Files
Arquivotheca.SunOS-4.1.4/bin/make/misc.c
seta75D ff309bfe1c Init
2021-10-11 18:37:13 -03:00

1063 lines
24 KiB
C

#ident "@(#)misc.c 1.1 94/10/31 Copyright 1986,1987,1988 Sun Micro"
/*
* misc.c
*
* This file contains various unclassified routines. Some main groups:
* getname
* Memory allocation
* String handling
* Property handling
* Error message handling
* Make internal state dumping
* main routine support
*/
/*
* Included files
*/
#include "defs.h"
#include <report.h>
#include <varargs.h>
/*
* Defined macros
*/
/*
* typedefs & structs
*/
/*
* Static variables
*/
static void (*sigivalue)() = SIG_DFL;
static void (*sigqvalue)() = SIG_DFL;
/*
* File table of contents
*/
extern Name getname_fn();
extern void retmem();
extern char *getmem();
extern void append_string();
extern void append_char();
extern void expand_string();
extern Property append_prop();
extern Property maybe_append_prop();
extern Property get_prop();
extern void fatal();
extern void warning();
extern char *errmsg();
extern char *time_to_string();
extern char *get_current_path();
extern void dump_make_state();
extern void print_value();
extern void print_rule();
extern void setup_char_semantics();
extern void load_cached_names();
extern void setup_interrupt();
extern void enable_interrupt();
/*****************************************
*
* getname
*/
/*
* getname_fn(name, len, dont_enter)
*
* Hash a name string to the corresponding nameblock.
*
* Return value:
* The Name block for the string
*
* Parameters:
* name The string we want to internalize
* len The length of that string
* dont_enter Don't enter the name if it does not exist
*
* Global variables used:
* funny The vector of semantic tags for characters
* hashtab The hashtable used for the nametable
*/
Name
getname_fn(name, len, dont_enter)
char *name;
register int len;
register Boolean dont_enter;
{
register unsigned int hashsum = 0;
register int length;
register Name *hashslot;
register unsigned char *cap = (unsigned char *)name;
register Name np;
static Name_rec empty_Name;
/* First figure out how long the string is. If the len argument */
/* is -1 we count the chars here */
if (len == FIND_LENGTH) {
for (;
*cap != (int) nul_char;
hashsum <<= 1, hashsum += *cap++);
length = (char *)cap - name;
} else {
length = len;
for (; --len >= 0; hashsum <<= 1, hashsum += *cap++);
}
/* Run down the chain looking for the string */
for (hashslot = &hashtab[hashsum % (int) hashsize], np = *hashslot;
(np != NULL) && ((len = np->hash.length) <= length);
hashslot = &(np->next), np = *hashslot) {
if ((hashsum == np->hash.sum) && (length == len)) {
if (!IS_EQUALN(np->string, name, length)) {
goto not_this_one;
}
/* We found it. Just return the Name */
return np;
}
not_this_one: ;
}
if (dont_enter) {
return NULL;
}
/* New name. Enter it */
np = ALLOC(Name);
*np = empty_Name;
/* Get some memory for the namestring and copy it */
np->string = getmem(length + 1);
(void) bcopy(name, np->string, length);
/* Fill in the new Name */
np->string[length] = (int) nul_char;
np->hash.length = length;
np->hash.sum = hashsum;
np->stat.time = (int) file_no_time;
if (*hashslot != NULL) {
np->next = *hashslot;
}
*hashslot = np;
/* Scan the namestring to classify it */
for (cap = (unsigned char *)name, len = 0; --length >= 0;) {
len |= char_semantics[*cap++];
}
np->dollar = BOOLEAN((len & (int) dollar_sem) != 0);
np->meta = BOOLEAN((len & (int) meta_sem) != 0);
np->percent = BOOLEAN((len & (int) percent_sem) != 0);
np->wildcard = BOOLEAN((len & (int) wildcard_sem) != 0);
np->colon = BOOLEAN((len & (int) colon_sem) != 0);
np->parenleft = BOOLEAN((len & (int) parenleft_sem) != 0);
return np;
}
/*****************************************
*
* Memory allocation
*/
/*
* retmem(p)
*
* Cover funtion for free() to make it possible to insert advises.
*
* Parameters:
* p The memory block to free
*
* Global variables used:
*/
void
retmem(p)
register char *p;
{
(void) free(p);
}
/*
* getmem(size)
*
* malloc() version that checks the returned value.
