
MASTERSCOPE

Masterscope is an interact ive program for analyzing and cross
referencing user programs- l t  contains faci l i t ies for analyzing
user funct ions to determine what other funct ions are cal led, how
and where var iables are bound, set,  or referenced, and which
funct ions use part icular record declarat ions. MasterScope can
analyze def ini t ions direct ly from a f i le as wel l  as in-memory
def ini t ions.

Master5cope maintains a data base of the results of the analyses
it  performs. Via a simple command language, you may
interrogate the data base, call the editor on those expressions in
funct ions that were analyzed which use var iables or funct ions in
a part icular way, or display the tree structure of funct ion cal ls
among any set of  funct ions.

MasterScope is interfaced with the editor and f i le manager so
that when a funct ion is edited or a new def ini t ion loaded in,
MasterScope knows that it must reanalyze that function.

With the Medley release, MasterScope now understands
Common Lisp defun, defmacro, and defvar.

uirements

MSANALYZE, MSPARSE, MSCOMMON, Ms-PACKAGE

You may also want to make use of Browser, DataBaseFns, and
SEdit  or DEdit .

Load MASTERSCOPE.DFASL and the other .DFASL f i les from the
l ibrary.

quaqe

You communicate with MasterScope using an Engl ish- l ike
command language, e.9.,  WHO CALLS PRINT. With these
commands, you can direct that funct ions be analyzed,
interrogate the MasterScope data base, and perform other
operat ions. The commands deal with sets of funct ions, var iables,
etc. ,  and relat ions between them (e.9.,  cal l ,  bind)- Sets
correspond to English nouns, relations correspond to verbs.

A set of atoms can be specified in a variety of ways, either
expl ic i t ly,  e.g.,  FUNCTIONS ON FIE specif ies the atoms in
(FILEFNSLST 'FlE),  or impl ic i t ly,  e.9.,  NOT CALLING Y, where the
meaning must be determined in the context of the rest of the

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 16s



MASTERSCOPE

command. Such sets of atoms are the basic bui lding blocks with
which the command language deals.

MasterScope also deals with relations between sets.

For example, the relat ion CALL relates funct ions and other
funct ions; the relat ions BIND and USE FREELY relate funct ions
and variables- These relat ions get stored in the Master5cope
data base when funct ions are analyzed. ln addit ion,
MasterScope "knows" about f i le manager convent ions;
CONTAIN relates f i les and various types of objects ( funct ions,
var iables).

Sets and relat ions are used (along with a few addit ional words)
to form sentence-l ike commands.

For example,  the command WHO ON 'FOO USE 'X FREELY wi l l
pr int  out the l ist  of  funct ions contained in the f i le FOO which use
the var iable X freely.  The command EDIT WHERE ANY CALLS
'ERROR wi l l  cal l  EDITF (see lRMl on those funct ions which have
previously been analyzed that direct ly cal l  ERROR, point ing at
each successive expression where the cal l  to ERROR actual ly
occu rs.

MasterScope Commands

ANALYZE SFT

The normal mode of communicat ion with MasterScope is via
commands. These are sentences in the MasterScope command
language which direct MasterScope to answer quest ions or
perform various operations.

MasterScope commands are typed into the Executive window,
preceded by a period ( .)  to dist inguish them from other
commands to the Exec. MasterScope keywords can be in any
package, so MasterScope commands can be issued in any type of
Exec. The commands may be typed uppercase or lowercase.

Note: Any MasterScope command may be followed by OUTPUT
FILENAME to send output to the given file rather than
the terminal,  e.g. WHO CALLS WHO OUTPUT CROSSREF.

IMasterScope command]

Analyzes the funct ions in SEf (and any funct ions cal led by them)
and includes the information gathered in the data base.
MasterScope wi l l  not reanalyze a funct ion i f  i t  th inks i t  already
has valid information about that function in its data base. you
may use the command REANALYZE to force reanalysis.

