#ifndef lint static char sccsid[] = "@(#)log1p.c 1.1 92/07/30 SMI"; #endif /* * Copyright (c) 1987 by Sun Microsystems, Inc. */ /* LOG1P(x) * RETURN THE LOGARITHM OF 1+x * IEEE DOUBLE PRECISION * CODE BASED ON 4.3BSD, MODIFIED BY K.C. NG, 6/29/87. * * Required system supported functions: * scalbn(x,n) * copysign(x,y) * ilogb(x) * finite(x) * * Required kernel function: * log__L(z) * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * log(1+f) is computed by * * log(1+f) = 2s + s*log__L(s*s) * where * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) * * See log__L() for the values of the coefficients. * * 3. Finally, log(1+x) = k*ln2 + log(1+f). * * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last * 20 bits (for VAX D format), or the last 21 bits ( for IEEE * double) is 0. This ensures n*ln2hi is exactly representable. * 2. In step 1, f may not be representable. A correction term c * for f is computed. It follows that the correction term for * f - t (the leading term of log(1+f) in step 2) is c-c*x. We * add this correction term to n*ln2lo to attenuate the error. * * * Special cases: * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; * log1p(INF) is +INF; log1p(-1) is -INF with signal; * only log1p(0)=0 is exact for finite argument. * * Accuracy: * log1p(x) returns the exact log(1+x) nearly rounded. In a test run * with 1,536,000 random arguments on a VAX, the maximum observed * error was .846 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #include #include "libm.h" double log1p(x) double x; { static double zero=0.0, negone= -1.0, one=1.0, half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ double log__L(),z,s,t,c; int ilogb(); int k,finite(); if(!finite(x)) return Inf+x; /* x is +-INF or NaN */ else { if( x > negone ) { /* argument reduction */ if(fabs(x)1e300) k=ilogb(x); else k=ilogb(one+x); z=scalbn(x,-k); t=scalbn(one,-k); if(z+t >= sqrt2 ) { k += 1 ; z *= half; t *= half; } t += negone; x = z + t; c = (t-x)+z ; /* correction term for x */ /* compute log(1+x) */ s = x/(2+x); t = x*x*half; c += (k*ln2lo-c*x); z = c+s*(t+log__L(s*s)); x += (z - t) ; return(k*ln2hi+x); } /* end of if (x > negone) */ else { if ( x == negone ) return( negone/zero ); else return ( zero / zero ); } } } #ifdef VAX /* VAX D format (56 bits) */ /* static double */ /* L1 = 6.6666666666666703212E-1 , Hex 2^ 0 * .AAAAAAAAAAAAC5 */ /* L2 = 3.9999999999970461961E-1 , Hex 2^ -1 * .CCCCCCCCCC2684 */ /* L3 = 2.8571428579395698188E-1 , Hex 2^ -1 * .92492492F85782 */ /* L4 = 2.2222221233634724402E-1 , Hex 2^ -2 * .E38E3839B7AF2C */ /* L5 = 1.8181879517064680057E-1 , Hex 2^ -2 * .BA2EB4CC39655E */ /* L6 = 1.5382888777946145467E-1 , Hex 2^ -2 * .9D8551E8C5781D */ /* L7 = 1.3338356561139403517E-1 , Hex 2^ -2 * .8895B3907FCD92 */ /* L8 = 1.2500000000000000000E-1 , Hex 2^ -2 * .80000000000000 */ static long L1x[] = { 0xaaaa402a, 0xaac5aaaa}; static long L2x[] = { 0xcccc3fcc, 0x2684cccc}; static long L3x[] = { 0x49243f92, 0x578292f8}; static long L4x[] = { 0x8e383f63, 0xaf2c39b7}; static long L5x[] = { 0x2eb43f3a, 0x655ecc39}; static long L6x[] = { 0x85513f1d, 0x781de8c5}; static long L7x[] = { 0x95b33f08, 0xcd92907f}; static long L8x[] = { 0x00003f00, 0x00000000}; #define L1 (*(double*)L1x) #define L2 (*(double*)L2x) #define L3 (*(double*)L3x) #define L4 (*(double*)L4x) #define L5 (*(double*)L5x) #define L6 (*(double*)L6x) #define L7 (*(double*)L7x) #define L8 (*(double*)L8x) #else /* IEEE double */ static double L1 = 6.6666666666667340202E-1 , /*Hex 2^ -1 * 1.5555555555592 */ L2 = 3.9999999999416702146E-1 , /*Hex 2^ -2 * 1.999999997FF24 */ L3 = 2.8571428742008753154E-1 , /*Hex 2^ -2 * 1.24924941E07B4 */ L4 = 2.2222198607186277597E-1 , /*Hex 2^ -3 * 1.C71C52150BEA6 */ L5 = 1.8183562745289935658E-1 , /*Hex 2^ -3 * 1.74663CC94342F */ L6 = 1.5314087275331442206E-1 , /*Hex 2^ -3 * 1.39A1EC014045B */ L7 = 1.4795612545334174692E-1 ; /*Hex 2^ -3 * 1.2F039F0085122 */ #endif static double log__L(z) double z; { #ifdef VAX return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8)))))))); #else /* IEEE double */ return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7))))))); #endif } static dummy(x) double x; { return 1; }