*
* Return value:
* The memory chunk we allocated
*
* Parameters:
* size The size of the chunk we need
*
* Global variables used:
*/
char *
getmem(size)
register int size;
{
extern char *malloc();
register char *result = malloc((unsigned) size);
if (result == NULL) {
fatal("Out of memory");
}
return result;
}
/*****************************************
*
* String manipulation
*/
/*
* append_string(from, to, length)
*
* Append a C string to a make string expanding it if nessecary
*
* Parameters:
* from The source (C style) string
* to The destination (make style) string
* length The length of the from string
*
* Global variables used:
*/
void
append_string(from, to, length)
register char *from;
register String to;
register int length;
{
if (length == FIND_LENGTH) {
length = strlen(from);
}
if (to->buffer.start == NULL) {
expand_string(to, 32 + length);
}
if (to->text.p + length >= to->buffer.end) {
expand_string(to,
(to->buffer.end - to->buffer.start) * 2 +
length);
}
if (length > 0) {
(void) bcopy(from, to->text.p, length);
to->text.p += length;
}
*(to->text.p) = (int) nul_char;
}
/*
* append_char(from, to)
*
* Append one char to a make string expanding it if nessecary
*
* Parameters:
* from Single character to append to string
* to The destination (make style) string
*
* Global variables used:
*/
void
append_char(from, to)
char from;
register String to;
{
if (to->buffer.start == NULL) {
expand_string(to, 32);
}
if (to->text.p + 2 >= to->buffer.end) {
expand_string(to, to->buffer.end - to->buffer.start + 32);
}
*(to->text.p)++ = from;
*(to->text.p) = (int) nul_char;
}
/*
* expand_string(string, length)
*
* Allocate more memory for strings that run out of space.
*
* Parameters:
* string The make style string we want to expand
* length The new length we need
*
* Global variables used:
*/
static void
expand_string(string, length)
register String string;
register int length;
{
register char *p;
if (string->buffer.start == NULL) {
/* For strings that have no memory allocated */
string->buffer.start =
string->text.p =
string->text.end =
getmem(length);
string->buffer.end = string->buffer.start + length;
string->text.p[0] = (int) nul_char;
string->free_after_use = true;
return;
}
if (string->buffer.end - string->buffer.start >= length) {
/* If we really dont need more memory */
return;
}
/* Get more memory, copy the string and free the old buffer if */
/* it is was malloc()ed */
p = getmem(length);
(void) strcpy(p, string->buffer.start);
string->text.p = p + (string->text.p - string->buffer.start);
string->text.end = p + (string->text.end - string->buffer.start);
string->buffer.end = p + length;
if (string->free_after_use) {
retmem(string->buffer.start);
}
string->buffer.start = p;
string->free_after_use = true;
}
/*****************************************
*
* Nameblock property handling
*/
/*
* append_prop(target, type)
*
* Create a new property and append it to the property list of a Name.
*
* Return value:
* A new property block for the target
*
* Parameters:
* target The target that wants a new property
* type The type of property being requested
*
* Global variables used:
*/
Property
append_prop(target, type)
register Name target;
register Property_id type;
{
register Property *insert = &target->prop;
register Property prop = *insert;
register int size;
switch (type) {
case conditional_prop:
size = sizeof (struct Conditional);
break;
case line_prop:
size = sizeof (struct Line);
break;
case macro_prop:
size = sizeof (struct Macro);
break;
case makefile_prop:
size = sizeof (struct Makefile);
break;
case member_prop:
size = sizeof (struct Member);
break;
case recursive_prop:
size = sizeof (struct Recursive);
break;
case sccs_prop:
size = sizeof (struct Sccs);
break;
case suffix_prop:
size = sizeof (struct Suffix);
break;
case target_prop:
size = sizeof (struct Target);
break;
case time_prop:
size = sizeof (struct Time);
break;
case vpath_alias_prop:
size = sizeof (struct Vpath_alias);
break;
case long_member_name_prop:
size = sizeof (struct Long_member_name);
break;
default:
fatal("Internal error. Unknown prop type %d", type);
}
for (; prop != NULL; insert = &prop->next, prop = *insert);
size += PROPERTY_HEAD_SIZE;
*insert = prop = (Property) getmem(size);
bzero((char *) prop, size);
prop->type = type;
prop->next = NULL;
return prop;
}
/*
* maybe_append_prop(target, type)
*
* Append a property to the Name if none of this type exists
* else return the one already there
*
* Return value:
* A property of the requested type for the target
*
* Parameters:
* target The target that wants a new property
* type The type of property being requested
*
* Global variables used:
*/
Property
maybe_append_prop(target, type)
register Name target;
register Property_id type;
{
register Property prop;
if ((prop = get_prop(target->prop, type)) != NULL) {
return prop;
}
return append_prop(target, type);
}
/*
* get_prop(start, type)
*
* Scan the property list of a Name to find the next property
* of a given type.
