811 lines
17 KiB
C
811 lines
17 KiB
C
#ifndef lint
|
|
static char sccsid[] = "@(#)ip_input.c 1.1 94/10/31 Copyr 1986 Sun Micro";
|
|
#endif
|
|
|
|
/*
|
|
* Copyright (c) 1986 by Sun Microsystems, Inc.
|
|
*/
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include "boot/systm.h"
|
|
#include <sys/mbuf.h>
|
|
#include "boot/domain.h"
|
|
#include "boot/protosw.h"
|
|
#include <sys/socket.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/tcp.h>
|
|
#include <mon/sunromvec.h>
|
|
|
|
u_char ip_protox[IPPROTO_MAX];
|
|
int ipqmaxlen = IFQ_MAXLEN;
|
|
struct ifnet *ifinet; /* first inet interface */
|
|
|
|
int ip_gotit = 0;
|
|
int ip_reasstot = 0;
|
|
|
|
static int dump_debug = 30;
|
|
#undef IPFRAGTTL
|
|
#define IPFRAGTTL 8
|
|
#define MAXTRACE 128
|
|
struct {
|
|
int ip_ident;
|
|
int ip_time;
|
|
int ip_diff;
|
|
int ip_offset;
|
|
} ip_trace[MAXTRACE];
|
|
int ip_trace_index = MAXTRACE-1;
|
|
#define NEXT_TRACE(i) (i=((i)==(MAXTRACE-1)?0:i+1))
|
|
|
|
#ifdef OPENPROMS
|
|
#define millitime() prom_gettime()
|
|
#else
|
|
#define millitime() (*romp->v_nmiclock)
|
|
#endif !OPENPROMS
|
|
|
|
/*
|
|
* IP initialization: fill in IP protocol switch table.
|
|
* All protocols not implemented in kernel go to raw IP protocol handler.
|
|
*/
|
|
ip_init()
|
|
{
|
|
register struct protosw *pr;
|
|
register int i;
|
|
struct ifnet *if_ifwithaf();
|
|
|
|
|
|
pr = pffindproto(PF_INET, IPPROTO_RAW);
|
|
if (pr == 0)
|
|
panic("ip_init");
|
|
for (i = 0; i < IPPROTO_MAX; i++)
|
|
ip_protox[i] = pr - inetsw;
|
|
for (pr = inetdomain.dom_protosw;
|
|
pr < inetdomain.dom_protoswNPROTOSW; pr++) {
|
|
if (pr->pr_family == PF_INET &&
|
|
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
|
|
ip_protox[pr->pr_protocol] = pr - inetsw;
|
|
}
|
|
}
|
|
ipq.next = ipq.prev = &ipq;
|
|
ip_id = time.tv_sec & 0xffff;
|
|
ifinet = if_ifwithaf(AF_INET);
|
|
}
|
|
|
|
u_char i_ipcksum = 1;
|
|
struct ip *ip_reass();
|
|
struct sockaddr_in ipaddr = { AF_INET };
|
|
|
|
/*
|
|
* Ip input routine. Checksum and byte swap header. If fragmented
|
|
* try to reassamble. If complete and fragment queue exists, discard.
|
|
* Process options. Pass to next level.
|
|
*/
|
|
ipintr(m)
|
|
struct mbuf *m;
|
|
{
|
|
register struct ip *ip;
|
|
struct mbuf *m0;
|
|
register int i;
|
|
register struct ipq *fp;
|
|
int hlen;
|
|
register struct ifaddr *ifa;
|
|
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6,
|
|
"ipintr(m 0x%x) type 0x%x\n", m, m->m_type);
|
|
#endif /* DUMP_DEBUG */
|
|
|
|
ip_gotit = 0;
|
|
|
|
/*
|
|
* Get next datagram off input queue and get IP header
|
|
* in first mbuf.
