Files
Arquivotheca.SunOS-4.1.4/etc/mkfs.c
seta75D ff309bfe1c Init
2021-10-11 18:37:13 -03:00

1213 lines
34 KiB
C

/*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#ident "@(#)mkfs.c 1.1 94/10/31 SMI"
#ifndef STANDALONE
#include <stdio.h>
#include <a.out.h>
#include <mntent.h>
#endif
#include <sys/param.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <ufs/fsdir.h>
#include <ufs/inode.h>
#include <ufs/fs.h>
/*
* make file system for cylinder-group style file systems
*/
/*
* The following constants set the defaults used for the number
* of sectors (fs_nsect), and number of tracks (fs_ntrak).
*/
#define DFLNSECT 32
#define DFLNTRAK 16
/*
* The following two constants set the default block and fragment sizes.
* Both constants must be a power of 2 and meet the following constraints:
* MINBSIZE <= DESBLKSIZE <= MAXBSIZE
* DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
* DESBLKSIZE / DESFRAGSIZE <= 8
*/
#define DESBLKSIZE 8192
#define DESFRAGSIZE 1024
/*
* Cylinder groups may have up to MAXCPG cylinders. The actual
* number used depends upon how much information can be stored
* on a single cylinder. The default is to used 16 cylinders
* per group.
*/
#define DESCPG 16 /* desired fs_cpg */
/*
* MINFREE gives the minimum acceptable percentage of file system
* blocks which may be free. If the freelist drops below this level
* only the superuser may continue to allocate blocks. This may
* be set to 0 if no reserve of free blocks is deemed necessary,
* however throughput drops by fifty percent if the file system
* is run at between 90% and 100% full; thus the default value of
* fs_minfree is 10%. With 10% free space, fragmentation is not a
* problem, so we choose to optimize for time.
*/
#define MINFREE 10
#define DEFAULTOPT FS_OPTTIME
/*
* ROTDELAY gives the minimum number of milliseconds to initiate
* another disk transfer on the same cylinder. It is used in
* determining the rotationally optimal layout for disk blocks
* within a file; the default of fs_rotdelay is 4ms.
*/
#define ROTDELAY 4
/*
* MAXCONTIG sets the default for the maximum number of blocks
* that may be allocated sequentially. Since UNIX drivers are
* not capable of scheduling multi-block transfers, this defaults
* to 1 (ie no contiguous blocks are allocated).
*/
#define MAXCONTIG 1
/*
* Each file system has a number of inodes statically allocated.
* We allocate one inode slot per NBPI bytes, expecting this
* to be far more than we will ever need.
*/
#define NBPI 2048
/*
* Disks are assumed to rotate at 60HZ, unless otherwise specified.
*/
#define DEFHZ 60
/*
* Cylinder group related limits.
*
* For each cylinder we keep track of the availability of blocks at different
* rotational positions, so that we can lay out the data to be picked
* up with minimum rotational latency. NRPOS is the number of rotational
* positions which we distinguish. With NRPOS 8 the resolution of our
* summary information is 2ms for a typical 3600 rpm drive.
*/
#define NRPOS 8 /* number distinct rotational positions */
/*
* MAXBLKPG determines the maximum number of data blocks which are
* placed in a single cylinder group. The default is one indirect
* block worth of data blocks.
*/
#define MAXBLKPG(bsize) ((bsize) / sizeof(daddr_t))
/*
* The size of a cylinder group is calculated by CGSIZE. The maximum size
* is limited by the fact that cylinder groups are at most one block.
* Its size is derived from the size of the maps maintained in the
* cylinder group and the (struct cg) size.
*/
#define CGSIZE(fs) \
/* base cg */ (sizeof(struct cg) + \
/* blktot size */ (fs)->fs_cpg * sizeof(long) + \
/* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
/* inode map */ howmany((fs)->fs_ipg, NBBY) + \
/* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
/*
* We limit the size of the inode map to be no more than a
* third of the cylinder group space, since we must leave at
* least an equal amount of space for the block map.