Note that whenever a function is referred to in a command as a
subject of  one of the relat ions, i t  is automatical ly analyzed; you
need not give an expl ic i t  ANALYZE command. Thus, WHO lN
MYFNS CALLS FIE wi l l  automatical ly analyze the funct ions in
MYFNS i f  they have not already been analyzed.

Note also that only EXPR def ini t ions wi l l  be analyzed; that is,
MasterScope will not analyze compiled code. lf necessary, the
def ini t ion wi l l  be DWlMlFYed before analysis.  t f  there is no
in-core def ini t ion for a funct ion (ei ther in the funct ion def ini t ion
cell or an EXPR property), MasterScope will attempt to read in

166 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

REANALYZE SET IMasterScope command]

causes Masterscope to reanalyze the functions in sEr (and any
funct ions cal led by them) even i f  i t  a lready has val id information
in its data base. This would be necessary if you had disabled or
subverted the f i le manager;  e.g. performed pUTD's to change
the def ini t ion of funct ions.

ERASE SE)- [MasterScope command]

Erases al l  information about the funct ions in sErfrom the data
base. ERASE by itself clears the entire data base.

SHOW PATHS PATHOPTIONS IMasterScope command]

the def ini t ion from a f i le.  Fi les which have been expl ic i t ly
mentioned previously in some command are searched f i rst .  l f  the
definition cannot be found on any of those files, Masterscope
looks among the f i les on FILELST for a def ini t ion. l f  a funct ion is
found in this manner,  MasterScope wi l l  pr int  a message
"(reading trom FILENAMa". f f  no def ini t ion can be found at al l ,
MasterScope wi l l  pr int  a message " FN can,t  be analyzed,, .  l f  the
funct ion previously was known, the message "F/V disappearedr"
is pr inted.

Displays a tree of funct ion cal ls.  This is descr ibed ful ly in "sHow
PATHS" below.

SET RELATION SET
sEr rs sEr
sET ARE sET

IMasterScope command]

[MasterScope command]

IMasterScope command]

These commands have the same format as an English sentence
with a subject (the first SEI), a verb (REtAIlON or /S or ARE), and
an object (the second 5Er). Any of the SErs within the command
may be preceded by the quest ion determiners WHICH or WHO
(or just WHO alone).

For example, WHTCH FUNCTTONS CALL X pr ints the t ist  of
funct ions that cal l  the funct ion X.

RELATION may be one of the relation words in present tense
(CALL, BIND, TEST, SMASH, etc.)  or used as a passive (e.g.,  WHO lS
CALLED BY WHO). Other var iants are al lowed, e.g. WHO DOES X
CALL, I5 FOO CALLED BY FIE, etc.

The interpretat ion of the command depends on the number of
question elements present:

l f  there is no quest ion element,  the command is treated as an
assert ion and MasterScope returns ei ther T or NlL, depending on
whether that assert ion is true. Thus, ANy tN MYFNS CALL HELp
wil l  pr int  T i f  any funct ion in MyFNS cal l  the funct ion HELp, and
NIL otherwise.

lf there is one question element, Masterscope returns the list of
i tems for which the assert ion would be true.

For example,

MYFN BINDS WHO USED FREELY BY YOURFN

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 167



MASTERSCOPE

prints the l ist  of  var iables bound by MYFN which are also used
freely by YOURFN.

l f  there are two quest ion elements, Master5cope wi l l  pr int  a
doubly indexed l ist :

.  WHO CALLS t ' ,HO IN /FNS
NTCONOSTNTEMENT _- /RPLNODE

RECORDECLl --  /NCONC, /RPLACD, /RPLNODE
RECREDECLAREl /PUTHASH

UNCLISPTRAN --  /PUTHASH, /RPLNODE2
RECORDWORD --  /RPLACA
RECORD1 /RPLACA, /SETTOPVAL

EDITREC --  /SETTOPVAL

EDf T WHERE SET RELATION SET [- EDITCOMS] lMasterscope command]

(WHERE may be omitted.) The first SEf refers to a set of
funct ions. The EDIT command cal ls the editor on each expression
where the RELATIOA/ actually occurs.

