// Copyright Jamie Iles, 2017 // // This file is part of s80x86. // // s80x86 is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // s80x86 is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with s80x86. If not, see . // vi: ft=systemverilog `ifndef MICROCODE_ROM_PATH `define MICROCODE_ROM_PATH "." `endif `default_nettype none module Microcode(input logic clk, input logic reset, input logic nmi_pulse, input logic intr, output logic inta, output logic irq_to_mdr, output logic start_interrupt, output logic do_escape_fault, output logic starting_instruction, input logic stall, input logic divide_error, input logic rm_is_reg, input logic [2:0] modrm_reg, input logic int_enabled, input logic zf, input logic tf, output logic [15:0] microcode_immediate, output logic [8:0] update_flags, output logic modrm_start, output logic use_microcode_immediate, output logic [7:0] opcode, input logic jump_taken, input logic rb_zero, output logic lock, output logic multibit_shift, output logic is_hlt, output logic next_microinstruction, // Microinstruction fields. <%#exported_fields%> output logic <%type%><%name%>, <%/exported_fields%> output logic width, output logic reg_wr_en, // Fifo Read Port. output logic fifo_rd_en, // verilator lint_off UNUSED input Instruction next_instruction_value, output Instruction cur_instruction, // verilator lint_on UNUSED input logic fifo_empty, input logic fifo_resetting, output logic loop_next, input logic loop_done, // Debug output logic debug_stopped, input logic debug_seize, input logic [7:0] debug_addr, input logic debug_run); localparam num_instructions = <%num_instructions%>; localparam addr_bits = <%addr_bits%>; localparam reset_address = <%addr_bits%>'h129; localparam nmi_address = <%addr_bits%>'h12a; localparam irq_address = <%addr_bits%>'h12b; localparam single_step_address = <%addr_bits%>'h12c; localparam divide_error_address = <%addr_bits%>'h101; localparam next_instruction_address = <%addr_bits%>'h100; localparam modrm_wait_address = <%addr_bits%>'h12e; localparam bad_opcode_address = <%addr_bits%>'h12f; localparam debug_wait_address = <%addr_bits%>'h102; localparam do_int_address = <%addr_bits%>'h12d; typedef struct packed { <%#fields%> logic <%type%><%name%>; <%/fields%> } microcode_instruction; microcode_instruction mem[num_instructions] /* synthesis ram_init_file = "microcode.mif" */; // verilator lint_off UNUSED microcode_instruction current; // verilator lint_on UNUSED reg [addr_bits-1:0] addr; reg [addr_bits-1:0] next_addr; reg [addr_bits-1:0] jump_target; assign use_microcode_immediate = |current.immediate; assign opcode = cur_instruction.opcode; always_comb begin case (current.immediate) <%#immediates%> <%idx%>: microcode_immediate = 16'h<%val%>; <%/immediates%> default: microcode_immediate = 16'h0; endcase end always_comb begin case (current.update_flags) <%#flags%> <%idx%>: update_flags = 9'h<%val%>; <%/flags%> default: update_flags = 9'h0; endcase end <%#exported_fields%> assign <%name%> = current.<%name%>; <%/exported_fields%> assign fifo_rd_en = starting_instruction; assign starting_instruction = !stall && (next_addr == {{addr_bits-8{1'b0}}, next_instruction_value.opcode}); assign modrm_start = addr == modrm_wait_address || (addr == next_instruction_address && !fifo_empty && next_instruction_value.has_modrm); wire has_rep_prefix = cur_instruction.rep != REP_PREFIX_NONE; reg rep_complete; assign debug_stopped = addr == debug_wait_address; assign multibit_shift = cur_instruction.opcode == 8'hd2 || cur_instruction.opcode == 8'hd3 || cur_instruction.opcode == 8'hc0 || cur_instruction.opcode == 8'hc1; assign do_escape_fault = cur_instruction.opcode[7:3] == 5'b11011 && next_addr == do_int_address; reg nmi_pending; reg ext_int_inhibit; wire take_nmi = (nmi_pending | nmi_pulse) & !ext_int_inhibit & !current.ext_int_inhibit; wire take_irq = intr & int_enabled & !ext_int_inhibit & !current.ext_int_inhibit; wire do_single_step = current.next_instruction & !ext_int_inhibit & trap_flag_set & current.next != debug_wait_address & !current.ext_int_inhibit; assign start_interrupt = next_addr == nmi_address || next_addr == irq_address; assign irq_to_mdr = next_addr == irq_address; reg trap_flag_set; assign is_hlt = cur_instruction.opcode == 8'hf4; reg seized; wire seizing = debug_seize & ~seized; assign loop_next = !stall && current.jump_type == JumpType_LOOP_DONE; assign reg_wr_en = current.rd_sel_source != RDSelSource_NONE & ~segment_wr_en; assign next_microinstruction = addr != next_addr; assign lock = cur_instruction.lock; always_comb begin case (current.width) WidthType_W8: width = 1'b1; WidthType_W16: width = 1'b0; WidthType_WAUTO: width = ~cur_instruction.opcode[0]; default: width = 1'b0; endcase end always_ff @(posedge clk) inta <= next_addr == irq_address && addr != irq_address; always_ff @(posedge clk or posedge reset) if (reset) trap_flag_set <= 1'b0; else if (next_addr == single_step_address) trap_flag_set <= 1'b0; else if (starting_instruction) trap_flag_set <= tf; always_ff @(posedge clk or posedge reset) if (reset) ext_int_inhibit <= 1'b0; else if (current.ext_int_inhibit && current.next != debug_wait_address) ext_int_inhibit <= 1'b1; else if (starting_instruction && !stall) ext_int_inhibit <= 1'b0; `ifdef verilator initial $readmemb({{`MICROCODE_ROM_PATH, "/microcode.bin"}}, mem); `endif always_comb begin case (cur_instruction.rep) REP_PREFIX_E: rep_complete = ~zf; REP_PREFIX_NE: rep_complete = zf; default: rep_complete = 1'b0; endcase end always_ff @(posedge clk or posedge reset) if (reset) nmi_pending <= 1'b0; else if (next_addr == nmi_address) nmi_pending <= 1'b0; else if (nmi_pulse) nmi_pending <= 1'b1; always_ff @(posedge clk or posedge reset) if (reset) seized <= 1'b0; else if (debug_stopped) seized <= 1'b1; else if (!debug_seize) seized <= 1'b0; always_comb begin unique case (current.jump_type) JumpType_RM_REG_MEM: jump_target = current.next + {{addr_bits-1{1'b0}}, ~rm_is_reg}; JumpType_OPCODE: jump_target = !fifo_empty ? {{addr_bits-8{1'b0}}, next_instruction_value.opcode} : addr; JumpType_DISPATCH_REG: jump_target = current.next + {{addr_bits-3{1'b0}}, modrm_reg}; JumpType_HAS_NO_REP_PREFIX: jump_target = ~has_rep_prefix ? current.next : addr + 1'b1; JumpType_ZERO: jump_target = zf ? current.next : addr + 1'b1; JumpType_REP_NOT_COMPLETE: jump_target = !rep_complete ? current.next : addr + 1'b1; JumpType_RB_ZERO: jump_target = rb_zero ? current.next : addr + 1'b1; JumpType_LOOP_DONE: jump_target = loop_done ? current.next : addr + 1'b1; JumpType_JUMP_TAKEN: jump_target = jump_taken ? current.next : addr + 1'b1; default: jump_target = current.next; endcase end always_comb begin if (reset) next_addr = reset_address; else if (debug_stopped && debug_run) next_addr = {{addr_bits - 9{1'b0}}, 1'b1, debug_addr}; else if (stall) next_addr = addr; else if (current.ext_int_yield && seizing) next_addr = debug_wait_address; else if (current.ext_int_yield && take_nmi) next_addr = nmi_address; else if (current.ext_int_yield && take_irq) next_addr = irq_address; else if (addr == next_instruction_address && !fifo_empty && !fifo_resetting && next_instruction_value.invalid) next_addr = bad_opcode_address; else if (current.jump_type != JumpType_UNCONDITIONAL) next_addr = jump_target; else if (divide_error) next_addr = divide_error_address; else if (current.next_instruction && take_nmi) next_addr = nmi_address; else if (current.next_instruction && take_irq) next_addr = irq_address; else if ((current.next_instruction && do_single_step) || (is_hlt && trap_flag_set)) next_addr = single_step_address; else if (current.next_instruction && debug_seize) next_addr = debug_wait_address; else if (current.next_instruction || (is_hlt && intr)) next_addr = !fifo_empty && !fifo_resetting ? (next_instruction_value.has_modrm ? modrm_wait_address : {{addr_bits-8{1'b0}}, next_instruction_value.opcode}) : next_instruction_address; else next_addr = current.next; end always @(posedge clk) addr <= next_addr; always @(posedge clk) current <= mem[next_addr]; always_ff @(posedge clk) if (fifo_rd_en) cur_instruction <= next_instruction_value; `ifdef verilator export "DPI-C" function get_microcode_address; function bit [addr_bits-1:0] get_microcode_address; get_microcode_address = addr; endfunction export "DPI-C" function get_ext_int_yield; function bit get_ext_int_yield; get_ext_int_yield = current.ext_int_yield; endfunction int microcode_coverage[num_instructions]; always_ff @(posedge clk) microcode_coverage[addr] <= microcode_coverage[addr] + 1; export "DPI-C" function get_microcode_num_instructions; function int get_microcode_num_instructions; get_microcode_num_instructions = num_instructions; endfunction export "DPI-C" function get_microcode_coverage_bin; function int get_microcode_coverage_bin; input int bin; get_microcode_coverage_bin = microcode_coverage[bin]; endfunction `endif endmodule