This commit is contained in:
seta75D
2021-10-11 18:37:13 -03:00
commit ff309bfe1c
14130 changed files with 3180272 additions and 0 deletions

987
sys/os/uipc_socket.c Normal file
View File

@@ -0,0 +1,987 @@
/*
* Copyright (c) 1982, 1986 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* @(#)uipc_socket.c 1.1 94/10/31 SMI; from UCB 7.8 1/20/88
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/buf.h>
#include <sys/mbuf.h>
#include <sys/un.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <net/route.h>
#include <netinet/in.h>
#include <net/if.h>
/*
* Socket operation routines.
* These routines are called by the routines in
* sys_socket.c or from a system process, and
* implement the semantics of socket operations by
* switching out to the protocol specific routines.
*
* TODO:
* test socketpair
* clean up async
* out-of-band is a kludge
*/
/*ARGSUSED*/
socreate(dom, aso, type, proto)
struct socket **aso;
register int type;
int proto;
{
register struct protosw *prp;
register struct socket *so;
register struct mbuf *m;
register int error;
if (proto)
prp = pffindproto(dom, proto, type);
else
prp = pffindtype(dom, type);
if (prp == 0)
return (EPROTONOSUPPORT);
if (prp->pr_type != type)
return (EPROTOTYPE);
m = m_getclr(M_WAIT, MT_SOCKET);
so = mtod(m, struct socket *);
so->so_options = 0;
so->so_state = 0;
so->so_type = type;
if (u.u_uid == 0)
so->so_state = SS_PRIV;
so->so_proto = prp;
error =
(*prp->pr_usrreq)(so, PRU_ATTACH,
(struct mbuf *)0, (struct mbuf *)proto, (struct mbuf *)0);
if (error) {
so->so_state |= SS_NOFDREF;
sofree(so);
return (error);
}
*aso = so;
return (0);
}
sobind(so, nam)
struct socket *so;
struct mbuf *nam;
{
int s = splnet();
int error;
error =
(*so->so_proto->pr_usrreq)(so, PRU_BIND,
(struct mbuf *)0, nam, (struct mbuf *)0);
(void) splx(s);
return (error);
}
solisten(so, backlog)
register struct socket *so;
int backlog;
{
int s = splnet(), error;
error =
(*so->so_proto->pr_usrreq)(so, PRU_LISTEN,
(struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
if (error) {
(void) splx(s);
return (error);
}
if (so->so_q == 0) {
so->so_q = so;
so->so_q0 = so;
so->so_options |= SO_ACCEPTCONN;
}
if (backlog < 0)
backlog = 0;
so->so_qlimit = MIN(backlog, SOMAXCONN);
(void) splx(s);
return (0);
}
sofree(so)
register struct socket *so;
{
if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
return;
if (so->so_head) {
if (!soqremque(so, 0) && !soqremque(so, 1))
panic("sofree dq");
so->so_head = 0;
}
/*
* call the special socket wakeup function (if set)
* to notify the user that the socket is being freed and
* to allow him to free any associated resources.
* XXX -- 0 in 2nd arg signifies to the callee that he
* should free resources at this point.
*/
if (so->so_wupalt)
(*so->so_wupalt->wup_func)(so, (caddr_t)0,
so->so_wupalt->wup_arg);
sbrelease(&so->so_snd);
sorflush(so);
(void) m_free(dtom(so));
}
/*
* Close a socket on last file table reference removal.
* Initiate disconnect if connected.
* Free socket when disconnect complete.
*/
soclose(so)
register struct socket *so;
{
int s = splnet(); /* conservative */
int error = 0;
if (so->so_options & SO_ACCEPTCONN) {
while (so->so_q0 != so)
(void) soabort(so->so_q0);
while (so->so_q != so)
(void) soabort(so->so_q);
}
if (so->so_pcb == 0)
goto discard;
if (so->so_state & SS_ISCONNECTED) {
if ((so->so_state & SS_ISDISCONNECTING) == 0) {
error = sodisconnect(so);
if (error)
goto drop;
}
if (so->so_options & SO_LINGER) {
if ((so->so_state & SS_ISDISCONNECTING) &&
(so->so_state & SS_NBIO))
goto drop;
while (so->so_state & SS_ISCONNECTED)
(void) sleep((caddr_t)&so->so_timeo, PZERO+1);
}
}
drop:
if (so->so_pcb) {
int error2 =
(*so->so_proto->pr_usrreq)(so, PRU_DETACH,
(struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
if (error == 0)
error = error2;
}
discard:
if (so->so_state & SS_NOFDREF)
panic("soclose: NOFDREF");
so->so_state |= SS_NOFDREF;
sofree(so);
(void) splx(s);
return (error);
}
/*
* Must be called at splnet...