*
* Return value:
* The first property of the type, if any left
*
* Parameters:
* start The first property block to check for type
* type The type of property block we need
*
* Global variables used:
*/
Property
get_prop(start, type)
register Property start;
register Property_id type;
{
for (; start != NULL; start = start->next) {
if (start->type == type) {
return start;
}
}
return NULL;
}
/*****************************************
*
* Error message handling
*/
/*
* fatal(format, args...)
*
* Print a message and die
*
* Parameters:
* format printf type format string
* args Arguments to match the format
*
* Global variables used:
* fatal_in_progress Indicates if this is a recursive call
* parallel_process_cnt Do we need to wait for anything?
* report_pwd Should we report the current path?
*/
/*VARARGS*/
void
fatal(va_alist)
va_dcl
{
va_list args;
char *message;
va_start(args);
(void) fflush(stdout);
(void) fprintf(stderr, "make: Fatal error: ");
message = va_arg(args, char *);
(void) vfprintf(stderr, message, args);
(void) fprintf(stderr, "\n");
va_end(args);
if (report_pwd) {
(void) fprintf(stderr,
"Current working directory %s\n",
get_current_path());
}
(void) fflush(stderr);
if (fatal_in_progress) {
_exit(1);
}
fatal_in_progress = true;
#ifdef PARALLEL
/* Let all parallel children finish */
if (parallel_process_cnt > 0) {
(void) fprintf(stderr,
"Waiting for %d %s to finish\n",
parallel_process_cnt,
parallel_process_cnt == 1 ?
"child" : "children");
(void) fflush(stderr);
}
while (parallel_process_cnt > 0) {
await_parallel(true);
finish_children(false);
}
#endif PARALLEL
exit(1);
}
/*
* warning(format, args...)
*
* Print a message and continue.
*
* Parameters:
* format printf type format string
* args Arguments to match the format
*
* Global variables used:
* report_pwd Should we report the current path?
*/
/*VARARGS*/
void
warning(va_alist)
va_dcl
{
va_list args;
char *message;
va_start(args);
(void) fflush(stdout);
(void) fprintf(stderr, "make: Warning: ");
message = va_arg(args, char *);
(void) vfprintf(stderr, message, args);
(void) fprintf(stderr, "\n");
va_end(args);
if (report_pwd) {
(void) fprintf(stderr,
"Current working directory %s\n",
get_current_path());
}
(void) fflush(stderr);
}
/*
* errmsg(errnum)
*
* Return the error message for a system call error
*
* Return value:
* An error message string
*
* Parameters:
* errnum The number of the error we want to describe
*
* Global variables used:
* sys_errlist A vector of error messages
* sys_nerr The size of sys_errlist
*/
char *
errmsg(errnum)
int errnum;
{
extern int sys_nerr;
extern char *sys_errlist[];
char *errbuf;
if (errnum < 0 || errnum > sys_nerr) {
errbuf = getmem(6+1+11+1);
(void) sprintf(errbuf, "Error %d", errnum);
return errbuf;
} else {
return sys_errlist[errnum];
}
}
/*
* time_to_string(time)
*
* Take a numeric time value and produce
* a proper string representation.
*
* Return value:
* The string representation of the time
*
* Parameters:
* time The time we need to translate
*
* Global variables used:
*/
char *
time_to_string(time)
time_t time;
{
char *string;
if (time == (int) file_doesnt_exist) {
return "File does not exist";
}
if (time == (int) file_max_time) {
return "Younger than any file";
}
string = ctime(&time);
string[strlen(string)-1] = (int) nul_char;
return strdup(string);
}
/*
* get_current_path()
*
* Stuff current_path with the current path if it isnt there already.
