227 lines
5.2 KiB
C
227 lines
5.2 KiB
C
#if !defined(lint) && defined(SCCSIDS)
|
|
static char sccsid[] = "@(#)j0.c 1.1 94/10/31 SMI"; /* from S5R3 1.15 */
|
|
#endif
|
|
|
|
/* Copyright (c) 1984 AT&T */
|
|
/* All Rights Reserved */
|
|
|
|
/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */
|
|
/* The copyright notice above does not evidence any */
|
|
/* actual or intended publication of such source code. */
|
|
|
|
/*LINTLIBRARY*/
|
|
/*
|
|
* Double-precision Bessel's function
|
|
* of the first and second kinds
|
|
* of order zero.
|
|
*
|
|
* j0(x) returns the value of J0(x)
|
|
* for all real values of x.
|
|
*
|
|
* Returns ERANGE error and value 0 for large arguments.
|
|
* Calls sin, cos, sqrt.
|
|
*
|
|
* There is a niggling bug in J0 that
|
|
* causes errors up to 2e-16 for x in the
|
|
* interval [-8, 8].
|
|
* The bug is caused by an inappropriate order
|
|
* of summation of the series.
|
|
*
|
|
* Coefficients are from Hart & Cheney.
|
|
* #5849 (19.22D)
|
|
* #6549 (19.25D)
|
|
* #6949 (19.41D)
|
|
*
|
|
* y0(x) returns the value of Y0(x)
|
|
* for positive real values of x.
|
|
* Returns EDOM error and value -HUGE if argument <= 0.
|
|
*
|
|
* Calls sin, cos, sqrt, log, j0.
|
|
*
|
|
* The values of Y0 have not been checked
|
|
* to more than ten places.
|
|
*
|
|
* Coefficients are from Hart & Cheney.
|
|
* #6245 (18.78D)
|
|
* #6549 (19.25D)
|
|
* #6949 (19.41D)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <values.h>
|
|
#include <errno.h>
|
|
#define P2_0_Q2_0 0.999999999999999999944688442
|
|
#define P3_0_Q3_0 -0.0156249999999999999611615235
|
|
#define P4_0_Q4_0 0.073804295108687225110222
|
|
#define DPOLYD(y, p, q) for (n = d = 0, i = sizeof(p)/sizeof(p[0]); --i >= 0; ) \
|
|
{ n = n * y + p[i]; d = d * y + q[i]; }
|
|
|
|
static double tpi = 0.6366197723675813430755350535;
|
|
static double p1[] = {
|
|
0.4933787251794133561816813446e21,
|
|
-.1179157629107610536038440800e21,
|
|
0.6382059341072356562289432465e19,
|
|
-.1367620353088171386865416609e18,
|
|
0.1434354939140344111664316553e16,
|
|
-.8085222034853793871199468171e13,
|
|
0.2507158285536881945555156435e11,
|
|
-.4050412371833132706360663322e8,
|
|
0.2685786856980014981415848441e5,
|
|
}, q1[] = {
|
|
0.4933787251794133562113278438e21,
|
|
0.5428918384092285160200195092e19,
|
|
0.3024635616709462698627330784e17,
|
|
0.1127756739679798507056031594e15,
|
|
0.3123043114941213172572469442e12,
|
|
0.6699987672982239671814028660e9,
|
|
0.1114636098462985378182402543e7,
|
|
0.1363063652328970604442810507e4,
|
|
1.0,
|
|
};
|
|
static double p2[] = {
|
|
0.5393485083869438325262122897e7,
|
|
0.1233238476817638145232406055e8,
|
|
0.8413041456550439208464315611e7,
|
|
0.2016135283049983642487182349e7,
|
|
0.1539826532623911470917825993e6,
|
|
0.2485271928957404011288128951e4,
|
|
0.0,
|
|
}, q2[] = {
|
|
0.5393485083869438325560444960e7,
|
|
0.1233831022786324960844856182e8,
|
|
0.8426449050629797331554404810e7,
|
|
0.2025066801570134013891035236e7,
|
|
0.1560017276940030940592769933e6,
