Files
Arquivotheca.SunOS-4.1.4/usr.lib/libm/C/tanh.c
seta75D ff309bfe1c Init
2021-10-11 18:37:13 -03:00

68 lines
1.4 KiB
C

#ifdef lint
static char sccsid[] = "@(#)tanh.c 1.1 94/10/31 Copyr 1986 Sun Micro;
#endif
/*
* Copyright (c) 1987 by Sun Microsystems, Inc.
*/
/* TANH(X)
* RETURN THE HYPERBOLIC TANGENT OF X
* code based on 4.3bsd
* Modified by K.C. Ng for sun 4.0, Jan 31, 1987
*
* Method :
* 1. reduce x to non-negative by tanh(-x) = - tanh(x).
* 2.
* 0 < x <= 1.e-10 : tanh(x) := x
* -expm1(-2x)
* 1.e-10 < x <= 1 : tanh(x) := --------------
* expm1(-2x) + 2
* 2
* 1 <= x <= 22.0 : tanh(x) := 1 - ---------------
* expm1(2x) + 2
* 22.0 < x <= INF : tanh(x) := 1.
*
* Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
*
* Special cases:
* tanh(NaN) is NaN;
* only tanh(0)=0 is exact for finite argument.
*/
#include <math.h>
static double one=1.0, two=2.0, small = 1.0e-10, big = 1.0e10;
double tanh(x)
double x;
{
double t,y,z;
int signx;
if(x!=x) return x+x; /* x is NaN */
signx = signbit(x);
t = fabs(x);
z = one;
if(t <= 22.0) {
if( t > one ) z = one - two/(expm1(t+t) +two);
else if ( t > small ) {
y = expm1(-t-t);
z = -y/(y+two);
} else { /* raise the INEXACT flag for non-zero t */
dummy(t+big);
return x;
}
}
else if(!finite(t)) return copysign(1.0,x);
else return (signx==1)? -z+small*small: z-small*small;
return (signx==1)? -z: z;
}
static dummy(x)
double x;
{
return 1;
}