*
* Parameters:
*
* Global variables used:
*/
char *
get_current_path()
{
char pwd[MAXPATHLEN];
static char *current_path;
if (current_path == NULL) {
(void) getwd(pwd);
if (pwd[0] == (int) nul_char) {
pwd[0] = (int) slash_char;
pwd[1] = (int) nul_char;
}
current_path = strdup(pwd);
}
return current_path;
}
/*****************************************
*
* Make internal state dumping
*
* This is a set of routines for dumping the internal make state
* Used for the -p option
*/
/*
* dump_make_state()
*
* Dump make's internal state to stdout
*
* Parameters:
*
* Global variables used:
* default_rule Points to the .DEFAULT rule
* default_rule_name The Name ".DEFAULT", printed
* default_target_to_build The first target to print
* dot_keep_state The Name ".KEEP_STATE", printed
* hashtab The make hash table for Name blocks
* ignore_errors Was ".IGNORE" seen in makefile?
* ignore_name The Name ".IGNORE", printed
* keep_state Was ".KEEP_STATE" seen in makefile?
* percent_list The list of % rules
* precious The Name ".PRECIOUS", printed
* sccs_get_name The Name ".SCCS_GET", printed
* sccs_get_rule Points to the ".SCCS_GET" rule
* silent Was ".SILENT" seen in makefile?
* silent_name The Name ".SILENT", printed
* suffixes The suffix list from ".SUFFIXES"
* suffixes_name The Name ".SUFFIX", printed
*/
void
dump_make_state()
{
register int n;
register Name p;
register Property prop;
register Dependency dep;
register Cmd_line rule;
Percent percent;
/* Default target */
if (default_target_to_build != NULL) {
print_rule(default_target_to_build);
}
(void) printf("\n");
/* .DEFAULT */
if (default_rule != NULL) {
(void) printf("%s:\n", default_rule_name->string);
for (rule = default_rule; rule != NULL; rule = rule->next) {
(void) printf("\t%s\n", rule->command_line->string);
}
}
/* .IGNORE */
if (ignore_errors) {
(void) printf("%s:\n", ignore_name->string);
}
/* .KEEP_STATE: */
if (keep_state) {
(void) printf("%s:\n\n", dot_keep_state->string);
}
/* .PRECIOUS */
(void) printf("%s:", precious->string);
for (n = hashsize - 1; n >= 0; n--) {
for (p = hashtab[n]; p != NULL; p = p->next) {
if (p->stat.is_precious) {
(void) printf(" %s", p->string);
}
}
}
(void) printf("\n");
/* .SCCS_GET */
if (sccs_get_rule != NULL) {
(void) printf("%s:\n", sccs_get_name->string);
for (rule = sccs_get_rule; rule != NULL; rule = rule->next) {
(void) printf("\t%s\n", rule->command_line->string);
}
}
/* .SILENT */
if (silent) {
(void) printf("%s:\n", silent_name->string);
}
/* .SUFFIXES: */
(void) printf("%s:", suffixes_name->string);
for (dep = suffixes; dep != NULL; dep = dep->next) {
(void) printf(" %s", dep->name->string);
build_suffix_list(dep->name);
}
(void) printf("\n\n");
/* % rules */
for (percent = percent_list;
percent != NULL;
percent = percent->next) {
(void) printf("%s%%%s:\t%s%%%s\n",
percent->target_prefix->string,
percent->target_suffix->string,
percent->source_prefix->string,
percent->source_suffix->string);
for (rule = percent->command_template;
rule != NULL;
rule = rule->next) {
(void) printf("\t%s\n", rule->command_line->string);
}
}
/* Suffix rules */
for (n = hashsize - 1; n >= 0; n--) {
for (p = hashtab[n]; p != NULL; p = p->next) {
if (p->string[0] == (int) period_char) {
print_rule(p);
}
}
}
/* Macro assignments */
for (n = hashsize - 1; n >= 0; n--) {
for (p = hashtab[n]; p != NULL; p = p->next) {
if (((prop = get_prop(p->prop, macro_prop)) != NULL) &&
(prop->body.macro.value != NULL)) {
(void) printf("%s", p->string);
print_value(prop->body.macro.value,
prop->body.macro.daemon);