*/
soabort(so)
struct socket *so;
{
return (
(*so->so_proto->pr_usrreq)(so, PRU_ABORT,
(struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
}
soaccept(so, nam)
register struct socket *so;
struct mbuf *nam;
{
int s = splnet();
int error;
if ((so->so_state & SS_NOFDREF) == 0)
panic("soaccept: !NOFDREF");
so->so_state &= ~SS_NOFDREF;
error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
(struct mbuf *)0, nam, (struct mbuf *)0);
(void) splx(s);
return (error);
}
soconnect(so, nam)
register struct socket *so;
struct mbuf *nam;
{
int s;
int error;
if (so->so_options & SO_ACCEPTCONN)
return (EOPNOTSUPP);
s = splnet();
/*
* If protocol is connection-based, can only connect once.
* Otherwise, if connected, try to disconnect first.
* This allows user to disconnect by connecting to, e.g.,
* a null address.
*/
if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
(error = sodisconnect(so))))
error = EISCONN;
else
error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
(struct mbuf *)0, nam, (struct mbuf *)0);
(void) splx(s);
return (error);
}
soconnect2(so1, so2)
register struct socket *so1;
struct socket *so2;
{
int s = splnet();
int error;
error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
(struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0);
(void) splx(s);
return (error);
}
sodisconnect(so)
register struct socket *so;
{
int s = splnet();
int error;
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto bad;
}
if (so->so_state & SS_ISDISCONNECTING) {
error = EALREADY;
goto bad;
}
error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
(struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
bad:
(void) splx(s);
return (error);
}
#define SEND_CHUNK (MCLBYTES * 4) /* Limit before protocol call */
#define SEND_THRESH (MCLBYTES/2) /* Threshold to use a cluster */
/*
* Send on a socket.
* If send must go all at once and message is larger than
* send buffering, then hard error.
* Lock against other senders.
* If must go all at once and not enough room now, then
* inform user that this would block and do nothing.
* Otherwise, if nonblocking, send as much as possible.
*/
sosend(so, nam, uio, flags, rights)
register struct socket *so;
struct mbuf *nam;
register struct uio *uio;
int flags;
struct mbuf *rights;
{
struct mbuf *top = 0;
register struct mbuf *m, **mp;
register int space;
int len, rlen = 0, error = 0, s, dontroute, first = 1;
if (sosendallatonce(so) && uio->uio_resid > so->so_snd.sb_hiwat)
return (EMSGSIZE);
dontroute =
(flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
(so->so_proto->pr_flags & PR_ATOMIC);
u.u_ru.ru_msgsnd++;
if (rights)
rlen = rights->m_len;
#define snderr(errno) { error = errno; (void) splx(s); goto release; }
restart:
sblock(so, &so->so_snd);
do {
s = splnet();
if (so->so_state & SS_CANTSENDMORE)
snderr(EPIPE);
if (so->so_error) {
error = so->so_error;
so->so_error = 0; /* ??? */
(void) splx(s);
goto release;
}
if ((so->so_state & SS_ISCONNECTED) == 0) {
if (so->so_proto->pr_flags & PR_CONNREQUIRED)
snderr(ENOTCONN);
if (nam == 0)
snderr(EDESTADDRREQ);
}
if (flags & MSG_OOB)
space = 1024;
else {
register int resid = uio->uio_resid + rlen;
int ispipe = (so->so_state & SS_PIPE);
space = sbspace(&so->so_snd);
/*
* POSIX/SVID behavior on pipes
* if (NDELAY && nbytes <= PIPE_BUF && space < nbytes)
* return POSIX ? EAGAIN : 0
*/
if ((uio->uio_fmode & (FNONBIO | FNBIO)) &&
ispipe && resid <= PIPE_BUF && space < resid) {
if (uio->uio_fmode & FNONBIO && first)
error = EAGAIN;
(void) splx(s);
goto release;
}
/*
* More POSIX: writes to a pipe of <= PIPE_BUF must
* be atomic; the third disjunct of the if below
* enforces this. Moreover, for requests larger than
* PIPE_BUF, if the pipe is empty at the outset, we
* must transfer at least PIPE_BUF bytes; the fourth
* disjunct enforces this condition.