For example,  EDIT WHERE ANY CALL ERROR wi l l  cal l  EDITF on
each (analyzed) funct ion which cal ls ERROR stopping within a
TTY: at each cal l  to ERROR. Current ly you cannot EDIT WHERE a
f i le which CONTAINS a datum, nor where one funct ion CALLS
anotherSOMEHOW.

EDITCOMS, if given, is a list of commands passed to EDITF to be
performed at each expression.

For example

EDIT WHERE ANY CALLS MYFN DIRECTLY - (SW 2 3) P

wi l l  switch the f i rst  and second arguments to MYFN in every cal l
to MYFN and or int  the result .  EDIT WHERE ANY ON MYFILE CALL
ANY NOT @ CefO wi l l  cal l  the editor on any expression involving
a cal l  to an undef ined funct ion.

Note that EDIT WHERE X SETS Y wi l l  point only at those
expressions where Y is actual ly set,  and wi l l  skip over places
where Y is otherwise mentioned.

SHOWWHERE SETRELATIONSET [MasterScopecommand]

Like the EDIT command except merely pr ints out the expressions
without cal l ing the editor.

EDIT SEff- EDITCOMSI [MasterScope command]

Cal ls EDITF on each funct ion in SEL EDITCOMS, i f  given, wi l l  be
passed as a list of editor commands to be Executed.

For example,

EDrT ANY CALLTNG FN1 -  (R FN1 FNz)

wi l l  replace FN1 by FN2 inthose funct ionsthat cal l  FN1.

DESCRIBE sEf [MasterScope commandl

Prints the BIND, USE FREELY and CALL information about the
funct ions in SEL

168 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

For example, the command DESCRIBE PRINTARGS might pr int
out:

PRTNTARGSIN, FLG]

binds:
cal  I  s:
ca1 1 ed by:

This shows that PRINTARGS has two arguments, N and FLG; binds
internal ly the var iables TEM, LST and X; cal ls MSRECORDFILE,
SPACES and PRINl;  and is cal led by PRINTSENTENCE, MSHELP,
and CHECKER.

You can specify addit ional information to be included in the
descript ion. DESCRIBELST is a l ist  each of whose elements is a l ist
containing a descr ipt ive str ing and a form. The form is evaluated
(i t  can refer to the name of the funt ion being described by the
free var iable FN). l f  i t  returns a non-NlL value, the descript ion
str ing is pr inted fol lowed by the value. l f  the value is a l ist ,  i ts
elements are pr inted with commas between them.

For example, the entry

(  " types: "  (GETRELATI0N FN ' (USE TYPE) T)

would include a l ist ing of the types used by each funct ion.

CHECK SEf [MasterScope command]

Checks for var ious anomalous condit ions (mainly in the compi ler
declarat ions) for the f i les in sFf ( i f  SFf is not given, FILELST is
used).

For example, this command wi l l  warn about:

Variables which are bound but never referenced.

Funct ions in BLOCKS declarat ions which aren' t  on the f i le
containing the declarat ion.

Funct ions declared as ENTRIE5 but not in the block.

Variables which
because they are
they are bound.

etc.

FOR VARIABLE SET I.S,TAIL

TEM, LST ,  X
MSRECORDFILE, SPACES, PRINl
PRINTSENTENCE .  MSHELP. CHECKER

may not need to be declared SPECVARS
not used freely below the places where

IMasterScope command]

This command provides a way of combining CLISP i terat ive
statements with MasterScope. An iterative statement will be
constructed in which VARTABLE is iteratively assigned to each
element of SET, and then the i terat ive statement tai l  / .5. IAl t  is
Executed.

For example,

FoR X CALLED BY FOo WHEN CCODEP DO ( PRINTOUT T X
,, ,  (ARGLTST X) T)

wi l l  pr int  out the name and argument l ist  of  al l  of  the compi led
funct ions which are cal led by FOO.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 169



MASTERSCOPE

A relation is specified by one of the keywords below. Some of
these "verbs" accept modifiers.