|
|
*/
|
|
if (m == 0) {
|
|
dprint(dump_debug, 0,
|
|
"ipintr: NULL mbuf\n");
|
|
return;
|
|
}
|
|
if ((m->m_off > MMAXOFF || m->m_len < sizeof (struct ip)) &&
|
|
(m = m_pullup(m, sizeof (struct ip))) == 0) {
|
|
dprint(dump_debug, 0,
|
|
"ipintr: mbuff too small\n");
|
|
ipstat.ips_toosmall++;
|
|
return;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
if (hlen < 10) { /* minimum header length */
|
|
dprint(dump_debug, 0,
|
|
"ipintr: bad hl 0x%x\n", hlen);
|
|
ipstat.ips_badhlen++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (hlen > m->m_len) {
|
|
if ((m = m_pullup(m, hlen)) == 0) {
|
|
dprint(dump_debug, 0,
|
|
"ipintr: bad pullup\n");
|
|
ipstat.ips_badhlen++;
|
|
return;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
}
|
|
|
|
if (i_ipcksum)
|
|
if (ip->ip_sum = ipcksum((caddr_t)ip, (unsigned short)hlen)) {
|
|
dprint(dump_debug, 0,
|
|
"ipintr: ip_sum 0x%x\n",
|
|
ip->ip_sum);
|
|
ipstat.ips_badsum++;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Convert fields to host representation.
|
|
*/
|
|
ip->ip_len = ntohs((u_short)ip->ip_len);
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ipintr: ip_len 0x%x\n", ip->ip_len);
|
|
#endif
|
|
if (ip->ip_len < hlen) {
|
|
ipstat.ips_badlen++;
|
|
goto bad;
|
|
}
|
|
ip->ip_id = ntohs(ip->ip_id);
|
|
ip->ip_off = ntohs((u_short)ip->ip_off);
|
|
|
|
/*
|
|
* Check that the amount of data in the buffers
|
|
* is as at least much as the IP header would have us expect.
|
|
* Trim mbufs if longer than we expect.
|
|
* Drop packet if shorter than we expect.
|
|
*/
|
|
i = -ip->ip_len;
|
|
m0 = m;
|
|
for (;;) {
|
|
i += m->m_len;
|
|
if (m->m_next == 0)
|
|
break;
|
|
m = m->m_next;
|
|
}
|
|
if (i != 0) {
|
|
if (i < 0) {
|
|
ipstat.ips_tooshort++;
|
|
m = m0;
|
|
goto bad;
|
|
}
|
|
if (i <= m->m_len)
|
|
m->m_len -= i;
|
|
else
|
|
m_adj(m0, -i);
|
|
}
|
|
m = m0;
|
|
|
|
/*
|
|
* Process options and, if not destined for us,
|
|
* ship it on. ip_dooptions returns 1 when an
|
|
* error was detected (causing an icmp message
|
|
* to be sent).
|
|
*/
|
|
if (hlen > sizeof (struct ip) && ip_dooptions(ip))
|
|
return;
|
|
|
|
/*
|
|
* Fast check on the first internet
|
|
* interface in the list.
|
|
*/
|
|
if (ifinet) {
|
|
struct sockaddr_in *sin;
|
|
|
|
ifa = ifinet->if_addrlist;
|
|
sin = (struct sockaddr_in *)&ifa->ifa_addr;
|
|
if (sin->sin_addr.s_addr == ip->ip_dst.s_addr)
|
|
goto ours;
|
|
if ((ifinet->if_flags & IFF_BROADCAST) &&
|
|
ip->ip_dst.s_addr == INADDR_ANY)
|
|
goto ours;
|
|
}
|
|
ipaddr.sin_addr = ip->ip_dst;
|
|
if (if_ifwithaddr((struct sockaddr *)&ipaddr) == 0 &&
|
|
(*(int *)&ip->ip_dst) != -1) {
|
|
ip_forward(ip);
|
|
return;
|
|
}
|
|
|
|
ours:
|
|
|
|
/*
|
|
* Look for queue of fragments
|
|
* of this datagram.