|
|
0.2615700736920839685159081813e4,
|
|
1.0,
|
|
};
|
|
static double p3[] = {
|
|
-.3984617357595222463506790588e4,
|
|
-.1038141698748464093880530341e5,
|
|
-.8239066313485606568803548860e4,
|
|
-.2365956170779108192723612816e4,
|
|
-.2262630641933704113967255053e3,
|
|
-.4887199395841261531199129300e1,
|
|
0.0,
|
|
}, q3[] = {
|
|
0.2550155108860942382983170882e6,
|
|
0.6667454239319826986004038103e6,
|
|
0.5332913634216897168722255057e6,
|
|
0.1560213206679291652539287109e6,
|
|
0.1570489191515395519392882766e5,
|
|
0.4087714673983499223402830260e3,
|
|
1.0,
|
|
};
|
|
static double p4[] = {
|
|
-.2750286678629109583701933175e20,
|
|
0.6587473275719554925999402049e20,
|
|
-.5247065581112764941297350814e19,
|
|
0.1375624316399344078571335453e18,
|
|
-.1648605817185729473122082537e16,
|
|
0.1025520859686394284509167421e14,
|
|
-.3436371222979040378171030138e11,
|
|
0.5915213465686889654273830069e8,
|
|
-.4137035497933148554125235152e5,
|
|
}, q4[] = {
|
|
0.3726458838986165881989980e21,
|
|
0.4192417043410839973904769661e19,
|
|
0.2392883043499781857439356652e17,
|
|
0.9162038034075185262489147968e14,
|
|
0.2613065755041081249568482092e12,
|
|
0.5795122640700729537480087915e9,
|
|
0.1001702641288906265666651753e7,
|
|
0.1282452772478993804176329391e4,
|
|
1.0,
|
|
};
|
|
|
|
extern double j0_asympt();
|
|
|
|
double
|
|
j0(x)
|
|
register double x;
|
|
{
|
|
register double n, d;
|
|
register int i;
|
|
|
|
if ((n = x) < 0)
|
|
x = -x;
|
|
if (x > 8)
|
|
return (j0_asympt(x, n, 1));
|
|
if (x < X_EPS)
|
|
return (1);
|
|
x *= x;
|
|
DPOLYD(x, p1, q1);
|
|
return (n/d);
|
|
}
|
|
|
|
double
|
|
y0(x)
|
|
register double x;
|
|
{
|
|
register double n, d, y, z;
|
|
register int i;
|
|
|
|
if (x <= 0) {
|
|
struct exception exc;
|
|
|
|
exc.type = DOMAIN;
|
|
exc.name = "y0";
|
|
exc.arg1 = x;
|
|
exc.retval = -HUGE;
|
|
if (!matherr(&exc)) {
|
|
(void) write(2, "y0: DOMAIN error\n", 17);
|
|
errno = EDOM;
|
|
}
|
|
return (exc.retval);
|
|
}
|
|
if (x > 8)
|
|
return (j0_asympt(x, x, 0));
|
|
y = tpi * log(x);
|
|
if (x < X_EPS)
|
|
return (y - P4_0_Q4_0);
|
|
z = x * x;
|
|
DPOLYD(z, p4, q4);
|
|
return (n/d + y * j0(x));
|
|
}
|
|
|
|
static double
|
|
j0_asympt(x, n, j0flag)
|
|
register double x, n;
|
|
int j0flag;
|
|
{
|
|
register double z, d, pzero, qzero;
|
|
register int i;
|
|
|
|
if (x > X_TLOSS) {
|
|
struct exception exc;
|
|
|
|
exc.type = TLOSS;
|
|
exc.name = j0flag ? "j0" : "y0";
|
|
exc.arg1 = n;
|
|
exc.retval = 0.0;
|
|
if (!matherr(&exc)) {
|
|
(void) write(2, exc.name, 2);
|
|
(void) write(2, ": TLOSS error\n", 14);
|
|
errno = ERANGE;
|
|
}
|
|
return (exc.retval);
|
|
}
|
|
if (x > X_PLOSS) {
|
|
pzero = P2_0_Q2_0;
|
|
qzero = P3_0_Q3_0;
|
|
} else {
|
|
z = 64/(x * x);
|
|
DPOLYD(z, p2, q2);
|
|
pzero = n/d;
|
|
DPOLYD(z, p3, q3);
|
|
qzero = n/d;
|
|
}
|
|
qzero *= 8/x;
|
|
z = sqrt(tpi/x);
|
|
pzero *= z;
|
|
qzero *= z;
|
|
x -= M_PI_4;
|
|
return (j0flag ? pzero * cos(x) - qzero * sin(x) :
|
|
pzero * sin(x) + qzero * cos(x));
|
|
}
|