2021-10-11 18:37:13 -03:00

938 lines
21 KiB
C

#if !defined(lint) && defined(SCCSIDS)
static char sccsid[] = "@(#)localtime.c 1.1 94/10/31 SMI"; /* from Arthur Olson's 3.2 */
#endif
/*LINTLIBRARY*/
/*
** sys/param.h is included to get MAXPATHLEN, and to get time_t by virtue
** of including sys/types.h.
*/
#include <sys/param.h>
#include <tzfile.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif /* !defined TRUE */
extern char * getenv();
struct tm * offtime();
struct ttinfo { /* time type information */
long tt_gmtoff; /* GMT offset in seconds */
int tt_isdst; /* used to set tm_isdst */
int tt_abbrind; /* abbreviation list index */
};
struct state {
int timecnt;
int typecnt;
int charcnt;
time_t *ats;
unsigned char *types;
struct ttinfo *ttis;
char *chars;
};
#ifdef TEST
struct state *sp;
#else
static struct state *sp;
#endif
static int tz_is_set;
#ifdef S5EMUL
char * tzname[2] = {
"GMT",
"GMT"
};
time_t timezone = 0;
int daylight = 0;
#endif /* S5EMUL */
static long
detzcode(codep)
char * codep;
{
register long result;
register int i;
result = 0;
for (i = 0; i < 4; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
/*
** Free all the items pointed to by the specified "state" structure (except for
** "chars", which might have other references to it), and zero out all the
** pointers to those items.
*/
static void
freeall(s)
register struct state * s;
{
if (s->ttis) {
free(s->ttis);
s->ttis = 0;
}
if (s->types) {
free(s->types);
s->types = 0;
}
if (s->ats) {
free(s->ats);
s->ats = 0;
}
}
#ifdef S5EMUL
static void
settzname()
{
register struct state *s = sp;
register int i;
tzname[0] = tzname[1] = &s->chars[0];
timezone = -s->ttis[0].tt_gmtoff;
daylight = 0;
for (i = 1; i < s->typecnt; ++i) {
register struct ttinfo * ttisp;
ttisp = &s->ttis[i];
if (ttisp->tt_isdst) {
tzname[1] = &s->chars[ttisp->tt_abbrind];
daylight = 1;
} else {
tzname[0] = &s->chars[ttisp->tt_abbrind];
timezone = -ttisp->tt_gmtoff;
}
}
}
#endif
static
tzload(name)
register char * name;
{
register char * p;
register int i;
register int fid;
register struct state *s = sp;
if (s == 0) {
s = (struct state *)calloc(1, sizeof (*s));
if (s == 0)
return -1;
sp = s;
}
if (name == 0 && (name = TZDEFAULT) == 0)
return -1;
{
register int doaccess;
char fullname[MAXPATHLEN];
if (name[0] == ':')
name++;
doaccess = name[0] == '/';
if (!doaccess) {
if ((p = TZDIR) == NULL)
return -1;
if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
return -1;
(void) strcpy(fullname, p);
(void) strcat(fullname, "/");
(void) strcat(fullname, name);
