// Copyright Jamie Iles, 2017 // // This file is part of s80x86. // // s80x86 is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // s80x86 is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with s80x86. If not, see . // Prefetcher // // This module is responsible for fetching bytes from the memory and pushing // them into the instruction stream FIFO. The CS is stored outside of the // Prefetch unit and passed in to be combined with the internal IP which is // wired out. This means that IP wrapping works correctly, and can be updated // under external control. The fetching can be stalled when servicing // a branch, updating the IP will flush the FIFO. `default_nettype none module Prefetch(input logic clk, input logic reset, // Address control. input logic [15:0] new_cs, input logic [15:0] new_ip, input logic load_new_ip, // FIFO write port. output logic fifo_wr_en, output logic [7:0] fifo_wr_data, output logic fifo_reset, input logic fifo_full, // Memory port. output logic mem_access, input logic mem_ack, output logic [19:1] mem_address, input logic [15:0] mem_data); reg [15:0] next_fetch_address, fetch_address; reg [15:0] next_cs, cs; reg abort_cur; reg [7:0] fetched_high_byte; reg write_second; reg [15:0] next_sequential_fetch; wire should_write_second_byte = mem_ack && !abort_cur && !fetch_address[0] && !fifo_reset; // verilator lint_off UNUSED wire [15:0] next_address = mem_ack ? next_sequential_fetch : fetch_address; // verilator lint_on UNUSED wire [19:1] _mem_address = {cs, 3'b0} + {4'b0, next_address[15:1]}; wire _mem_access = !reset && !fifo_full && !mem_ack && !write_second && ~(~mem_access && load_new_ip); reg mem_access2; assign mem_access = mem_access2 & !mem_ack; always_ff @(posedge clk) begin mem_address <= _mem_address; mem_access2 <= _mem_access; end assign fifo_wr_en = !abort_cur && !load_new_ip && (mem_ack || write_second); assign fifo_reset = load_new_ip | (abort_cur & mem_ack); assign fifo_wr_data = mem_ack ? (fetch_address[0] ? mem_data[15:8] : mem_data[7:0]) : fetched_high_byte; always_ff @(posedge clk or posedge reset) begin if (reset) begin abort_cur <= 1'b0; end else begin if (abort_cur && mem_ack) abort_cur <= 1'b0; else if (mem_access && load_new_ip) abort_cur <= 1'b1; end end always_ff @(posedge clk or posedge reset) write_second <= reset ? 1'b0 : should_write_second_byte; always_ff @(posedge clk or posedge reset) if (reset) begin cs <= 16'hffff; end else begin if (abort_cur && mem_ack) cs <= next_cs; else if (load_new_ip && !mem_access) cs <= new_cs; end always_ff @(posedge clk or posedge reset) if (reset) next_cs <= 16'hffff; else if (load_new_ip) next_cs <= new_cs; always_ff @(posedge clk or posedge reset) begin if (reset) fetch_address <= 16'b0; else if (abort_cur && mem_ack) fetch_address <= next_fetch_address; else if (load_new_ip && !mem_access) fetch_address <= new_ip; else if (!abort_cur && !load_new_ip && (mem_ack || write_second)) fetch_address <= fetch_address + 1'b1; end always_ff @(posedge clk or posedge reset) begin if (reset) next_fetch_address <= 16'b0; else if (load_new_ip) next_fetch_address <= new_ip; end always_ff @(posedge clk) if (mem_ack) fetched_high_byte <= mem_data[15:8]; always_ff @(posedge clk) next_sequential_fetch <= fetch_address + 1'b1; endmodule