*
* N.B.: MAXIPG must be a multiple of INOPB(fs).
*/
#define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
#define UMASK 0755
#define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
/*
* variables set up by front end.
*/
int Nflag; /* run mkfs without writing file system */
int fssize; /* file system size */
int bsize; /* block size */
int fsize; /* fragment size */
int cpg; /* cylinders/cylinder group */
int rps; /* revolutions/second of drive */
int density; /* number of bytes per inode */
int rotdelay = -1; /* rotational delay between blocks */
int sectorsize = DEV_BSIZE; /* bytes/sector */
int cpgflg; /* cylinders/cylinder group flag was given */
int maxcontig = MAXCONTIG; /* max contiguous blocks to allocate */
int bbsize = BBSIZE; /* boot block size */
int sbsize = SBSIZE; /* superblock size */
union {
struct fs fs;
char pad[SBSIZE];
} fsun;
#define sblock fsun.fs
struct csum *fscs;
union {
struct cg cg;
char pad[MAXBSIZE];
} cgun;
#define acg cgun.cg
struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
char *fsys;
int fsi, fso;
time_t utime;
daddr_t alloc();
main(argc, argv)
int argc;
char *argv[];
{
register long i, mincpc, mincpg, inospercg;
long cylno, rpos, blk, j, warn = 0;
long used, mincpgcnt, bpcg;
long mapcramped, inodecramped;
long postblsize, rotblsize, totalsbsize;
FILE *mnttab;
struct mntent *mntp;
char *slash;
char bdevname[MAXPATHLEN];
int spc_flag = 0;
#ifndef STANDALONE
if (argc > 1) {
argc--, argv++;
if (argc && argv[0][0] == '-') {
switch (argv[0][1]) {
case 'N':
Nflag++;
break;
default:
printf("%s: unknown flag\n", &argv[0][1]);
argc = 1; /* force usage message */
break;
}
argc--, argv++;
}
time(&utime);
}
if (argc < 2) {
printf("usage: mkfs -N special size ");
printf("[ nsect ntrak bsize fsize cpg minfree rps nbpi opt apc rotdelay nrpos maxcontig]\n");
exit(1);
}
fsys = argv[0];
fssize = atoi(argv[1]);
if (!Nflag) {
slash = (char *)rindex(fsys, '/');
if (slash && slash[1] == 'r') {
sprintf(bdevname, "/dev/%s", &slash[2]);
} else if (*fsys == 'r') {
sprintf(bdevname, "/dev/%s", &fsys[1]);
} else {
strcpy(bdevname, fsys);
}
mnttab = setmntent(MOUNTED, "r");
while ((mntp = getmntent(mnttab)) != NULL) {
if (strcmp(bdevname, mntp->mnt_fsname) == 0) {
printf("%s is mounted, can't mkfs\n", bdevname);
exit(1);
}
}
endmntent(mnttab);
fso = creat(fsys, 0666);
if(fso < 0) {
printf("%s: cannot create\n", fsys);
exit(1);
}
}
fsi = open(fsys, 0);
if(fsi < 0) {
printf("%s: cannot open\n", fsys);
exit(1);
}
#else
{
static char protos[60];
char fsbuf[100];
printf("file sys size: ");
gets(protos);
fssize = atoi(protos);
do {
printf("file system: ");
gets(fsbuf);
fso = open(fsbuf, 1);
fsi = open(fsbuf, 0);
} while (fso < 0 || fsi < 0);
}
argc = 0;
#endif
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
*/
if (fssize <= 0)
printf("preposterous size %d\n", fssize), exit(1);
wtfs(fssize - 1, sectorsize, (char *)&sblock);
/*
* collect and verify the sector and track info
*/
if (argc > 2)
sblock.fs_nsect = atoi(argv[2]);
else
sblock.fs_nsect = DFLNSECT;
if (argc > 3)
sblock.fs_ntrak = atoi(argv[3]);
else
sblock.fs_ntrak = DFLNTRAK;
if (sblock.fs_nsect <= 0)
printf("preposterous nsect %d\n", sblock.fs_nsect), exit(1);
if (sblock.fs_ntrak <= 0)
printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(1);
if (argc > 8)
rps = atoi(argv[8]);
else
rps = DEFHZ;
if (rps <= 0)
printf("preposterous rotations per second %d\n", rps), exit(1);