/*
** Set doaccess if '.' (as in "../") shows up in name.
*/
if (strchr(name, '.') != NULL)
doaccess = TRUE;
name = fullname;
}
if (doaccess && access(name, 4) != 0)
return -1;
if ((fid = open(name, 0)) == -1)
return -1;
}
{
register struct tzhead * tzhp;
char buf[8192];
i = read(fid, buf, sizeof buf);
if (close(fid) != 0 || i < sizeof *tzhp)
return -1;
tzhp = (struct tzhead *) buf;
s->timecnt = (int) detzcode(tzhp->tzh_timecnt);
s->typecnt = (int) detzcode(tzhp->tzh_typecnt);
s->charcnt = (int) detzcode(tzhp->tzh_charcnt);
if (s->timecnt > TZ_MAX_TIMES ||
s->typecnt == 0 ||
s->typecnt > TZ_MAX_TYPES ||
s->charcnt > TZ_MAX_CHARS)
return -1;
if (i < sizeof *tzhp +
s->timecnt * (4 + sizeof (char)) +
s->typecnt * (4 + 2 * sizeof (char)) +
s->charcnt * sizeof (char))
return -1;
freeall(s);
if (s->timecnt != 0) {
s->ats =
(time_t *)calloc(s->timecnt, sizeof (time_t));
if (s->ats == 0)
return -1;
s->types =
(unsigned char *)calloc(s->timecnt,
sizeof (unsigned char));
if (s->types == 0) {
freeall(s);
return -1;
}
}
s->ttis =
(struct ttinfo *)calloc(s->typecnt, sizeof (struct ttinfo));
if (s->ttis == 0) {
freeall(s);
return -1;
}
s->chars =
(char *)calloc(s->charcnt+1, sizeof (char));
if (s->chars == 0) {
freeall(s);
return -1;
}
p = buf + sizeof *tzhp;
for (i = 0; i < s->timecnt; ++i) {
s->ats[i] = detzcode(p);
p += 4;
}
for (i = 0; i < s->timecnt; ++i)
s->types[i] = (unsigned char) *p++;
for (i = 0; i < s->typecnt; ++i) {
register struct ttinfo * ttisp;
ttisp = &s->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
ttisp->tt_abbrind = (unsigned char) *p++;
}
for (i = 0; i < s->charcnt; ++i)
s->chars[i] = *p++;
s->chars[i] = '\0'; /* ensure '\0' at end */
}
/*
** Check that all the local time type indices are valid.
*/
for (i = 0; i < s->timecnt; ++i)
if (s->types[i] >= s->typecnt)
return -1;
/*
** Check that all abbreviation indices are valid.
*/
for (i = 0; i < s->typecnt; ++i)
if (s->ttis[i].tt_abbrind >= s->charcnt)
return -1;
#ifdef S5EMUL
/*
** Set tzname elements to initial values.
*/
settzname();
#endif /* S5EMUL */
return 0;
}
struct rule {
int r_type; /* type of rule */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
static int mon_lengths[2][MONS_PER_YEAR] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static int year_lengths[2] = {
DAYS_PER_NYEAR, DAYS_PER_LYEAR
};
/*
** Given a pointer into a time zone string, scan until a character that is not
** a valid character in a zone name is found. Return a pointer to that
** character.
*/
static char *
getzname(strp)
register char * strp;
{
register char c;
while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-'
&& c != '+')
++strp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a number from that string.
** Check that the number is within a specified range; if it is not, return
** NULL.
** Otherwise, return a pointer to the first character not part of the number.
*/
static char *
getnum(strp, nump, min, max)
register char * strp;
int * nump;
int min;
int max;
{
register char c;
register int num;
num = 0;
while ((c = *strp) != '\0' && isdigit(c)) {
num = num*10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
++strp;
}
if (num < min)
return NULL; /* illegal value */
*nump = num;
return strp;
}
/*
** Given a pointer into a time zone string, extract a time, in hh[:mm[:ss]]
** form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/
static char *
gettime(strp, timep)
register char * strp;
long * timep;
{
int num;
strp = getnum(strp, &num, 0, HOURS_PER_DAY / 2);
if (strp == NULL)
return NULL;
*timep = num*SECS_PER_HOUR;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, MINS_PER_HOUR - 1);
if (strp == NULL)
return NULL;
*timep += num*SECS_PER_MIN;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, SECS_PER_MIN - 1);
if (strp == NULL)
return NULL;
*timep += num;
}
}
return strp;
}
/*
** Given a pointer into a time zone string, extract an offset, in
** [+-]hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/
static char *
getoffset(strp, offsetp)
register char * strp;
long * offsetp;
{
register int neg;
if (*strp == '-') {
neg = 1;
++strp;
} else if (*strp == '+' || isdigit(*strp))
neg = 0;
else
return NULL; /* illegal offset */
strp = gettime(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a rule in the form