*/
if (space <= rlen ||
(sosendallatonce(so) && space < resid) ||
(ispipe && resid <= PIPE_BUF && space < resid) ||
(ispipe && resid > PIPE_BUF && space < PIPE_BUF &&
so->so_snd.sb_cc == 0) ||
(uio->uio_resid >= MCLBYTES && space < MCLBYTES &&
so->so_snd.sb_cc >= MCLBYTES &&
(so->so_state & SS_NBIO) == 0 &&
(uio->uio_fmode & (FNBIO | FNONBIO)) == 0)
) {
/*
* Don't have enough space available to send
* everthing that must go out as a single
* unit.
*/
if (uio->uio_fmode & FNONBIO) {
/* POSIX semantics apply. */
if (first)
error = EAGAIN;
(void) splx(s);
goto release;
} else if (so->so_state & SS_NBIO) {
/* 4bsd semantics apply. */
if (first)
error = EWOULDBLOCK;
(void) splx(s);
goto release;
} else if (uio->uio_fmode & FNBIO) {
/* SVID semantics apply. */
(void) splx(s);
goto release;
}
sbunlock(so, &so->so_snd);
sbwait(&so->so_snd);
(void) splx(s);
goto restart;
}
}
(void) splx(s);
mp = &top;
space -= rlen;
if ((so->so_proto->pr_flags & PR_ATOMIC) == 0) {
/*
* Limit size done in one send to a couple clusters
* in order to get better parallelism
*/
space = MIN(space, SEND_CHUNK);
}
while (space > 0) {
/*
* Process another mbuf's worth of outgoing
* data. Note that a zero-length write will
* turn into a zero-length mbuf.
*/
MGET(m, M_WAIT, MT_DATA);
/*
* See whether to use a cluster mbuf. The first
* clause checks that there's enough data to make
* it worthwhile (MCLBYTES/<small power of 2> might
* be better) and the second checks whether doing
* so would exceed the amount of allowable buffer
* space.
*/
if (uio->uio_resid >= SEND_THRESH &&
space >= SEND_THRESH) {
MCLGET(m);
if (m->m_len != MCLBYTES)
goto nomclusters;
len = MIN(MCLBYTES, uio->uio_resid);
space -= MCLBYTES;
} else {
nomclusters:
len = MIN(MIN(MLEN, uio->uio_resid), space);
space -= len;
}
error = uiomove(mtod(m, caddr_t), len, UIO_WRITE, uio);
m->m_len = len;
*mp = m;
if (error)
goto release;
mp = &m->m_next;
if (uio->uio_resid <= 0)
break;
}
if (dontroute)
so->so_options |= SO_DONTROUTE;
s = splnet(); /* XXX */
error = (*so->so_proto->pr_usrreq)(so,
(flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
top, (caddr_t)nam, rights);
(void) splx(s);
if (dontroute)
so->so_options &= ~SO_DONTROUTE;
rights = 0;
rlen = 0;
top = 0;
first = 0;
if (error)
break;
} while (uio->uio_resid);
release:
sbunlock(so, &so->so_snd);
if (top)
m_freem(top);
if (error == EPIPE)
psignal(u.u_procp, SIGPIPE);
return (error);
}
/*
* Implement receive operations on a socket.
* We depend on the way that records are added to the sockbuf
* by sbappend*. In particular, each record (mbufs linked through m_next)
* must begin with an address if the protocol so specifies,
* followed by an optional mbuf containing access rights if supported
* by the protocol, and then zero or more mbufs of data.
* In order to avoid blocking network interrupts for the entire time here,
* we splx() while doing the actual copy to user space.
* Although the sockbuf is locked, new data may still be appended,
* and thus we must maintain consistency of the sockbuf during that time.