density = NBPI;
if (argc > 9) {
i = atoi(argv[9]);
if (i <= 0)
printf("%s: bogus nbpi reset to %d\n", argv[9], density);
else
density = i;
}
/* Now check for rotational delay argument */
if (argc > 12) {
/* if specified, use it */
rotdelay = atoi(argv[12]);
if (rotdelay >= (1000/rps))
printf("preposterous rotational delay %d\n", rotdelay), exit(1);
}
if (rotdelay <= -1) { /* default by newfs and mkfs */
rotdelay = ROTDELAY;
}
if (argc > 13)
sblock.fs_nrpos = atoi(argv[13]);
else
sblock.fs_nrpos = NRPOS;
if (argc > 14)
maxcontig = atoi(argv[14]);
if (maxcontig <= -1) { /* default by newfs and mkfs */
maxcontig = MAXCONTIG;
}
/*
* collect and verify the block and fragment sizes
*/
if (argc > 4)
bsize = atoi(argv[4]);
else
bsize = DESBLKSIZE;
if (argc > 5)
fsize = atoi(argv[5]);
else
fsize = DESFRAGSIZE;
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(1);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(1);
}
if (sblock.fs_fsize < sectorsize) {
printf("fragment size %d is too small, minimum is %d\n",
sblock.fs_fsize, sectorsize);
exit(1);
}
if (sblock.fs_bsize < MINBSIZE) {
printf("block size %d is too small, minimum is %d\n",
sblock.fs_bsize, MINBSIZE);
exit(1);
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("block size (%d) cannot be smaller than fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
exit(1);
}
if (argc > 6) {
cpg = atoi(argv[6]);
if (cpg <= 0)
printf("%s: bad cylinders/group", *argv), exit(1);
cpgflg++;
} else
cpg = DESCPG;
if (argc > 7) {
sblock.fs_minfree = atoi(argv[7]);
if (sblock.fs_minfree < 0 || sblock.fs_minfree > 99) {
printf("%s: bogus minfree reset to %d%%\n", argv[7],
MINFREE);
sblock.fs_minfree = MINFREE;
}
} else
sblock.fs_minfree = MINFREE;
if (argc > 10)
if (*argv[10] == 's')
sblock.fs_optim = FS_OPTSPACE;
else if (*argv[10] == 't')
sblock.fs_optim = FS_OPTTIME;
else {
printf("%s: bogus optimization preference %s\n",
argv[10], "reset to time");
sblock.fs_optim = FS_OPTTIME;
}
else
sblock.fs_optim = DEFAULTOPT;
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
/*
* Planning now for future expansion.
*/
#if defined(mc68000) || defined(sparc)
sblock.fs_qbmask.val[0] = 0;
sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
sblock.fs_qfmask.val[0] = 0;
sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
#endif
#if defined(vax) || defined(i386)
sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
sblock.fs_qbmask.val[1] = 0;
sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
sblock.fs_qfmask.val[1] = 0;
#endif
for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
sblock.fs_bshift++;
for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
sblock.fs_fshift++;
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
sblock.fs_fragshift++;
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is too small, minimum with block size %d is %d\n",
sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
exit(1);
}
sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
sblock.fs_nspf = sblock.fs_fsize / sectorsize;
for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
sblock.fs_fsbtodb++;
sblock.fs_sblkno =
roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_cgoffset = roundup(
howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
sblock.fs_cgmask <<= 1;
if (!POWEROF2(sblock.fs_ntrak))
sblock.fs_cgmask <<= 1;
/*
* Validate specified/determined spc
* and calculate minimum cylinders per group.