}
}
}
(void) printf("\n");
/* Conditional macro assignments */
for (n = hashsize - 1; n >= 0; n--) {
for (p = hashtab[n]; p != NULL; p = p->next) {
for (prop = get_prop(p->prop, conditional_prop);
prop != NULL;
prop = get_prop(prop->next, conditional_prop)) {
(void) printf("%s := %s",
p->string,
prop->body.conditional.name->
string);
print_value(prop->body.conditional.value,
no_daemon);
}
}
}
(void) printf("\n");
/* All other dependencies */
for (n = hashsize - 1; n >= 0; n--) {
for (p = hashtab[n]; p != NULL; p = p->next) {
if (p->colons != no_colon) {
print_rule(p);
}
}
}
(void) printf("\n");
}
/*
* print_value(value, daemon)
*
* Print the value of a macro
*
* Parameters:
* value The macro value to print
* daemon Indicates how value should be printed
*
* Global variables used:
*/
static void
print_value(value, daemon)
register Name value;
Daemon daemon;
{
Chain cp;
if (value == NULL) {
(void) printf(" =\n");
} else {
switch (daemon) {
case no_daemon:
(void) printf("= %s\n", value->string);
break;
case chain_daemon:
for (cp = (Chain) value; cp != NULL; cp = cp->next) {
(void) printf(cp->next == NULL ? "%s" : "%s ",
cp->name->string);
}
(void) printf("\n");
break;
}
}
}
/*
* print_rule(target)
*
* Print the rule for one target
*
* Parameters:
* target Target we print rule for
*
* Global variables used:
*/
static void
print_rule(target)
register Name target;
{
register Cmd_line rule;
register Property line;
register Dependency dependency;
if (target->dependency_printed ||
((line = get_prop(target->prop, line_prop)) == NULL) ||
((line->body.line.command_template == NULL) &&
(line->body.line.dependencies == NULL))) {
return;
}
target->dependency_printed = true;
(void) printf("%s:", target->string);
for (dependency = line->body.line.dependencies;
dependency != NULL;
dependency = dependency->next) {
(void) printf(" %s", dependency->name->string);
}
(void) printf("\n");
for (rule = line->body.line.command_template;
rule != NULL;
rule = rule->next) {
(void) printf("\t%s\n", rule->command_line->string);
}
}
/*****************************************
*
* main() support
*/
/*
* setup_char_semantics()
*
* Load the vector funny[] with lexical markers
*
* Parameters:
*
* Global variables used:
* funny The vector of character semantics that we set
*/
void
setup_char_semantics()
{
char *cp;
for (cp = "=@-?!"; *cp; ++cp) {
char_semantics[*cp] |= (int) command_prefix_sem;
}
char_semantics[(int) dollar_char] |= (int) dollar_sem;
for (cp = "#|=^();&<>*?[]:$`'\"\\\n"; *cp; ++cp) {
char_semantics[*cp] |= (int) meta_sem;
}
char_semantics[(int) percent_char] |= (int) percent_sem;
for (cp = "@*<%?"; *cp; ++cp) {
char_semantics[*cp] |= (int) special_macro_sem;
}
for (cp = "?[*"; *cp; ++cp) {
char_semantics[*cp] |= (int) wildcard_sem;
}
char_semantics[(int) colon_char] |= (int) colon_sem;
char_semantics[(int) parenleft_char] |= (int) parenleft_sem;
}
/*
* load_cached_names()
*
* Load the vector of cached names
*
* Parameters:
*
* Global variables used:
* Many many pointers to Name blocks.
*/
void
load_cached_names()
{
char *cp;
Name dollar;
/* Load the cached_names struct */
built_last_make_run = GETNAME(".BUILT_LAST_MAKE_RUN", FIND_LENGTH);
c_at = GETNAME("@", FIND_LENGTH);
conditionals = GETNAME(" *conditionals* ", FIND_LENGTH);
/*
* A version of make was released with NSE 1.0 that used
* VERSION-1.1 but this version is identical to VERSION-1.0.
* The version mismatch code makes a special case for this
* situation. If the version number is changed from 1.0
* it should go to 1.2.