** date[/time]. See POSIX section 8 for the format of "date" and "time".
** If a valid rule is not found, return NULL.
** Otherwise, return a pointer to the first character not part of the rule.
*/
static char *
getrule(strp, rulep)
char * strp;
register struct rule * rulep;
{
if (*strp == 'J') {
/*
** Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYS_PER_NYEAR);
} else if (*strp == 'M') {
/*
** Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONS_PER_YEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYS_PER_WEEK - 1);
} else if (isdigit(*strp)) {
/*
** Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYS_PER_LYEAR - 1);
} else
return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/') {
/*
** Time specified.
*/
++strp;
strp = gettime(strp, &rulep->r_time);
if (strp == NULL)
return NULL;
} else
rulep->r_time = 2*SECS_PER_HOUR; /* default = 2:00:00 */
return strp;
}
/*
** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
** year, a rule, and the offset from GMT at the time that rule takes effect,
** calculate the Epoch-relative time that rule takes effect.
*/
static time_t
transtime(janfirst, year, rulep, offset)
time_t janfirst;
int year;
register struct rule * rulep;
long offset;
{
register int leapyear;
register time_t value;
register int i;
int d, m1, yy0, yy1, yy2, dow;
leapyear = isleap(year);
switch (rulep->r_type) {
case JULIAN_DAY:
/*
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
** years.
** In non-leap years, or if the day number is 59 or less, just
** add SECS_PER_DAY times the day number-1 to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1)*SECS_PER_DAY;
if (leapyear && rulep->r_day >= 60)
value += SECS_PER_DAY;
break;
case DAY_OF_YEAR:
/*
** n - day of year.
** Just add SECS_PER_DAY times the day number to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day*SECS_PER_DAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
** Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i]*SECS_PER_DAY;
/*
** Use Zeller's Congruence to get day-of-week of first day of
** month.
*/
m1 = (rulep->r_mon + 9)%12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26*m1 - 2)/10 + 1 + yy2 + yy2/4 + yy1/4 - 2*yy1)%7;
if (dow < 0)
dow += DAYS_PER_WEEK;
/*
** "dow" is the day-of-week of the first day of the month. Get
** the day-of-month (zero-origin) of the first "dow" day of the
** month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYS_PER_WEEK;
for (i = 1; i < rulep->r_week; ++i) {
if (d + DAYS_PER_WEEK >= mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYS_PER_WEEK;
}
/*
** "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d*SECS_PER_DAY;
break;
}
/*
** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
** question. To get the Epoch-relative time of the specified local
** time on that day, add the transition time and the current offset
** from GMT.
*/
return value + rulep->r_time + offset;
}
/*
** The U.S. tables, including the latest hack.
*/
/*
** Define MONTH_NTH_DAY_OF_WEEK rule for U.S. federal tables.
*/
#define MD_RULE(week, month) { MONTH_NTH_DAY_OF_WEEK, 0, week, month, 2*SECS_PER_HOUR }
/*
** Define DAY_OF_YEAR rule for U.S. federal tables.
*/
#define DOY_RULE(day) { DAY_OF_YEAR, day, 0, 0, 2*SECS_PER_HOUR }
static struct rule usdaytab[] = {
/* 1970: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1971: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1972: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1973: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1974: Jan 6 - last Sun. in Oct */
DOY_RULE(5), MD_RULE(5, 10),
/* 1975: last Sun. in Feb - last Sun. in Oct */
MD_RULE(5, 2), MD_RULE(5, 10),
/* 1976: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1977: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1978: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1979: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1980: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1981: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1982: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1983: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1984: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1985: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
/* 1986: last Sun. in Apr - last Sun. in Oct */
MD_RULE(5, 4), MD_RULE(5, 10),
};
#define N_US_RULES (sizeof usdaytab / sizeof usdaytab[0])
static struct rule repeating[] = {
/* 1987 on: first Sun. in Apr - last Sun. in Oct */
MD_RULE(0, 4), MD_RULE(5, 10)
};
/*
** Given a POSIX section 8-style TZ string, fill in the rule tables as
** appropriate.
*/
static
tzparse(name)
char * name;
{
char * stdname;
char * dstname;
int stdlen;
int dstlen;
long stdoffset;
long dstoffset;
struct rule start;
struct rule end;
register struct state *s = sp;
register int year;
register time_t janfirst;
register time_t * atp;
register unsigned char * typep;
register char * cp;
register int i;
time_t starttime;
time_t endtime;