*/
sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
if (argc > 11) {
int sec = atoi(argv[11]);
if (sec > 0) {
sblock.fs_spc -= sec;
spc_flag = 1;
}
}
for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
sblock.fs_cpc > 1 && (i & 1) == 0;
sblock.fs_cpc >>= 1, i >>= 1)
/* void */;
mincpc = sblock.fs_cpc;
bpcg = sblock.fs_spc * sectorsize;
inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
if (inospercg > MAXIPG(&sblock))
inospercg = MAXIPG(&sblock);
used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
sblock.fs_spc);
mincpg = roundup(mincpgcnt, mincpc);
/*
* Insure that cylinder group with mincpg has enough space
* for block maps
*/
sblock.fs_cpg = mincpg;
sblock.fs_ipg = inospercg;
mapcramped = 0;
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
if (sblock.fs_bsize < MAXBSIZE) {
sblock.fs_bsize <<= 1;
if ((i & 1) == 0) {
i >>= 1;
} else {
sblock.fs_cpc <<= 1;
mincpc <<= 1;
mincpg = roundup(mincpgcnt, mincpc);
sblock.fs_cpg = mincpg;
}
sblock.fs_frag <<= 1;
sblock.fs_fragshift += 1;
if (sblock.fs_frag <= MAXFRAG)
continue;
}
if (sblock.fs_fsize == sblock.fs_bsize) {
printf("There is no block size that");
printf(" can support this disk\n");
exit(1);
}
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
sblock.fs_fsize <<= 1;
sblock.fs_nspf <<= 1;
}
/*
* Insure that cylinder group with mincpg has enough space for inodes
*/
inodecramped = 0;
used *= sectorsize;
inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
sblock.fs_ipg = inospercg;
while (inospercg > MAXIPG(&sblock)) {
inodecramped = 1;
if (mincpc == 1 || sblock.fs_frag == 1 ||
sblock.fs_bsize == MINBSIZE)
break;
printf("With a block size of %d %s %d\n", sblock.fs_bsize,
"minimum bytes per inode is",
(mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
sblock.fs_bsize >>= 1;
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
mincpc >>= 1;
sblock.fs_cpg = roundup(mincpgcnt, mincpc);
if (CGSIZE(&sblock) > sblock.fs_bsize) {
sblock.fs_bsize <<= 1;
break;
}
mincpg = sblock.fs_cpg;
inospercg =
roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
sblock.fs_ipg = inospercg;
}
if (inodecramped) {
if (inospercg > MAXIPG(&sblock)) {
printf("Minimum bytes per inode is %d\n",
(mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
} else if (!mapcramped) {
printf("With %d bytes per inode, ", density);
printf("minimum cylinders per group is %d\n", mincpg);
}
}
if (mapcramped) {
printf("With %d sectors per cylinder, ", sblock.fs_spc);
printf("minimum cylinders per group is %d\n", mincpg);
}
if (inodecramped || mapcramped) {
if (sblock.fs_bsize != bsize)
printf("%s to be changed from %d to %d\n",
"This requires the block size",
bsize, sblock.fs_bsize);
if (sblock.fs_fsize != fsize)
printf("\t%s to be changed from %d to %d\n",
"and the fragment size",
fsize, sblock.fs_fsize);
exit(1);
}
/*
* Calculate the number of cylinders per group
*/
sblock.fs_cpg = cpg;
if (sblock.fs_cpg % mincpc != 0) {
printf("%s groups must have a multiple of %d cylinders\n",
cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
if (!cpgflg)
cpg = sblock.fs_cpg;
}
/*
* Must insure there is enough space for inodes
*/
sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
INOPB(&sblock));
while (sblock.fs_ipg > MAXIPG(&sblock)) {
inodecramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
INOPB(&sblock));
}
/*
* Must insure there is enough space to hold block map
*/
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
INOPB(&sblock));
}
sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
printf("newfs: panic (fs_cpg * fs_spc) % NSPF != 0");
exit(2);
}
if (sblock.fs_cpg < mincpg) {
printf("cylinder groups must have at least %d cylinders\n",
mincpg);
exit(1);
} else if (sblock.fs_cpg != cpg) {
if (!cpgflg)
printf("Warning: ");
else if (!mapcramped && !inodecramped)
exit(1);
if (mapcramped && inodecramped)
printf("Block size and bytes per inode restrict");
else if (mapcramped)
printf("Block size restricts");
else
printf("Bytes per inode restrict");
printf(" cylinders per group to %d.\n", sblock.fs_cpg);
if (cpgflg)
exit(1);
}
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
/*
* Now have size for file system and nsect and ntrak.