*/
soreceive(so, aname, uio, flags, rightsp)
register struct socket *so;
struct mbuf **aname;
register struct uio *uio;
int flags;
struct mbuf **rightsp;
{
register struct mbuf *m;
register int len, error = 0, s, offset;
struct protosw *pr = so->so_proto;
struct mbuf *nextrecord;
int moff;
if (rightsp)
*rightsp = 0;
if (aname)
*aname = 0;
if (flags & MSG_OOB) {
m = m_get(M_WAIT, MT_DATA);
error = (*pr->pr_usrreq)(so, PRU_RCVOOB,
m, (struct mbuf *)(flags & MSG_PEEK), (struct mbuf *)0);
if (error)
goto bad;
if (pr->pr_flags & PR_OOB_ADDR) {
*aname = m;
m = m->m_next;
(*aname)->m_next = (struct mbuf *)0;
if (!m)
return (error);
}
do {
len = uio->uio_resid;
if (len > m->m_len)
len = m->m_len;
error = uiomove(mtod(m, caddr_t), (int)len, UIO_READ,
uio);
m = m_free(m);
} while (uio->uio_resid && error == 0 && m);
bad:
if (m)
m_freem(m);
return (error);
}
restart:
sblock(so, &so->so_rcv);
s = splnet();
if (so->so_rcv.sb_cc == 0) {
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
goto release;
}
if (so->so_state & SS_CANTRCVMORE)
goto release;
if ((so->so_state & SS_ISCONNECTED) == 0 &&
(so->so_proto->pr_flags & PR_CONNREQUIRED)) {
error = ENOTCONN;
goto release;
}
if (uio->uio_resid == 0)
goto release;
if (uio->uio_fmode & FNONBIO) {
error = EAGAIN;
goto release;
}
if (so->so_state & SS_NBIO) {
error = EWOULDBLOCK;
goto release;
}
if (uio->uio_fmode & FNBIO)
goto release;
sbunlock(so, &so->so_rcv);
sbwait(&so->so_rcv);
(void) splx(s);
goto restart;
}
u.u_ru.ru_msgrcv++;
m = so->so_rcv.sb_mb;
if (m == 0)
panic("receive 1");
nextrecord = m->m_act;
if (pr->pr_flags & PR_ADDR) {
register struct mbuf *n;
if (m->m_type != MT_SONAME)
panic("receive 1a");
if (flags & MSG_PEEK) {
/*
* Advance past address subchain,
* copying it into *aname if needed.
*/
register int alen = 0;
for (n = m; n && n->m_type == MT_SONAME; n = n->m_next)
alen += n->m_len;
if (aname)
*aname = m_copy(m, 0, alen);
m = n;
} else {
/*
* Dispose of address subchain, possibly
* by transferring it over to *aname.
*/
for ( ; m && m->m_type == MT_SONAME;
n = m, m = m->m_next)
sbfree(&so->so_rcv, m);
/* Break it off. */
n->m_next = 0;
if (aname)
*aname = so->so_rcv.sb_mb;
else
m_freem(so->so_rcv.sb_mb);
so->so_rcv.sb_mb = m;
if (m)
m->m_act = nextrecord;
}
}
if (m && m->m_type == MT_RIGHTS) {
register struct mbuf *n;
if ((pr->pr_flags & PR_RIGHTS) == 0)
panic("receive 2");
if (flags & MSG_PEEK) {
/*
* Advance past rights subchain,
* copying it into *rightsp if needed.
*/
register int rlen = 0;
for (n = m; n && n->m_type == MT_RIGHTS; n = n->m_next)
rlen += n->m_len;
if (rightsp)
*rightsp = m_copy(m, 0, rlen);
m = n;
} else {
/*
* Dispose of rights subchain, possibly
* by transferring it over to *rightsp.