/*
** If "s" is zero, it's because "tzload" couldn't allocate a "state"
** structure ("tzparse" is never called without "tzload" first having
** been called); we just give up if this is the case.
*/
if (s == 0)
return -1;
stdname = name;
name = getzname(name);
stdlen = name - stdname; /* length of standard zone name */
if (stdlen == 0)
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
freeall(s);
if (*name != '\0') {
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
if (dstlen == 0)
return -1;
if (*name != '\0' && *name != ',' && *name != ';') {
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
} else
dstoffset = stdoffset - 1*SECS_PER_HOUR;
s->typecnt = 2; /* standard time and DST */
s->charcnt = stdlen + 1 + dstlen + 1;
/*
** Two transitions per year, from 1970 to 2038.
*/
s->timecnt = 2*(2038 - 1970 + 1);
if (s->timecnt > TZ_MAX_TIMES)
return -1;
s->ats =
(time_t *)calloc(s->timecnt, sizeof (time_t));
if (s->ats == 0)
return -1;
s->types =
(unsigned char *)calloc(s->timecnt,
sizeof (unsigned char));
if (s->types == 0) {
freeall(s);
return -1;
}
s->ttis =
(struct ttinfo *)calloc(s->typecnt,
sizeof (struct ttinfo));
if (s->ttis == 0) {
freeall(s);
return -1;
}
s->ttis[0].tt_gmtoff = -dstoffset;
s->ttis[0].tt_isdst = 1;
s->ttis[0].tt_abbrind = stdlen + 1;
s->ttis[1].tt_gmtoff = -stdoffset;
s->ttis[1].tt_isdst = 0;
s->ttis[1].tt_abbrind = 0;
if (*name == ',' || *name == ';') {
++name;
if ((name = getrule(name, &start)) == NULL) {
freeall(s);
return -1;
}
if (*name++ != ',') {
freeall(s);
return -1;
}
if ((name = getrule(name, &end)) == NULL) {
freeall(s);
return -1;
}
if (*name != '\0') {
freeall(s);
return -1;
}
atp = s->ats;
typep = s->types;
for (year = 1970, janfirst = 0; year <= 2038; year++) {
starttime = transtime(janfirst, year, &start,
stdoffset);
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime) {
*atp++ = endtime;
*typep++ = 1; /* DST ends */
*atp++ = starttime;
*typep++ = 0; /* DST begins */
} else {
*atp++ = starttime;
*typep++ = 0; /* DST begins */
*atp++ = endtime;
*typep++ = 1; /* DST ends */
}
janfirst +=
year_lengths[isleap(year)]*SECS_PER_DAY;
}
} else {
if (*name != '\0') {
freeall(s);
return -1;
}
atp = s->ats;
typep = s->types;
for (year = 1970, janfirst = 0, i = 0; i < N_US_RULES;
++year, i += 2) {
*atp++ = transtime(janfirst, year,
&usdaytab[i], stdoffset);
*typep++ = 0; /* DST begins */
*atp++ = transtime(janfirst, year,
&usdaytab[i + 1], dstoffset);
*typep++ = 1; /* DST ends */
janfirst +=
year_lengths[isleap(year)]*SECS_PER_DAY;
}
for (; year <= 2038; year++) {
*atp++ = transtime(janfirst, year,
&repeating[0], stdoffset);
*typep++ = 0; /* DST begins */
*atp++ = transtime(janfirst, year,
&repeating[1], dstoffset);
*typep++ = 1; /* DST ends */
janfirst +=
year_lengths[isleap(year)]*SECS_PER_DAY;
}
}
} else {
s->typecnt = 1; /* only standard time */
s->timecnt = 0;
s->ats = 0;
s->types = 0;
s->charcnt = stdlen + 1;
s->ttis =
(struct ttinfo *)calloc(s->typecnt, sizeof (struct ttinfo));
if (s->ttis == 0)
return -1;
s->ttis[0].tt_gmtoff = -stdoffset;
s->ttis[0].tt_isdst = 0;
s->ttis[0].tt_abbrind = 0;
}