* Determine number of cylinders and blocks in the file system.
*/
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
sblock.fs_ncyl++;
warn = 1;
}
if (sblock.fs_ncyl < 1) {
printf("file systems must have at least one cylinder\n");
exit(1);
}
/*
* Determine feasability/values of rotational layout tables.
*
* The size of the rotational layout tables is limited by the
* size of the superblock, SBSIZE. The amount of space available
* for tables is calculated as (SBSIZE - sizeof (struct fs)).
* The size of these tables is inversely proportional to the block
* size of the file system. The size increases if sectors per track
* are not powers of two, because more cylinders must be described
* by the tables before the rotational pattern repeats (fs_cpc).
*/
sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
sblock.fs_npsect = sblock.fs_nsect;
sblock.fs_interleave = 1;
if (sblock.fs_ntrak == 1) {
sblock.fs_cpc = 0;
goto next;
}
postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
totalsbsize = sizeof(struct fs) + rotblsize;
if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
/* use old static table space */
sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
(char *)(&sblock.fs_link);
sblock.fs_rotbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_link);
} else {
/* use dynamic table space */
sblock.fs_postbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_link);
sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
totalsbsize += postblsize;
}
if (totalsbsize > SBSIZE ||
sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
printf("%s %s %d %s %d.%s",
"Warning: insufficient space in super block for\n",
"rotational layout tables with nsect", sblock.fs_nsect,
"and ntrak", sblock.fs_ntrak,
"\nFile system performance may be impaired.\n");
sblock.fs_cpc = 0;
goto next;
}
sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
/*
* calculate the available blocks for each rotational position
*/
for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
fs_postbl(&sblock, cylno)[rpos] = -1;
for (i = (rotblsize - 1) * sblock.fs_frag;
i >= 0; i -= sblock.fs_frag) {
cylno = cbtocylno(&sblock, i);
rpos = cbtorpos(&sblock, i);
blk = fragstoblks(&sblock, i);
if (fs_postbl(&sblock, cylno)[rpos] == -1)
fs_rotbl(&sblock)[blk] = 0;
else
fs_rotbl(&sblock)[blk] =
fs_postbl(&sblock, cylno)[rpos] - blk;
fs_postbl(&sblock, cylno)[rpos] = blk;
}
next:
/*
* Compute/validate number of cylinder groups.
*/
sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
if (sblock.fs_ncyl % sblock.fs_cpg)
sblock.fs_ncg++;
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
sblock.fs_fpg / sblock.fs_frag);
printf("number of cylinders per cylinder group (%d) %s.\n",
sblock.fs_cpg, "must be increased");
exit(1);
}
j = sblock.fs_ncg - 1;
if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
(cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
i / sblock.fs_frag);
printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
i * NSPF(&sblock));
sblock.fs_ncg--;
sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
NSPF(&sblock);
warn = 0;
}
if (warn && !spc_flag) {
printf("Warning: %d sector(s) in last cylinder unallocated\n",
sblock.fs_spc -
(fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
* sblock.fs_spc));
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
i = sblock.fs_bsize / sizeof(struct csum);
sblock.fs_csmask = ~(i - 1);
for (sblock.fs_csshift = 0; i > 1; i >>= 1)
sblock.fs_csshift++;
fscs = (struct csum *)calloc(1, sblock.fs_cssize);
sblock.fs_magic = FS_MAGIC;
sblock.fs_rotdelay = rotdelay;
sblock.fs_maxcontig = maxcontig;
sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
sblock.fs_rps = rps;
sblock.fs_cgrotor = 0;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_cstotal.cs_nbfree = 0;
sblock.fs_cstotal.cs_nifree = 0;
sblock.fs_cstotal.cs_nffree = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
/*
* Dump out summary information about file system.