|
|
*/
|
|
for (fp = ipq.next; fp != &ipq; fp = fp->next)
|
|
if (ip->ip_id == fp->ipq_id &&
|
|
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
|
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
|
ip->ip_p == fp->ipq_p) {
|
|
goto found;
|
|
}
|
|
|
|
fp = 0;
|
|
found:
|
|
ip_trace[NEXT_TRACE(ip_trace_index)].ip_ident = ip->ip_id;
|
|
ip_trace[ip_trace_index].ip_time = millitime();
|
|
ip_trace[ip_trace_index].ip_diff = ip_trace[ip_trace_index].ip_time -
|
|
ip_trace[ip_trace_index-1].ip_time;
|
|
ip_trace[ip_trace_index].ip_offset = ip->ip_off;
|
|
|
|
/*
|
|
* Adjust ip_len to not reflect header,
|
|
* set ip_mff if more fragments are expected,
|
|
* convert offset of this to bytes.
|
|
*/
|
|
ip->ip_len -= hlen;
|
|
((struct ipasfrag *)ip)->ipf_mff = 0;
|
|
if (ip->ip_off & IP_MF)
|
|
((struct ipasfrag *)ip)->ipf_mff = 1;
|
|
ip->ip_off <<= 3;
|
|
|
|
|
|
/*
|
|
* If datagram marked as having more fragments
|
|
* or if this is not the first fragment,
|
|
* attempt reassembly; if it succeeds, proceed.
|
|
*/
|
|
if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
|
|
ip = ip_reass((struct ipasfrag *)ip, fp);
|
|
if (ip == 0) {
|
|
return;
|
|
}
|
|
hlen = ip->ip_hl << 2;
|
|
|
|
m = dtom(ip);
|
|
} else
|
|
if (fp)
|
|
ip_freef(fp);
|
|
|
|
ip_gotit = 1;
|
|
|
|
/*
|
|
* Switch out to protocol's input routine.
|
|
*/
|
|
|
|
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m);
|
|
return;
|
|
bad:
|
|
dprint(dump_debug, 0,
|
|
"ipintr: bad\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Take incoming datagram fragment and try to
|
|
* reassemble it into whole datagram. If a chain for
|
|
* reassembly of this datagram already exists, then it
|
|
* is given as fp; otherwise have to make a chain.
|
|
*/
|
|
struct ip *
|
|
ip_reass(ip, fp)
|
|
register struct ipasfrag *ip;
|
|
register struct ipq *fp;
|
|
{
|
|
register struct mbuf *m = dtom(ip);
|
|
register struct ipasfrag *q;
|
|
struct mbuf *t;
|
|
int hlen = ip->ip_hl << 2;
|
|
int i, next;
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ip_reass(ip 0x%x fp 0x%x)\n", ip, fp);
|
|
#endif /* DUMP_DEBUG */
|
|
|
|
/*
|
|
* Presence of header sizes in mbufs
|
|
* would confuse code below.
|
|
*/
|
|
m->m_off += hlen;
|
|
m->m_len -= hlen;
|
|
|
|
/*
|
|
* If first fragment to arrive, create a reassembly queue.
|
|
*/
|
|
if (fp == 0) {
|
|
if ((t = m_get(M_WAIT, MT_FTABLE)) == NULL)
|
|
goto dropfrag;
|
|
fp = mtod(t, struct ipq *);
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ip_reass: t 0x%x fp 0x%x type 0x%x\n",
|
|
t, fp, t->m_type);
|
|
#endif /* DUMP_DEBUG */
|
|
insque(fp, &ipq);
|
|
fp->ipq_ttl = IPFRAGTTL;
|
|
fp->ipq_p = ip->ip_p;
|
|
fp->ipq_id = ip->ip_id;
|
|
fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
|
|
fp->ipq_src = ((struct ip *)ip)->ip_src;
|
|
fp->ipq_dst = ((struct ip *)ip)->ip_dst;
|
|
q = (struct ipasfrag *)fp;
|
|
goto insert;
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
|
|
if (q->ip_off > ip->ip_off)
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us.