cp = (char *)calloc(s->charcnt+1, sizeof (char));
if (cp == 0) {
freeall(s);
return -1;
}
s->chars = cp;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (s->typecnt == 2) {
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
#ifdef S5EMUL
settzname();
#endif /* S5EMUL */
return 0;
}
static
tzsetgmt()
{
register struct state *s = sp;
if (s == 0) {
s = (struct state *)calloc(1, sizeof (*s));
if (s == 0)
return;
sp = s;
}
s->timecnt = 0;
s->typecnt = 1;
s->charcnt = 4;
freeall(s);
s->ttis = (struct ttinfo *)calloc(1, sizeof (struct ttinfo));
s->ttis[0].tt_gmtoff = 0;
s->ttis[0].tt_abbrind = 0;
s->chars = (char *)malloc(4);
(void) strcpy(s->chars, "GMT");
#ifdef S5EMUL
settzname();
#endif /* S5EMUL */
}
void
tzset()
{
register char * name;
tz_is_set = TRUE;
name = getenv("TZ");
if (name != 0 && *name == '\0')
tzsetgmt(); /* GMT by request */
else if (tzload(name) != 0) {
if (name[0] == ':' || tzparse(name) != 0)
tzsetgmt();
}
}
void
tzsetwall()
{
tz_is_set = TRUE;
if (tzload((char *) 0) != 0)
tzsetgmt();
}
struct tm *
localtime(timep)
time_t * timep;
{
register struct ttinfo * ttisp;
register struct tm * tmp;
register int i;
time_t t;
register struct state *s;
if (!tz_is_set)
tzset();
s = sp;
if (s == 0)
return (0);
t = *timep;
if (s->timecnt == 0 || t < s->ats[0]) {
i = 0;
while (s->ttis[i].tt_isdst)
if (++i >= s->typecnt) {
i = 0;
break;
}
} else {
for (i = 1; i < s->timecnt; ++i)
if (t < s->ats[i])
break;
i = s->types[i - 1];
}
ttisp = &s->ttis[i];
tmp = offtime(&t, ttisp->tt_gmtoff);
tmp->tm_isdst = ttisp->tt_isdst;
#ifdef S5EMUL
tzname[tmp->tm_isdst] = &s->chars[ttisp->tt_abbrind];
#endif /* S5EMUL */
tmp->tm_zone = &s->chars[ttisp->tt_abbrind];
return tmp;
}
struct tm *
gmtime(clock)
time_t * clock;
{
register struct tm * tmp;
tmp = offtime(clock, 0L);
#ifdef S5EMUL
tzname[0] = "GMT";
#endif /* S5EMUL */
tmp->tm_zone = "GMT"; /* UCT ? */
return tmp;
}
struct tm *
offtime(clock, offset)
time_t * clock;
long offset;
{
register struct tm * tmp;
register long days;
register long rem;
register int y;
register int yleap;
register int * ip;
static struct tm tm;
tmp = &tm;
days = *clock / SECS_PER_DAY;
rem = *clock % SECS_PER_DAY;
rem += offset;
while (rem < 0) {
rem += SECS_PER_DAY;
--days;
}
while (rem >= SECS_PER_DAY) {
rem -= SECS_PER_DAY;
++days;
}
tmp->tm_hour = (int) (rem / SECS_PER_HOUR);
rem = rem % SECS_PER_HOUR;
tmp->tm_min = (int) (rem / SECS_PER_MIN);
tmp->tm_sec = (int) (rem % SECS_PER_MIN);
tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYS_PER_WEEK);
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYS_PER_WEEK;
y = EPOCH_YEAR;
if (days >= 0)
for ( ; ; ) {
yleap = isleap(y);
if (days < (long) year_lengths[yleap])
break;
++y;
days = days - (long) year_lengths[yleap];
}
else do {
--y;
yleap = isleap(y);
days = days + (long) year_lengths[yleap];
} while (days < 0);
tmp->tm_year = y - TM_YEAR_BASE;
tmp->tm_yday = (int) days;
ip = mon_lengths[yleap];
for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
days = days - (long) ip[tmp->tm_mon];
tmp->tm_mday = (int) (days + 1);
tmp->tm_isdst = 0;
tmp->tm_zone = "";
tmp->tm_gmtoff = offset;
return tmp;
}