*/
printf("%s:\t%d sectors in %d cylinders of %d tracks, %d sectors\n",
fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
sblock.fs_ntrak, sblock.fs_nsect);
printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
(float)sblock.fs_size * sblock.fs_fsize * 1e-6, sblock.fs_ncg,
sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize * 1e-6,
sblock.fs_ipg);
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
printf("super-block backups (for fsck -b #) at:");
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno);
if (cylno % 9 == 0)
printf("\n");
printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
}
printf("\n");
if (Nflag)
exit(0);
/*
* Now construct the initial file system,
* then write out the super-block.
*/
fsinit();
sblock.fs_time = utime;
wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock);
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
sblock.fs_cssize - i < sblock.fs_bsize ?
sblock.fs_cssize - i : sblock.fs_bsize,
((char *)fscs) + i);
/*
* Write out the duplicate super blocks
*/
for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
sbsize, (char *)&sblock);
/*
* set clean flag
*/
sblock.fs_clean = FSSTABLE;
fs_set_state(&sblock, FSOKAY - sblock.fs_time);
wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock);
#ifndef STANDALONE
exit(0);
/*NOTREACHED*/
#endif
}
/*
* Initialize a cylinder group.
*/
initcg(cylno)
int cylno;
{
daddr_t cbase, d, dlower, dupper, dmax;
long i;
register struct csum *cs;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = fscs + cylno;
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
if (cylno == sblock.fs_ncg - 1)
acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
else
acg.cg_ncyl = sblock.fs_cpg;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_ndblk = dmax - cbase;
acg.cg_cs.cs_ndir = 0;
acg.cg_cs.cs_nffree = 0;
acg.cg_cs.cs_nbfree = 0;
acg.cg_cs.cs_nifree = 0;
acg.cg_rotor = 0;
acg.cg_frotor = 0;
acg.cg_irotor = 0;
acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link);
acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
acg.cg_iusedoff = acg.cg_boff +
sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
acg.cg_nextfreeoff = acg.cg_freeoff +
howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
for (i = 0; i < sblock.fs_frag; i++) {
acg.cg_frsum[i] = 0;
}
bzero((caddr_t)cg_inosused(&acg), acg.cg_freeoff - acg.cg_iusedoff);
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, (char *)zino);
bzero((caddr_t)cg_blktot(&acg), acg.cg_boff - acg.cg_btotoff);
bzero((caddr_t)cg_blks(&sblock, &acg, 0),
acg.cg_iusedoff - acg.cg_boff);
bzero((caddr_t)cg_blksfree(&acg), acg.cg_nextfreeoff - acg.cg_freeoff);
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
setblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
acg.cg_cs.cs_nbfree++;
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
}
sblock.fs_dsize += dlower;
}
sblock.fs_dsize += acg.cg_ndblk - dupper;
if (i = dupper % sblock.fs_frag) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
setblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
acg.cg_cs.cs_nbfree++;
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
d += sblock.fs_frag;
}
if (d < dmax - cbase) {
acg.cg_frsum[dmax - cbase - d]++;
for (; d < dmax - cbase; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
*cs = acg.cg_cs;
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
sblock.fs_bsize, (char *)&acg);
}
/*
* initialize the file system
*/
struct inode node;
#define LOSTDIR
#ifdef LOSTDIR
#define PREDEFDIR 3
#else
#define PREDEFDIR 2
#endif
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