*/
for ( ; m && m->m_type == MT_RIGHTS;
n = m, m = m->m_next)
sbfree(&so->so_rcv, m);
/* Break it off. */
n->m_next = 0;
if (rightsp)
*rightsp = so->so_rcv.sb_mb;
else
m_freem(so->so_rcv.sb_mb);
so->so_rcv.sb_mb = m;
if (m)
m->m_act = nextrecord;
}
}
moff = 0;
offset = 0;
while (m && uio->uio_resid > 0 && error == 0) {
if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
panic("receive 3");
len = uio->uio_resid;
so->so_state &= ~SS_RCVATMARK;
if (so->so_oobmark && len > so->so_oobmark - offset)
len = so->so_oobmark - offset;
if (len > m->m_len - moff)
len = m->m_len - moff;
(void) splx(s);
if (uiomove(mtod(m, caddr_t) + moff, (int)len, UIO_READ, uio))
error = EFAULT;
s = splnet();
if (len == m->m_len - moff) {
/* Have consumed all of current mbuf. */
if (flags & MSG_PEEK) {
m = m->m_next;
moff = 0;
} else {
nextrecord = m->m_act;
sbfree(&so->so_rcv, m);
MFREE(m, so->so_rcv.sb_mb);
m = so->so_rcv.sb_mb;
if (m)
m->m_act = nextrecord;
}
} else {
if (flags & MSG_PEEK)
moff += len;
else {
m->m_off += len;
m->m_len -= len;
so->so_rcv.sb_cc -= len;
}
}
if (so->so_oobmark) {
if ((flags & MSG_PEEK) == 0) {
so->so_oobmark -= len;
if (so->so_oobmark == 0) {
so->so_state |= SS_RCVATMARK;
break;
}
} else
offset += len;
}
}
if ((flags & MSG_PEEK) == 0) {
if (m == 0)
so->so_rcv.sb_mb = nextrecord;
else if (pr->pr_flags & PR_ATOMIC)
(void) sbdroprecord(&so->so_rcv);
if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
(struct mbuf *)0, (struct mbuf *)0);
if (error == 0 && rightsp && *rightsp &&
pr->pr_domain->dom_externalize)
error = (*pr->pr_domain->dom_externalize)(*rightsp);
}
release:
sbunlock(so, &so->so_rcv);
(void) splx(s);
return (error);
}
soshutdown(so, how)
register struct socket *so;
register int how;
{
register struct protosw *pr = so->so_proto;
how++;
if (how & FREAD)
sorflush(so);
if (how & FWRITE)
return ((*pr->pr_usrreq)(so, PRU_SHUTDOWN,
(struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
return (0);
}
sorflush(so)
register struct socket *so;
{
register struct sockbuf *sb = &so->so_rcv;
register struct protosw *pr = so->so_proto;
register int s;
struct sockbuf asb;
sblock(so, sb);
s = splimp();
socantrcvmore(so);
sbunlock(so, sb);
asb = *sb;
bzero((caddr_t)sb, sizeof (*sb));
(void) splx(s);
if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
(*pr->pr_domain->dom_dispose)(asb.sb_mb);
sbrelease(&asb);
}
sosetopt(so, level, optname, m0)
register struct socket *so;
int level, optname;
struct mbuf *m0;
{
int error = 0;
register struct mbuf *m = m0;
if (level != SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_ctloutput)
return ((*so->so_proto->pr_ctloutput)
(PRCO_SETOPT, so, level, optname, &m0));
error = ENOPROTOOPT;
} else {
switch (optname) {
#ifndef notyet
/*
* 4.2 compatibility code.
* THIS SHOULD GO AWAY WHEN WE NO LONGER REQUIRE
* BINARY COMPATIBILITY WITH RELEASE 3.0.
*/
#ifndef SO_DONTLINGER
#define SO_DONTLINGER (~SO_LINGER)
#endif SO_DONTLINGER
case SO_DONTLINGER:
so->so_options &= ~SO_LINGER;
so->so_linger = 0;
break;
#endif notyet
case SO_LINGER:
#ifndef notyet
/*
* 4.2 compatibility code.
* THIS SHOULD GO AWAY WHEN WE NO LONGER REQUIRE
* BINARY COMPATIBILITY WITH RELEASE 3.0.
*
* Convert 4.2 option representation to the 4.3
* representation. The code counts on the fact
* that sizeof (struct linger) != sizeof (int).
*/
if (m && m->m_len == sizeof (int)) {
register int ling = *mtod(m, int *);
register struct linger *l;
(void) m_free(m);
MGET(m, M_WAIT, MT_SOOPTS);
m->m_len = sizeof (struct linger);
l = mtod(m, struct linger *);
l->l_linger = ling;
l->l_onoff = 1;
}
#endif notyet
if (m == NULL || m->m_len != sizeof (struct linger)) {
error = EINVAL;
goto bad;
}
so->so_linger = mtod(m, struct linger *)->l_linger;
if (mtod(m, struct linger *)->l_onoff)
so->so_options |= SO_LINGER;
else
so->so_options &= ~SO_LINGER;
break;
case SO_DEBUG:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_USELOOPBACK:
case SO_REUSEADDR:
#ifndef notyet
/*
* 4.2 compatibility code.