For example, USE, sET, SMASH and REFERENCE al l  may be
modif ied by FREELY. The modif ier may occur anywhere within
the command. l f  there is more than one verb, any modif ier
between two verbs is assumed to modify the first one.

For example, in

USING ANY FREELY OR SETTING X,

FREELY modif ies USING but not SETTING. The ent ire phrase is
interpreted as the set of  al l  funct ions which ei ther use any
variable freely or set the variable X, whether or not X is set freely.
Verbs can occur in the present tense (e-9.,  USE, CALLS, BlND5,
USES) or as present or past part ic iples (e.9.,  CALLING, BOUND,
TESTED). The relat ions (with their  modif iers) recognized by
MasterScope are:

CALL [MasterScoPe relation]

Funct ion F1 cal ls F2 i f  the def ini t ion of F1 contains a form (F2 --) .
The CALL relat ion also includes any instance where a funct ion
uses a name as a funct ion, as in

(APPLY (QUOTE F2) --) ,  (FUNCTION F2),  etc.

(CALL and CALLS are equivalent.)

CALLSOMEHOW IMasterScope relation]

One function calls another SOMEHOW if there is some path from
the f irstto the other. That is, i f  F1 calls F2, and F2 calls F3, then F1
CALLS F3 SOMEHOW.

This information is not stored directly in the data base; instead,
MasterScope stores only information about direct function calls,
and (re)computes the CALL SOMEHOW relation as necessary.

IMasterScope relati on]

l f  unmodif ied, the relation USE denotes variable usage in any
way; i t  is the union of the relations SET, SMASH, TEST, and
REFERENCE.

SET [MasterScope relation]

A funct ion SETs a var iable i f  the funct ion contains a form

(SETQ var --) ,  (SETQQ var --) ,  etc.

SMASH [MasterScope relation]

A funct ion SMASHes a var iable i f  the funct ion cal ls a destruct ive
list operation (RPLACA, RPLACD, DREMOVE, SORT, etc.) on the
value of that var iable. MasterScope wi l l  a lso f ind instances
where the operation is performed on a part of the value of the
variable. For example, i f  a funct ion contains a form (RPLACA
(NTH X 3) T),  i t  wi l l  be noted as SMASHing X.

U5E

170 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

TEST

lf the function contains a sequence (SETQ Y X), (RPLACA Y T),
then Y is noted as being SMASHed, but not X.

IMasterScope relati on]

A variable is TESTed by a funct ion i f  i ts value is only dist inguished
between NIL and non-NlL.

For example, the form (COND ((AND X -)  --))  tests the value of X.

REFERENCE [MasterScope relat ion]

This relat ion includes al l  var iable usage except for 5ET.

Note: The verbs USE,SET, SMASH, TEST and REFERENCE may be
modif ied by the words FREELY or LOCALLY. A var iable is
used FREELY i f  i t  is not bound in the funct ion at the place
of its use. lt is used LOCALLY if the use occurs within a
PROG or LAMBDA that binds the var iable,

MasterScope also dist inguishes between CALL DIRECTLY and
CALL INDIRECTLY. A funct ion is cal led direct ly i f  i t  occurs as
CAR-of-form in a normal evaluat ion context.  A funct ion is cal led
indirect ly i f  i ts name appears in a context which does not imply
i ts immediate evaluat ion, for example (SETQ Y (LIST (FUNCTION
FOO) 3)).  The dist inct ion is whether or not the compi led code of
the cal ler would contain a direct cal l  to the cal lee.

Note that an occurrence of (FUNCTION FOO) as the funct ional
argument to one of the bui l t - in mapping funct ions which
compile open is considered to be a direct cal l .

In addit ion, CALL FOR EFFECT (where the value of the funct ion is
not used) is dist inguished from CALL FOR VALUE.

