Files
Arquivotheca.SunOS-4.1.4/usr.lib/libm/C/expm1.c
seta75D ff309bfe1c Init
2021-10-11 18:37:13 -03:00

215 lines
6.5 KiB
C

#ifndef lint
static char sccsid[] = "@(#)expm1.c 1.1 94/10/31 SMI";
#endif
/*
* Copyright (c) 1987 by Sun Microsystems, Inc.
*/
/* EXPM1(X)
* RETURN EXP(X) - 1
* IEEE DOUBLE PRECISION
* CODE BASED ON 4.3BSD, MODIFIED by K.C. NG, 6/29/87.
*
* Required system supported functions:
* scalbn(x,n)
* copysign(x,y)
* finite(x)
*
* Method:
* 1. Argument Reduction: given the input x, find r and integer k such
* that
* x = k*ln2 + r, |r| <= 0.5*ln2 .
* r will be represented as r := z+c for better accuracy.
*
* 2. Compute EXPM1(r)=exp(r)-1 by
*
* EXPM1(r=z+c) := z + exp__E(z,c)
*
* 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
*
* Remarks:
* 1. When k=1 and z < -0.25, we use the following formula for
* better accuracy:
* EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
* 2. To avoid rounding error in 1-2^-k where k is large, we use
* EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
* when k>56.
*
* Special cases:
* EXPM1(INF) is INF, EXPM1(NaN) is NaN;
* EXPM1(-INF)= -1;
* for finite argument, only EXPM1(0)=0 is exact.
*
* Accuracy:
* EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
* 1,166,000 random arguments on a VAX, the maximum observed error was
* .872 ulps (units of the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include <math.h>
#include "libm.h"
double expm1(x)
double x;
{
double static one=1.0, half=1.0/2.0;
double scalbn(),copysign(),exp__E(),z,hi,lo,c;
int k,finite();
#ifdef VAX
static prec=56;
#else /* IEEE double */
static prec=53;
#endif
if(!finite(x)) {if(x!=x||x>0.0) return x+x; else return -1.0;}
if(signbit(x)) {
if (x > -0.346573590279972643113) { /* |x| < (ln2)/2 ? */
if(x > -1e-17) {
dummy(x+fmax); /* inexact unless x=0 */
return x;
} else return x+exp__E(x,0.0);
} else if ( x > -0.693147180559945286227) {
hi = x + ln2hi;
z = hi + ln2lo;
c = (hi-z)+ln2lo;
return 0.5*(z+exp__E(z,c))-0.5;
} else if ( x > -40.0) return exp(x)-1.0;
else { dummy(1e-300+x); return fmin-1.0;}
} else {
if (x < 0.346573590279972643113) { /* x < (ln2)/2 ? */
if(x < 1e-17) {
dummy(x-fmax); /* inexact unless x=0 */
return x;
} else return x+exp__E(x,0.0);
} else if ( x < 1.03972077083991792934) {
hi = x - ln2hi;
z = hi - ln2lo;
c = (hi-z)-ln2lo;
if (x < 0.443147180559945286227) {
x = z+0.5; x += exp__E(z,c);
} else {
z += exp__E(z,c); x = 0.5 + z;
}
return x+x;
} else if ( x < 70.0) {
k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
hi=x-k*ln2hi ;
z=hi-(lo=k*ln2lo);
c=(hi-z)-lo;
if(k<=prec) { x=one-scalbn(one,-k); z += exp__E(z,c);}
else { x = exp__E(z,c)-scalbn(one,-k); x+=z; z=one;}
return scalbn(x+z,k);
} else if (x <= lnovft) return exp(x)-1.0;
else return exp(x);
}
}
/* exp__E(x,c)
* ASSUMPTION: c << x SO THAT fl(x+c)=x.
* (c is the correction term for x)
* exp__E RETURNS
*
* / exp(x+c) - 1 - x , 1E-19 < |x| < .3465736
* exp__E(x,c) = |
* \ 0 , |x| < 1E-19.
*
* DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
* KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS
* CODED IN C BY K.C. NG, 1/31/85;
* REVISED BY K.C. NG on 3/16/85, 4/16/85.
*
* Required system supported function:
* copysign(x,y)
*
* Method:
* 1. Rational approximation. Let r=x+c.
* Based on
* 2 * sinh(r/2)
* exp(r) - 1 = ---------------------- ,
* cosh(r/2) - sinh(r/2)
* exp__E(r) is computed using
* x*x (x/2)*W - ( Q - ( 2*P + x*P ) )
* --- + (c + x*[---------------------------------- + c ])
* 2 1 - W
* where P := p1*x^2 + p2*x^4,
* Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6)
* W := x/2-(Q-x*P),
*
* (See the listing below for the values of p1,p2,q1,q2,q3. The poly-
* nomials P and Q may be regarded as the approximations to sinh
* and cosh :
* sinh(r/2) = r/2 + r * P , cosh(r/2) = 1 + Q . )
*
* The coefficients were obtained by a special Remez algorithm.
*
* Approximation error:
*
* | exp(x) - 1 | 2**(-57), (IEEE double)
* | ------------ - (exp__E(x,0)+x)/x | <=
* | x | 2**(-69). (VAX D)
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#ifdef VAX /* VAX D format */
/* static double */
/* p1 = 1.5150724356786683059E-2 , Hex 2^ -6 * .F83ABE67E1066A */
/* p2 = 6.3112487873718332688E-5 , Hex 2^-13 * .845B4248CD0173 */
/* q1 = 1.1363478204690669916E-1 , Hex 2^ -3 * .E8B95A44A2EC45 */
/* q2 = 1.2624568129896839182E-3 , Hex 2^ -9 * .A5790572E4F5E7 */
/* q3 = 1.5021856115869022674E-6 ; Hex 2^-19 * .C99EB4604AC395 */
static long p1x[] = { 0x3abe3d78, 0x066a67e1};
static long p2x[] = { 0x5b423984, 0x017348cd};
static long q1x[] = { 0xb95a3ee8, 0xec4544a2};
static long q2x[] = { 0x79053ba5, 0xf5e772e4};
static long q3x[] = { 0x9eb436c9, 0xc395604a};
#define p1 (*(double*)p1x)
#define p2 (*(double*)p2x)
#define q1 (*(double*)q1x)
#define q2 (*(double*)q2x)
#define q3 (*(double*)q3x)
#else /* IEEE double */
static double
p1 = 1.3887401997267371720E-2 , /*Hex 2^ -7 * 1.C70FF8B3CC2CF */
p2 = 3.3044019718331897649E-5 , /*Hex 2^-15 * 1.15317DF4526C4 */
q1 = 1.1110813732786649355E-1 , /*Hex 2^ -4 * 1.C719538248597 */
q2 = 9.9176615021572857300E-4 ; /*Hex 2^-10 * 1.03FC4CB8C98E8 */
#endif
static double exp__E(x,c)
double x,c;
{
double static zero=0.0, one=1.0, half=1.0/2.0;
double copysign(),z,p,q,xp,xh,w;
z = x*x ;
p = z*( p1 +z* p2 );
#ifdef VAX
q = z*( q1 +z*( q2 +z* q3 ));
#else /* IEEE double */
q = z*( q1 +z* q2 );
#endif
xp= x*p ;
xh= x*half ;
w = xh-(q-xp) ;
p = p+p;
c += x*((xh*w-(q-(p+xp)))/(one-w)+c);
return(z*half+c);
}
static dummy(x)
double x;
{
return 1;
}