|
|
*/
|
|
if (q->ipf_prev != (struct ipasfrag *)fp) {
|
|
i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
|
|
if (i > 0) {
|
|
if (i >= ip->ip_len)
|
|
goto dropfrag;
|
|
m_adj(dtom(ip), i);
|
|
ip->ip_off += i;
|
|
ip->ip_len -= i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
while (q != (struct ipasfrag *)fp &&
|
|
ip->ip_off + ip->ip_len > q->ip_off) {
|
|
i = (ip->ip_off + ip->ip_len) - q->ip_off;
|
|
if (i < q->ip_len) {
|
|
q->ip_len -= i;
|
|
q->ip_off += i;
|
|
m_adj(dtom(q), i);
|
|
break;
|
|
}
|
|
q = q->ipf_next;
|
|
m_freem(dtom(q->ipf_prev));
|
|
ip_deq(q->ipf_prev);
|
|
}
|
|
|
|
insert:
|
|
/*
|
|
* Stick new segment in its place;
|
|
* check for complete reassembly.
|
|
*/
|
|
ip_enq(ip, q->ipf_prev);
|
|
next = 0;
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
|
|
if (q->ip_off != next)
|
|
return (0);
|
|
next += q->ip_len;
|
|
}
|
|
if (q->ipf_prev->ipf_mff)
|
|
return (0);
|
|
|
|
/*
|
|
* Reassembly is complete; concatenate fragments.
|
|
*/
|
|
q = fp->ipq_next;
|
|
m = dtom(q);
|
|
t = m->m_next;
|
|
m->m_next = 0;
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ip_reass(1): q 0x%x m 0x%x t 0x%x\n", q, m, t);
|
|
#endif /* DUMP_DEBUG */
|
|
m_cat(m, t);
|
|
q = q->ipf_next;
|
|
while (q != (struct ipasfrag *)fp) {
|
|
t = dtom(q);
|
|
q = q->ipf_next;
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ip_reass(2): q 0x%x m 0x%x t 0x%x\n", q, m, t);
|
|
#endif /* DUMP_DEBUG */
|
|
m_cat(m, t);
|
|
}
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 6, "ip_reass: mcat OK\n");
|
|
#endif /* DUMP_DEBUG */
|
|
|
|
/*
|
|
* Create header for new ip packet by
|
|
* modifying header of first packet;
|
|
* dequeue and discard fragment reassembly header.
|
|
* Make header visible.
|
|
*/
|
|
ip = fp->ipq_next;
|
|
ip->ip_len = next;
|
|
((struct ip *)ip)->ip_src = fp->ipq_src;
|
|
((struct ip *)ip)->ip_dst = fp->ipq_dst;
|
|
remque(fp);
|
|
(void) m_free(dtom(fp));
|
|
m = dtom(ip);
|
|
m->m_len += sizeof (struct ipasfrag);
|
|
m->m_off -= sizeof (struct ipasfrag);
|
|
return ((struct ip *)ip);
|
|
|
|
dropfrag:
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free a fragment reassembly header and all
|
|
* associated datagrams.
|
|
*/
|
|
ip_freef(fp)
|
|
struct ipq *fp;
|
|
{
|
|
register struct ipasfrag *q, *p;
|
|
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
|
|
p = q->ipf_next;
|
|
ip_deq(q);
|
|
m_freem(dtom(q));
|
|
}
|
|
remque(fp);
|
|
(void) m_free(dtom(fp));
|
|
}
|
|
|
|
/*
|
|
* Put an ip fragment on a reassembly chain.
|
|
* Like insque, but pointers in middle of structure.
|
|
*/
|
|
ip_enq(p, prev)
|
|
register struct ipasfrag *p, *prev;
|
|
{
|
|
|
|
p->ipf_prev = prev;
|
|
p->ipf_next = prev->ipf_next;
|
|
prev->ipf_next->ipf_prev = p;
|
|
prev->ipf_next = p;
|
|
}
|
|
|
|
/*
|
|
* To ip_enq as remque is to insque.