* THIS SHOULD GO AWAY WHEN WE NO LONGER REQUIRE
* BINARY COMPATIBILITY WITH RELEASE 3.0.
*
* Convert to 4.3 representation by cobbling up an
* mbuf with a nonzero option value.
*/
if (m == NULL) {
MGET(m, M_WAIT, MT_SOOPTS);
m->m_len = sizeof (int);
*mtod(m, int *) = 1;
}
/* fall through... */
#endif notyet
case SO_BROADCAST:
case SO_OOBINLINE:
if (m == NULL || m->m_len < sizeof (int)) {
error = EINVAL;
goto bad;
}
if (*mtod(m, int *))
so->so_options |= optname;
else
so->so_options &= ~optname;
break;
case SO_SNDBUF:
case SO_RCVBUF:
case SO_SNDLOWAT:
case SO_RCVLOWAT:
case SO_SNDTIMEO:
case SO_RCVTIMEO:
if (m == NULL || m->m_len < sizeof (int)) {
error = EINVAL;
goto bad;
}
switch (optname) {
case SO_SNDBUF:
case SO_RCVBUF:
if (sbreserve(optname == SO_SNDBUF ?
&so->so_snd : &so->so_rcv,
*mtod(m, int *)) == 0) {
error = ENOBUFS;
goto bad;
}
break;
case SO_SNDLOWAT:
so->so_snd.sb_lowat = *mtod(m, int *);
break;
case SO_RCVLOWAT:
so->so_rcv.sb_lowat = *mtod(m, int *);
break;
case SO_SNDTIMEO:
so->so_snd.sb_timeo = *mtod(m, int *);
break;
case SO_RCVTIMEO:
so->so_rcv.sb_timeo = *mtod(m, int *);
break;
}
break;
default:
error = ENOPROTOOPT;
break;
}
}
bad:
if (m)
(void) m_free(m);
return (error);
}
sogetopt(so, level, optname, mp)
register struct socket *so;
int level, optname;
struct mbuf **mp;
{
register struct mbuf *m;
if (level != SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_ctloutput) {
return ((*so->so_proto->pr_ctloutput)
(PRCO_GETOPT, so, level, optname, mp));
} else
return (ENOPROTOOPT);
} else {
m = m_get(M_WAIT, MT_SOOPTS);
m->m_len = sizeof (int);
switch (optname) {
case SO_LINGER:
m->m_len = sizeof (struct linger);
mtod(m, struct linger *)->l_onoff =
so->so_options & SO_LINGER;
mtod(m, struct linger *)->l_linger = so->so_linger;
break;
case SO_USELOOPBACK:
case SO_DONTROUTE:
case SO_DEBUG:
case SO_KEEPALIVE:
case SO_REUSEADDR:
case SO_BROADCAST:
case SO_OOBINLINE:
*mtod(m, int *) = so->so_options & optname;
break;
case SO_TYPE:
*mtod(m, int *) = so->so_type;
break;
case SO_ERROR:
*mtod(m, int *) = so->so_error;
so->so_error = 0;
break;
case SO_SNDBUF:
*mtod(m, int *) = so->so_snd.sb_hiwat;
break;
case SO_RCVBUF:
*mtod(m, int *) = so->so_rcv.sb_hiwat;
break;
case SO_SNDLOWAT:
*mtod(m, int *) = so->so_snd.sb_lowat;
break;
case SO_RCVLOWAT:
*mtod(m, int *) = so->so_rcv.sb_lowat;
break;
case SO_SNDTIMEO:
*mtod(m, int *) = so->so_snd.sb_timeo;
break;
case SO_RCVTIMEO:
*mtod(m, int *) = so->so_rcv.sb_timeo;
break;
default:
(void) m_free(m);
return (ENOPROTOOPT);
}
*mp = m;
return (0);
}
}
sohasoutofband(so)
register struct socket *so;
{
struct proc *p;
if (so->so_pgrp < 0)
gsignal(-so->so_pgrp, SIGURG);
else if (so->so_pgrp > 0 && (p = pfind(so->so_pgrp)) != 0)
psignal(p, SIGURG);
if (so->so_rcv.sb_sel) {
selwakeup(so->so_rcv.sb_sel, so->so_rcv.sb_flags & SB_COLL);
so->so_rcv.sb_sel = 0;
so->so_rcv.sb_flags &= ~SB_COLL;
}
}