*/
current_make_version = GETNAME("VERSION-1.0", FIND_LENGTH);
default_rule_name = GETNAME(".DEFAULT", FIND_LENGTH);
dollar = GETNAME("$", FIND_LENGTH);
done = GETNAME(".DONE", FIND_LENGTH);
dot = GETNAME(".", FIND_LENGTH);
dot_keep_state = GETNAME(".KEEP_STATE", FIND_LENGTH);
empty_name = GETNAME("", FIND_LENGTH);
force = GETNAME(" FORCE", FIND_LENGTH);
host_arch = GETNAME("HOST_ARCH", FIND_LENGTH);
ignore_name = GETNAME(".IGNORE", FIND_LENGTH);
init = GETNAME(".INIT", FIND_LENGTH);
make_state = GETNAME(".make.state", FIND_LENGTH);
makeflags = GETNAME("MAKEFLAGS", FIND_LENGTH);
make_version = GETNAME(".MAKE_VERSION", FIND_LENGTH);
no_parallel_name = GETNAME(".NO_PARALLEL", FIND_LENGTH);
not_auto = GETNAME(".NOT_AUTO", FIND_LENGTH);
parallel_name = GETNAME(".PARALLEL", FIND_LENGTH);
path_name = GETNAME("PATH", FIND_LENGTH);
plus = GETNAME("+", FIND_LENGTH);
precious = GETNAME(".PRECIOUS", FIND_LENGTH);
query = GETNAME("?", FIND_LENGTH);
recursive_name = GETNAME(".RECURSIVE", FIND_LENGTH);
remote_command_name = GETNAME("REMOTE_COMMAND", FIND_LENGTH);
sccs_get_name = GETNAME(".SCCS_GET", FIND_LENGTH);
shell_name = GETNAME("SHELL", FIND_LENGTH);
silent_name = GETNAME(".SILENT", FIND_LENGTH);
suffixes_name = GETNAME(".SUFFIXES", FIND_LENGTH);
sunpro_dependencies = GETNAME(SUNPRO_DEPENDENCIES, FIND_LENGTH);
target_arch = GETNAME("TARGET_ARCH", FIND_LENGTH);
virtual_root = GETNAME("VIRTUAL_ROOT", FIND_LENGTH);
vpath_name = GETNAME("VPATH", FIND_LENGTH);
wait_name = GETNAME(".WAIT", FIND_LENGTH);
wait_name->state = build_ok;
/* Mark special targets so that the reader treats them properly */
built_last_make_run->special_reader = built_last_make_run_special;
default_rule_name->special_reader = default_special;
dot_keep_state->special_reader = keep_state_special;
ignore_name->special_reader = ignore_special;
make_version->special_reader = make_version_special;
no_parallel_name->special_reader = no_parallel_special;
parallel_name->special_reader = parallel_special;
precious->special_reader = precious_special;
sccs_get_name->special_reader = sccs_get_special;
silent_name->special_reader = silent_special;
suffixes_name->special_reader = suffixes_special;
/* The value of $$ is $ */
(void) SETVAR(dollar, dollar, false);
dollar->dollar = false;
/* Set the value of $(SHELL) */
(void) SETVAR(shell_name, GETNAME("/bin/sh", FIND_LENGTH), false);
/* Use " FORCE" to simulate a FRC dependency for :: type */
/* targets with no dependencies */
(void) append_prop(force, line_prop);
force->stat.time = (int) file_max_time;
/* Make sure VPATH is defined before current dir is read */
if ((cp = getenv(vpath_name->string)) != NULL) {
(void) SETVAR(vpath_name,
GETNAME(cp, FIND_LENGTH),
false);
}
/* Check if there is NO PATH variable. If not we construct one. */
if (getenv(path_name->string) == NULL) {
vroot_path = NULL;
add_dir_to_path(".", &vroot_path, -1);
add_dir_to_path("/bin", &vroot_path, -1);
add_dir_to_path("/usr/bin", &vroot_path, -1);
}
}
/*
* setup_interrupt(handler)
*
* This routine saves the oroginal interrupt handler pointers
*
* Parameters:
*
* Static variables used:
* sigivalue The original signal handler
* sigqvalue The original signal handler
*/
void
setup_interrupt()
{
sigivalue = signal(SIGINT, (void (*) ()) SIG_IGN);
sigqvalue = signal(SIGQUIT, (void (*) ()) SIG_IGN);
enable_interrupt(handle_interrupt);
}
/*
* enable_interrupt(handler)
*
* This routine sets a new interrupt handler for the signals makesh
* want to deal with.
*
* Parameters:
* handler The function installed as interrupt handler
*
* Static variables used:
* sigivalue The original signal handler
* sigqvalue The original signal handler
*/
void
enable_interrupt(handler)
register void (*handler)();
{
if (sigivalue != SIG_IGN) {
(void) signal(SIGINT, handler);
}
if (sigqvalue != SIG_IGN) {
(void) signal(SIGQUIT, handler);
}
}