|
|
*/
|
|
ip_deq(p)
|
|
register struct ipasfrag *p;
|
|
{
|
|
|
|
p->ipf_prev->ipf_next = p->ipf_next;
|
|
p->ipf_next->ipf_prev = p->ipf_prev;
|
|
}
|
|
|
|
/*
|
|
* IP timer processing;
|
|
* if a timer expires on a reassembly
|
|
* queue, discard it.
|
|
*/
|
|
ip_slowtimo()
|
|
{
|
|
register struct ipq *fp;
|
|
int s = splnet();
|
|
|
|
ip_reasstot = 0;
|
|
fp = ipq.next;
|
|
if (fp == 0) {
|
|
(void) splx(s);
|
|
return;
|
|
}
|
|
while (fp != &ipq) {
|
|
ip_reasstot++;
|
|
--fp->ipq_ttl;
|
|
fp = fp->next;
|
|
if (fp->prev->ipq_ttl == 0)
|
|
ip_freef(fp->prev);
|
|
}
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* Drain off all datagram fragments.
|
|
*/
|
|
ip_drain()
|
|
{
|
|
|
|
while (ipq.next != &ipq)
|
|
ip_freef(ipq.next);
|
|
}
|
|
|
|
|
|
/*
|
|
* Do option processing on a datagram,
|
|
* possibly discarding it if bad options
|
|
* are encountered.
|
|
*/
|
|
ip_dooptions(ip)
|
|
struct ip *ip;
|
|
{
|
|
#ifdef NEVER
|
|
register u_char *cp;
|
|
int opt, optlen, cnt, code, type;
|
|
struct in_addr *sin;
|
|
register struct ip_timestamp *ipt;
|
|
register struct ifnet *ifp;
|
|
struct in_addr t;
|
|
#endif NEVER
|
|
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 0,
|
|
"ip_dooptions(ip 0x%x)\n",
|
|
ip);
|
|
#endif /* DUMP_DEBUG */
|
|
|
|
#ifdef NEVER
|
|
cp = (u_char *)(ip + 1);
|
|
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP)
|
|
optlen = 1;
|
|
else
|
|
optlen = cp[1];
|
|
switch (opt) {
|
|
|
|
default:
|
|
break;
|
|
|
|
/*
|
|
* Source routing with record.
|
|
* Find interface with current destination address.
|
|
* If none on this machine then drop if strictly routed,
|
|
* or do nothing if loosely routed.
|
|
* Record interface address and bring up next address
|
|
* component. If strictly routed make sure next
|
|
* address on directly accessible net.
|
|
*/
|
|
case IPOPT_LSRR:
|
|
case IPOPT_SSRR:
|
|
if (cp[2] < 4 || cp[2] > optlen - (sizeof (long) - 1))
|
|
break;
|
|
sin = (struct in_addr *)(cp + cp[2]);
|
|
ipaddr.sin_addr = *sin;
|
|
ifp = if_ifwithaddr((struct sockaddr *)&ipaddr);
|
|
type = ICMP_UNREACH, code = ICMP_UNREACH_SRCFAIL;
|
|
if (ifp == 0) {
|
|
if (opt == IPOPT_SSRR)
|
|
goto bad;
|
|
break;
|
|
}
|
|
t = ip->ip_dst; ip->ip_dst = *sin; *sin = t;
|
|
cp[2] += 4;
|
|
if (cp[2] > optlen - (sizeof (long) - 1))
|
|
break;
|
|
ip->ip_dst = sin[1];
|
|
if (opt == IPOPT_SSRR &&
|
|
if_ifonnetof(in_netof(ip->ip_dst)) == 0)
|
|
goto bad;
|
|
break;
|
|
|
|
case IPOPT_TS:
|
|
code = cp - (u_char *)ip;
|
|
type = ICMP_PARAMPROB;
|
|
ipt = (struct ip_timestamp *)cp;
|
|
if (ipt->ipt_len < 5)
|
|
goto bad;
|
|
if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
|
|
if (++ipt->ipt_oflw == 0)
|
|
goto bad;