#endif
};
#ifdef LOSTDIR
struct direct lost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
{ 0, DIRBLKSIZ, 0, 0 },
};
#endif
char buf[MAXBSIZE];
fsinit()
{
int i;
/*
* initialize the node
*/
node.i_atime = utime;
node.i_mtime = utime;
node.i_ctime = utime;
#ifdef LOSTDIR
/*
* create the lost+found directory
*/
(void)makedir(lost_found_dir, 2);
for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
node.i_number = LOSTFOUNDINO;
node.i_mode = IFDIR | UMASK;
node.i_nlink = 2;
node.i_size = sblock.fs_bsize;
node.i_db[0] = alloc(node.i_size, node.i_mode);
node.i_blocks = btodb(fragroundup(&sblock, node.i_size));
wtfs(fsbtodb(&sblock, node.i_db[0]), node.i_size, buf);
iput(&node);
#endif
/*
* create the root directory
*/
node.i_number = ROOTINO;
node.i_mode = IFDIR | UMASK;
node.i_nlink = PREDEFDIR;
node.i_size = makedir(root_dir, PREDEFDIR);
node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
node.i_blocks = btodb(fragroundup(&sblock, node.i_size));
wtfs(fsbtodb(&sblock, node.i_db[0]), sblock.fs_fsize, buf);
iput(&node);
}
/*
* construct a set of directory entries in "buf".
* return size of directory.
*/
makedir(protodir, entries)
register struct direct *protodir;
int entries;
{
char *cp;
int i, spcleft;
spcleft = DIRBLKSIZ;
for (cp = buf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(&protodir[i]);
bcopy(&protodir[i], cp, protodir[i].d_reclen);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
return (DIRBLKSIZ);
}
/*
* allocate a block or frag
*/
daddr_t
alloc(size, mode)
int size;
int mode;
{
int i, frag;
daddr_t d;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
goto goth;
printf("internal error: can't find block in cyl 0\n");
return (0);
goth:
clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg), d + i);
}
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
return (d);
}
/*
* Allocate an inode on the disk
*/
iput(ip)
register struct inode *ip;
{
struct dinode buf[MAXINOPB];
daddr_t d;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(1);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg), ip->i_number);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
printf("fsinit: inode value out of range (%d).\n",
ip->i_number);
exit(1);
}
d = fsbtodb(&sblock, itod(&sblock, ip->i_number));
rdfs(d, sblock.fs_bsize, buf);
buf[itoo(&sblock, ip->i_number)].di_ic = ip->i_ic;
wtfs(d, sblock.fs_bsize, buf);
}
/*
* read a block from the file system
*/
rdfs(bno, size, bf)
daddr_t bno;
int size;
char *bf;
{
int n;
if (lseek(fsi, bno * sectorsize, 0) < 0) {
printf("seek error: %ld\n", bno);
perror("rdfs");
exit(1);
}
n = read(fsi, bf, size);
if(n != size) {
printf("read error: %ld\n", bno);
perror("rdfs");
exit(1);
}
}
/*
* write a block to the file system
*/
wtfs(bno, size, bf)
daddr_t bno;
int size;
char *bf;
{
int n;
if (Nflag)
return;
if (lseek(fso, bno * sectorsize, 0) < 0) {
printf("seek error: %ld\n", bno);
perror("wtfs");
exit(1);
}
n = write(fso, bf, size);
if(n != size) {
printf("write error: %ld\n", bno);
perror("wtfs");
exit(1);
}
}
/*
* check if a block is available
*/
isblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef STANDALONE
printf("isblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
#endif
return (0);
}
}
/*
* take a block out of the map
*/
clrblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("clrblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
#endif
return;
}
}
/*
* put a block into the map
*/
setblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("setblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
#endif
return;
}
}