BIND IMasterScope relation]

The BIND relat ion between funct ions and variables includes both
variables bound as funct ion arguments and those bound in an
internal PROG or LAMBDA expression.

USE A5 A FIELD IMasterScope relati on]

Masterscope notes al l  uses of record f ie ld names within FETCH,
REPLACE or CREATE expressions.

Use of a f ie ld within a FETCH expression.

IMasterScope relati on]

IM asterScope rel ati on]

FETCH

REPL.A,CE

Use of a record field
expression.

USE A5 A RECORD

CREATE

name within a REPLACE or CREATE

IMasterScope rel ation]

MasterScope notes all uses of record names within CREATE or
TYPE? expressions. Addit ional ly,  in ( fetch (FOO FIE) of X),  FOO is

' used as a record name.

IMasterscope rel ati on]

Use of a record name within a CREATE expression.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 171



MASTERSCOPE

UsE A5 A PROPERTY NAME IMasterScope rel ation]

MasterScope notes the property names used in expressions such
as GETPROP, PUTPROP, GETLIS, etc. ,  i f  the name is quoted; e.g. i f
a funct ion contains a form (GETPROP X (QUOTE INTERP)),  then
that funct ion USEs INTERP as a property name.

UsE AS A CLISP WORD IMasterScope relati on]

CONTAIN

MasterScope notes all iterative statement operators and user
def ined CLISP words as being used as a CLISP word,

IMasterScope relation]

Fi les CONTAIN funct ions, records, and variables. This relat ion is
not stored in the data base but is computed using the file
manager.

DECLARE AS LOCALVAR
DECLARE AS SPECVAR

ACCEPT
SPECIFY
KEYCALL

FLET
LABEL

MACROLET
LOCAL-DEFINE

MasterScope notes
functions.

IMasterScope relation]

IMasterScope rel ati on]

IMasterScope relati on]

MasterScope notes keyword arguments of Common Lisp
funct ions when they are analyzed and when they are cal led.

FOO ACCEPTS :BAR is true i f  FOO is a Common Lisp funct ion that
accepts the keyword :BAR. FOO ACCEPTS
&ALLOW-OTHER-KEYS is true i f  FOO has &ACCEPT-OTHER-KEYS
in i ts lambda l ist .

FOO SPECIFIES :BAR is true i f  FOO is a funct ion that cal ls any
funct ion with the keyword :BAR; the funct ion in quest ion must
ACCEPT:BAR.

FOO KEYCALLS BAR is true i f  FOO is a funct ion and cal ls BAR with
one or more keywords it ACCEPTS.

IMasterScope rel ati on]

IMasterScope relati on]

internal cal ls to DECLARE from within

IMasterScope relation]
IMasterScope rel ati on]
IMasterScope rel ati on]
IMasterScope rel ati on]

tracks uses of Common Lisp local definit ion forms
does not expand them while analyzing them,

MasterScope
(it currently
however).

FOO FLETS BAR is true of FOO is a function with a FLET defining
BAR localto FOO.

LABELS and MACROLETS are similar. LOCAL-DECLARES is the
union of FLETS, LABELS, and MACROLETS.

172 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

Abbreviations

The fol lowing abbreviat ions are recognized:

FREE = FREELY

LOCAL = LOCALLY
PROP = PROPERTY

REF = REFERENCE

Also, the words A, AN and NAME (after AS) are "noise" words
and may be omit ted.

MasterScope Templates

MasterScope uses templates (see " Effecting Masterscope
Analysis" below) to decide which relat ions hold between
funct ions and their  arguments.

For example, the information that SORT SMASHes its first
argument is contained in the template for SORT. MasterScope
initially contains templates for most system functions which set
variables, test their arguments, or perform destructive
operat ions. You may change exist ing templates or insert  new
ones in MasterScope's tables via the SETTEMPLATE funct ion
(below).

MasterScope also constructs templates to handle Common Lisp
functions with keyword arguments. These constructed
templates are not iced by FILES? and can be saved i f  desired, or
MasterScope can recreate them by analyzing the functions
again.