|
|
break;
|
|
}
|
|
sin = (struct in_addr *)(cp+cp[2]);
|
|
switch (ipt->ipt_flg) {
|
|
|
|
case IPOPT_TS_TSONLY:
|
|
break;
|
|
|
|
case IPOPT_TS_TSANDADDR:
|
|
if (ipt->ipt_ptr + 8 > ipt->ipt_len)
|
|
goto bad;
|
|
if (ifinet == 0)
|
|
goto bad; /* ??? */
|
|
*sin++ = ((struct sockaddr_in *)
|
|
&ifinet->if_addr)->sin_addr;
|
|
break;
|
|
|
|
case IPOPT_TS_PRESPEC:
|
|
ipaddr.sin_addr = *sin;
|
|
if (if_ifwithaddr((struct sockaddr *)&ipaddr) == 0)
|
|
continue;
|
|
if (ipt->ipt_ptr + 8 > ipt->ipt_len)
|
|
goto bad;
|
|
ipt->ipt_ptr += 4;
|
|
break;
|
|
|
|
default:
|
|
goto bad;
|
|
}
|
|
*(n_time *)sin = iptime();
|
|
ipt->ipt_ptr += 4;
|
|
}
|
|
}
|
|
#endif /* NEVER */
|
|
return (0);
|
|
#ifdef NEVER
|
|
bad:
|
|
icmp_error(ip, type, code);
|
|
return (1);
|
|
#endif NEVER
|
|
}
|
|
|
|
#ifdef NEVER
|
|
/*
|
|
* Strip out IP options, at higher
|
|
* level protocol in the kernel.
|
|
* Second argument is buffer to which options
|
|
* will be moved, and return value is their length.
|
|
*/
|
|
ip_stripoptions(ip, mopt)
|
|
struct ip *ip;
|
|
struct mbuf *mopt;
|
|
{
|
|
register int i;
|
|
register struct mbuf *m;
|
|
int olen;
|
|
|
|
olen = (ip->ip_hl<<2) - sizeof (struct ip);
|
|
m = dtom(ip);
|
|
ip++;
|
|
if (mopt) {
|
|
mopt->m_len = olen;
|
|
mopt->m_off = MMINOFF;
|
|
bcopy((caddr_t)ip, mtod(m, caddr_t), (unsigned)olen);
|
|
}
|
|
i = m->m_len - (sizeof (struct ip) + olen);
|
|
bcopy((caddr_t)ip+olen, (caddr_t)ip, (unsigned)i);
|
|
m->m_len -= olen;
|
|
}
|
|
|
|
u_char inetctlerrmap[PRC_NCMDS] = {
|
|
ECONNABORTED, ECONNABORTED, 0, 0,
|
|
0, 0, EHOSTDOWN, EHOSTUNREACH,
|
|
ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
|
|
EMSGSIZE, 0, 0, 0,
|
|
0, 0, 0, 0
|
|
};
|
|
|
|
ip_ctlinput(cmd, arg)
|
|
int cmd;
|
|
caddr_t arg;
|
|
{
|
|
struct in_addr *in;
|
|
int tcp_abort(), udp_abort();
|
|
extern struct inpcb tcb, udb;
|
|
|
|
if (cmd < 0 || cmd > PRC_NCMDS)
|
|
return;
|
|
if (inetctlerrmap[cmd] == 0)
|
|
return; /* XXX */
|
|
if (cmd == PRC_IFDOWN)
|
|
in = &((struct sockaddr_in *)arg)->sin_addr;
|
|
else if (cmd == PRC_HOSTDEAD || cmd == PRC_HOSTUNREACH)
|
|
in = (struct in_addr *)arg;
|
|
else
|
|
in = &((struct icmp *)arg)->icmp_ip.ip_dst;
|
|
/* THIS IS VERY QUESTIONABLE, SHOULD HIT ALL PROTOCOLS */
|
|
in_pcbnotify(&tcb, in, (int)inetctlerrmap[cmd], tcp_abort);
|
|
in_pcbnotify(&udb, in, (int)inetctlerrmap[cmd], udp_abort);
|
|
}
|
|
#endif /* NEVER */
|
|
|
|
int ipprintfs = 0;
|
|
int ipforwarding = 1;
|
|
/*
|
|
* Forward a packet. If some error occurs return the sender
|
|
* and icmp packet. Note we can't always generate a meaningful
|
|
* icmp message because icmp doesn't have a large enough repetoire
|
|
* of codes and types.
