M11_tof, M) /* xlate to memory format * * ..._tom(name, data) -- macros * * Recall that the memory format may be larger than the * file format (equal versions). Use "backward" copy. * All these routines require non-null, non-zero arguments. */ define(addr_tom, ` static void $1(dst, src, cnt) register Elf32_Addr *dst; register unsigned char *src; size_t cnt; { register Elf32_Addr *end = dst; dst += cnt; src += cnt * A_sizeof; while (dst-- > end) { src -= A_sizeof; *dst = toma(src, A_$2); } }') addr_tom(addr_2L_tom,L) addr_tom(addr_2M_tom,M) define(dyn_11_tom, ` static void $1(dst, src, cnt) register Elf32_Dyn *dst; register unsigned char *src; size_t cnt; { Elf32_Dyn *end = dst + cnt; do { dst->d_tag = tomw(src, D1_tag_$2); dst->d_un.d_val = tomw(src, D1_val_$2); src += D1_sizeof; } while (++dst < end); }') dyn_11_tom(dyn_2L11_tom,L) dyn_11_tom(dyn_2M11_tom,M) define(ehdr_11_tom, ` static void $1(dst, src, cnt) register Elf32_Ehdr *dst; register unsigned char *src; size_t cnt; { Elf32_Ehdr *end = dst; dst += cnt; src += cnt * E1_sizeof; while (dst-- > end) { src -= E1_sizeof; dst->e_shstrndx = tomh(src, E1_shstrndx_$2); dst->e_shnum = tomh(src, E1_shnum_$2); dst->e_shentsize = tomh(src, E1_shentsize_$2); dst->e_phnum = tomh(src, E1_phnum_$2); dst->e_phentsize = tomh(src, E1_phentsize_$2); dst->e_ehsize = tomh(src, E1_ehsize_$2); dst->e_flags = tomw(src, E1_flags_$2); dst->e_shoff = tomo(src, E1_shoff_$2); dst->e_phoff = tomo(src, E1_phoff_$2); dst->e_entry = toma(src, E1_entry_$2); dst->e_version = tomw(src, E1_version_$2); dst->e_machine = tomh(src, E1_machine_$2); dst->e_type = tomh(src, E1_type_$2); if (dst->e_ident != &src[E1_ident]) (void)memcpy(dst->e_ident, &src[E1_ident], E1_Nident); } }') ehdr_11_tom(ehdr_2L11_tom,L) ehdr_11_tom(ehdr_2M11_tom,M) define(half_tom, ` static void $1(dst, src, cnt) register Elf32_Half *dst; register unsigned char *src; size_t cnt; { register Elf32_Half *end = dst; dst += cnt; src += cnt * H_sizeof; while (dst-- > end) { src -= H_sizeof; *dst = tomh(src, H_$2); } }') half_tom(half_2L_tom,L) half_tom(half_2M_tom,M) define(off_tom, ` static void $1(dst, src, cnt) register Elf32_Off *dst; register unsigned char *src; size_t cnt; { register Elf32_Off *end = dst; dst += cnt; src += cnt * O_sizeof; while (dst-- > end) { src -= O_sizeof; *dst = tomo(src, O_$2); } }') off_tom(off_2L_tom,L) off_tom(off_2M_tom,M) define(phdr_11_tom, ` static void $1(dst, src, cnt) register Elf32_Phdr *dst; register unsigned char *src; size_t cnt; { Elf32_Phdr *end = dst; dst += cnt; src += cnt * P1_sizeof; while (dst-- > end) { src -= P1_sizeof; dst->p_align = tomw(src, P1_align_$2); dst->p_flags = tomw(src, P1_flags_$2); dst->p_memsz = tomw(src, P1_memsz_$2); dst->p_filesz = tomw(src, P1_filesz_$2); dst->p_paddr = toma(src, P1_paddr_$2); dst->p_vaddr = toma(src, P1_vaddr_$2); dst->p_offset = tomo(src, P1_offset_$2); dst->p_type = tomw(src, P1_type_$2); } }') phdr_11_tom(phdr_2L11_tom,L) phdr_11_tom(phdr_2M11_tom,M) define(rel_11_tom, ` static void $1(dst, src, cnt) register Elf32_Rel *dst; register unsigned char *src; size_t cnt; { Elf32_Rel *end = dst; dst += cnt; src += cnt * R1_sizeof; while (dst-- > end) { src -= R1_sizeof; dst->r_info = tomw(src, R1_info_$2); dst->r_offset = toma(src, R1_offset_$2); } }') rel_11_tom(rel_2L11_tom,L) rel_11_tom(rel_2M11_tom,M) define(rela_11_tom, ` static void $1(dst, src, cnt) register Elf32_Rela *dst; register unsigned char *src; size_t cnt; { Elf32_Rela *end = dst; dst += cnt; src += cnt * RA1_sizeof; while (dst-- > end) { src -= RA1_sizeof; /*CONSTANTCONDITION*/ if (~(Elf32_Word)0 == -(Elf32_Sword)1 /* 32-bit 2s comp */ && ~(~(Elf32_Word)0 >> 1) == HI32) { dst->r_addend = tomw(src, RA1_addend_$2); } else /* other */ { union { Elf32_Word w; Elf32_Sword sw; } u; if ((u.w = tomw(src, RA1_addend_$2)) & HI32) { u.w |= ~(Elf32_Word)LO31; u.w = ~u.w + 1; u.sw = -u.w; } dst->r_addend = u.sw; } dst->r_info = tomw(src, RA1_info_$2); dst->r_offset = toma(src, RA1_offset_$2); } }') rela_11_tom(rela_2L11_tom,L) rela_11_tom(rela_2M11_tom,M) define(shdr_11_tom, ` static void $1(dst, src, cnt) register Elf32_Shdr *dst; register unsigned char *src; size_t cnt; { Elf32_Shdr *end = dst; dst += cnt; src += cnt * SH1_sizeof; while (dst-- > end) { src -= SH1_sizeof; dst->sh_entsize = tomw(src, SH1_entsize_$2); dst->sh_addralign = tomw(src, SH1_addralign_$2); dst->sh_info = tomw(src, SH1_info_$2); dst->sh_link = tomw(src, SH1_link_$2); dst->sh_size = tomw(src, SH1_size_$2); dst->sh_offset = tomo(src, SH1_offset_$2); dst->sh_addr = toma(src, SH1_addr_$2); dst->sh_flags = tomw(src, SH1_flags_$2); dst->sh_type = tomw(src, SH1_type_$2); dst->sh_name = tomw(src, SH1_name_$2); } }') shdr_11_tom(shdr_2L11_tom,L) shdr_11_tom(shdr_2M11_tom,M) define(sword_tom, ` static void $1(dst, src, cnt) register Elf32_Sword *dst; register unsigned char *src; size_t cnt; { register Elf32_Sword *end = dst; dst += cnt; src += cnt * W_sizeof; while (dst-- > end) { src -= W_sizeof; /*CONSTANTCONDITION*/ if (~(Elf32_Word)0 == -(Elf32_Sword)1 /* 32-bit 2s comp */ && ~(~(Elf32_Word)0 >> 1) == HI32) { *dst = tomw(src, W_$2); } else /* other */ { union { Elf32_Word w; Elf32_Sword sw; } u; if ((u.w = tomw(src, W_$2)) & HI32) { u.w |= ~(Elf32_Word)LO31; u.w = ~u.w + 1; u.sw = -u.w; } *dst = u.sw; } } }') sword_tom(sword_2L_tom,L) sword_tom(sword_2M_tom,M) define(sym_11_tom, ` static void $1(dst, src, cnt) register Elf32_Sym *dst; register unsigned char *src; size_t cnt; { Elf32_Sym *end = dst; dst += cnt; src += cnt * ST1_sizeof; while (dst-- > end) { src -= ST1_sizeof; dst->st_shndx = tomh(src, ST1_shndx_$2); dst->st_other = tomb(src, ST1_other_$2); dst->st_info = tomb(src, ST1_info_$2); dst->st_size = tomw(src, ST1_size_$2); dst->st_value = toma(src, ST1_value_$2); dst->st_name = tomw(src, ST1_name_$2); } }') sym_11_tom(sym_2L11_tom,L) sym_11_tom(sym_2M11_tom,M) define(word_tom, ` static void $1(dst, src, cnt) register Elf32_Word *dst; register unsigned char *src; size_t cnt; { register Elf32_Word *end = dst; dst += cnt; src += cnt * W_sizeof; while (dst-- > end) { src -= W_sizeof; *dst = tomw(src, W_$2); } }') word_tom(word_2L_tom,L) word_tom(word_2M_tom,M) define(verdef_11_tom, ` static void $1(dst, src, cnt) register Elf32_Verdef *dst; register unsigned char *src; size_t cnt; { register Elf32_Verdef *end = (Elf32_Verdef *)((char *)dst + cnt); while (dst < end) { Elf32_Verdaux *vaux; unsigned char *src_vaux; Elf32_Half i; dst->vd_version = tomh(src, VD1_version_$2); dst->vd_flags = tomh(src, VD1_flags_$2); dst->vd_ndx = tomh(src, VD1_ndx_$2); dst->vd_cnt = tomh(src, VD1_cnt_$2); dst->vd_hash = tomw(src, VD1_hash_$2); dst->vd_aux = tomw(src, VD1_aux_$2); dst->vd_next = tomw(src, VD1_next_$2); src_vaux = src + dst->vd_aux; vaux = (Elf32_Verdaux*)((char *)dst + dst->vd_aux); for (i = 0; i < dst->vd_cnt; i++) { vaux->vda_name = toma(src_vaux, VDA1_name_$2); vaux->vda_next = toma(src_vaux, VDA1_next_$2); src_vaux += vaux->vda_next; vaux = (Elf32_Verdaux *)((char *)vaux + vaux->vda_next); } src += dst->vd_next; dst = (Elf32_Verdef *)(dst->vd_next ? (char *)dst + dst->vd_next : (char *)end); } }') verdef_11_tom(verdef_2L11_tom,L) verdef_11_tom(verdef_2M11_tom,M) define(verneed_11_tom, ` static void $1(dst, src, cnt) register Elf32_Verneed * dst; register unsigned char * src; size_t cnt; { register Elf32_Verneed * end = (Elf32_Verneed *)((char *)dst + cnt); while (dst < end) { Elf32_Vernaux * vaux; unsigned char * src_vaux; Elf32_Half i; dst->vn_version = tomh(src, VN1_version_$2); dst->vn_cnt = tomh(src, VN1_cnt_$2); dst->vn_file = toma(src, VN1_file_$2); dst->vn_aux = tomw(src, VN1_aux_$2); dst->vn_next = tomw(src, VN1_next_$2); src_vaux = src + dst->vn_aux; vaux = (Elf32_Vernaux *)((char *)dst + dst->vn_aux); for (i = 0; i < dst->vn_cnt; i++) { vaux->vna_hash = tomw(src_vaux, VNA1_hash_$2); vaux->vna_flags = tomh(src_vaux, VNA1_flags_$2); vaux->vna_other = tomh(src_vaux, VNA1_other_$2); vaux->vna_name = toma(src_vaux, VNA1_name_$2); vaux->vna_next = tomw(src_vaux, VNA1_next_$2); src_vaux += vaux->vna_next; vaux = (Elf32_Vernaux *)((char *)vaux + vaux->vna_next); } src += dst->vn_next; dst = (Elf32_Verneed *)(dst->vn_next ? (char *)dst + dst->vn_next : (char *)end); } }') verneed_11_tom(verneed_2L11_tom,L) verneed_11_tom(verneed_2M11_tom,M)