MasterScope Set Specifications

,ATOM

A set is a col lect ion of things ( funct ions, var iables, etc.) .  A set is
specif ied by a set phrase, consist ing of a determiner (e.9.,  ANY,
WHICH, WHO) fol lowed by a type (e.9.,  FUNCTIONS, VARIABLES)
fol lowed by a specif icat ion (e.9.,  lN MYFNS). The determiner,
type and specif icat ion may be used alone or in combinat ion.

For example,

ANY FUNCTIONS IN MYFNS.

VARIABLES IN GLOBALVARS,ANd
uJHo

are all acceptable set phrases.

Note: Sets may also be specified with relative clauses
introduced by the word THAT, e.g. THE FUNCTIONS THAT
BIND'X.

IMasterscope set specification]

The simplest way to specify a set consist ing of a single thing is by
the name of that thing.

For example, in the command WHO CALLS 'ERROR, the function
ERROR is referred to by its name. Although the ' (apostrophe)

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 173



MASTERSCOPE

,LIST

can be lef t  out,  to resolve possible ambiguit ies names should
usual ly be quoted; e.9.,  WHO CALLS 'CALLS wi l l  return the l ist  of
funct ions which cal l  the funct ion CALLS.

IMasterScope set specification]

Sets consisting of several atoms may be specified by naming the
atoms.

For example, the command WHO USES '(A B) returns the l ist  of
funct ions that use the var iables A or B.

IN EXPRFSS'Oru IMasterScope set specification]

The form EXPRESSION is evaluated, and its value is treated as a
list of the elements of a set.

For example, lN GLOBALVARS specif ies the l ist  of  var iables in the
value of the var iable GLOBALVARS.

@ prcotcarc IMasterScope set specificationl

A set may also be specif ied by giving a predicate which the
elements of that set must satisfy. PREDICATE is either a function
name, a LAMBDA expression, or an expression in terms of the
variable X. The specification @ pAeOtCaIE represents all atoms
for which the value of PREDICAIE is non-NlL.

For example, @ EXPRP specif ies al l  those atoms which have EXPR
definitions; @ (STRPOSL X CLISPCHARRAY) specifies those atoms
which contain CLISP characters. The universe to be searched is
ei ther determined by the context within the command (e.9.,  in
WHO lN FOOFNS CALLS ANY NOT @ GEtD, the predicate is only
appl ied to funct ions which are cal led by any funct ions in the l ist
FOOFNS), or in the extreme case, the universe defaults to the
entire set of things which have been noticed by MasterScope, as
in the command WHO 15 @ EXPRP.

LIKE ATOM [MasterScope set specification]

ATOM may contain ESCapes; it is used as a pattern to be
matched, as in the editor.

For example, WHO LIKE /R$ lS CALLED BY ANY would f ind both
/RPLACA and /RPLNODE.

(The E5C character pr ints out as a $; i t  is a wi ldcard for any
number of characters.)

FIELDS OF SET IMasterScope set specification]

SEf is a set of records. This denotes the field names of those
records.

For example, the command WHO USES ANY FIELDS OF BRECORD
returns the l ist of al l  functions which do a fetch or replace with
any of the f ield names declared in the record declaration of
BRECORD.

IMasterScope set speci f i cati on]

The set of al l  functions which have been analyzed.

174

KNOWN

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

THOSE

Set Specifications by Relation

For example, the command WHO 15 KNOWN wil l  pr int  out the l ist
of  funct ions which have been analyzed.

IMasterScope set specificati on]

The set of things printed out by the last Master5cope question.

For example, fol lowing the command

WHO IS USED FREELY BY PARSE

you could ask WHO BINDS THOSE to f ind out where those
variables are bound.

IMasterScope set specification]ON PATH PATHOPTIONS

Refers to the set of functions which would be printed by the
command SHOW PATHS PATHOPTIONS.