|
|
*/
|
|
ip_forward(ip)
|
|
register struct ip *ip;
|
|
{
|
|
#ifdef NEVER
|
|
register int error, type, code;
|
|
struct mbuf *mopt, *mcopy;
|
|
#endif NEVER
|
|
|
|
#ifdef DUMP_DEBUG1
|
|
dprint(dump_debug, 0,
|
|
"ip_forward(ip 0x%x)\n",
|
|
ip);
|
|
#endif /* DUMP_DEBUG */
|
|
|
|
#ifdef NEVER
|
|
/*
|
|
* don't forward broadcasts which escape from the net
|
|
* for which they were destined -- happens with multiple
|
|
* IP nets on one Ethernet
|
|
*/
|
|
if (in_netof(ip->ip_dst) == INADDR_ANY ||
|
|
(in_lnaof(ip->ip_dst) == INADDR_ANY &&
|
|
in_netof(ip->ip_dst) == in_netof(ip->ip_src))) {
|
|
m_freem(dtom(ip));
|
|
return;
|
|
}
|
|
if (ipprintfs)
|
|
printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
|
|
ip->ip_dst, ip->ip_ttl);
|
|
if (ipforwarding == 0) {
|
|
/* can't tell difference between net and host */
|
|
type = ICMP_UNREACH, code = ICMP_UNREACH_NET;
|
|
goto sendicmp;
|
|
}
|
|
if (ip->ip_ttl < IPTTLDEC) {
|
|
type = ICMP_TIMXCEED, code = ICMP_TIMXCEED_INTRANS;
|
|
goto sendicmp;
|
|
}
|
|
ip->ip_ttl -= IPTTLDEC;
|
|
mopt = m_get(M_DONTWAIT, MT_DATA);
|
|
if (mopt == NULL) {
|
|
m_freem(dtom(ip));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Save at most 64 bytes of the packet in case
|
|
* we need to generate an ICMP message to the src.
|
|
*/
|
|
mcopy = m_copy(dtom(ip), 0, imin(ip->ip_len, 64));
|
|
ip_stripoptions(ip, mopt);
|
|
|
|
error = ip_output(dtom(ip), mopt, (struct route *)0, IP_FORWARDING);
|
|
if (error == 0) {
|
|
if (mcopy)
|
|
m_freem(mcopy);
|
|
return;
|
|
}
|
|
if (mcopy == NULL)
|
|
return;
|
|
ip = mtod(mcopy, struct ip *);
|
|
type = ICMP_UNREACH, code = 0; /* need ``undefined'' */
|
|
switch (error) {
|
|
|
|
case ENETUNREACH:
|
|
case ENETDOWN:
|
|
code = ICMP_UNREACH_NET;
|
|
break;
|
|
|
|
case EMSGSIZE:
|
|
code = ICMP_UNREACH_NEEDFRAG;
|
|
break;
|
|
|
|
case EPERM:
|
|
code = ICMP_UNREACH_PORT;
|
|
break;
|
|
|
|
case ENOBUFS:
|
|
type = ICMP_SOURCEQUENCH;
|
|
break;
|
|
|
|
case EHOSTDOWN:
|
|
case EHOSTUNREACH:
|
|
code = ICMP_UNREACH_HOST;
|
|
break;
|
|
}
|
|
sendicmp:
|
|
/* don't give error replies to broadcasts */
|
|
if (in_lnaof(ip->ip_dst) == INADDR_ANY) {
|
|
m_freem(dtom(ip));
|
|
return;
|
|
}
|
|
icmp_error(ip, type, code);
|
|
#endif /* NEVER */
|
|
}
|