For example,

IS FOO BOUND BY ANY ON PATH TO 'PARSE

tests whether FOO might be bound above the function PARSE
(that is,  whether FOO is bound in any funct ion that is higher up
in the cal l ing tree than PARSE is) .  SHOW PATHS is explained in
detai l  below.

A set may also be specif ied by giving a relat ion i ts members must
have with the members of another set:

IMasterScope set specif icati on]RETAT'OAIING sET

RELATIONED BY sET
RELATIONED IN SET

RFLAITONING is used here generical ly to mean any of the
relat ion words in the present part ic iple form (possibly with a
modif ier) ,  e.9. ,  USlNG, SETTING, CALLING, BINDING.
REtAfTOAllNG SEf specifies the set of all objects which have that
relat ion with some element of SFL

For example, CALLING X specif ies the set of  funct ions which cal l
the funct ion X; USING ANY lN FOOVARS FREELY specif ies the set
of funct ions which uses freely any var iable in the value of
FOOVARS.

IMasterScope set specif ication]

IMasterScope set specificati on]

This is simi larto the REIAIIONING construct ion.

For example, CALLED BY ANY lN FOOFNS represents the set of
funct ions which are cal led by any element of FOOFNS; USED
FREELY BY ANY CALLING ERROR is the set of  var iables which are
used freely by any funct ion which also cal ls the funct ion ERROR.

Set Specifications bv Blocktvpes

BLOCKTYPE OF FUNCTIONS

BLOCKTYPE ON F'I-ES
IMasterScope set specification]
IMasterScope set speci f i cati on]

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 175



MASTERSCOPE

These phrases al low you to ask about BLOCKS declarat ions on
files (see /RM). BLOCKTYPE is one of LOCALVARS, SPECVARS,
GLOBALVARS, ENTRIES, BLKFNS, BLKAPPLYFNS, or RETFNS.

BLOCKWPE OF FUNCTIONS specifies the names which are
declared to be BLOCKTYPE in any blocks declarat ion which
contain any of FUNCTIONS (a "set" of  funct ions).  The
"funct ions" in FUNCTIONS can ei ther be block names or just
funct ions in a block.

For example,

WHICH ENTRIES OF ANY CALLING
GLOBALVARS ON 'FOO.

'Y BIND ANY

BLOCKTYPE ON F/[ESspecif iesal l  nameswhich are declared to be
BLOCKTYPE on any of the given F/[FS (a "set" of files).

Set Determiners

Set phrases may be preceded by a determiner,  which is one of the
words THE, ANY, WHO or WHICH. The quest ion determiners
(WHO and WHICH) are meaningful  in only some of the
commands, namely those that take the form of quest ions. ANY
and WHO (or WHOM) can be used alone; they are wi ld-card
elements, e.9.,  the command WHO USES ANY FREELY, wi l l  pr int
out the names of al l  (known) funct ions which use any var iable
freely.  l f  the determiner is omit ted, ANY is assumed; e.g. the
command WHO CALLS'(PRINT PRINI PRIN2) wi l l  pr int  the l is t  of
funct ions which cal l  any of  PRINT, PRlN1, PRlN2. THE is also
al lowed, e.g.  WHO USES THE RECORD FIELD FIELDX.

Set Types

Any set phrase has a type; that is, a set may specify either
funct ions, var iables, f i les, record names, record f ie ld names or
property names. The type may be determined by the context
within the command (e.9.,  in CALLED BY ANY ON FOO, the set
ANY ON FOO is interpreted as meaning the funct ions on FOO
since only funct ions can be CALLED), or you may give the type
expl ic i t ly  (e.9. ,  FUNCTIONS ON FIE).

The fol lowing types are recognized: FUNCTTONS, VARIABLES,
FlLEs, PROPERTY NAME5, RECORDS, FIELDS, t .S.OPRS. Also, the
abbreviat ions FNS, VARS, PROPNAMES or the singular forms
FUNCTION, FN, VARIABLE, VAR, FILE, PROPNAME, RECORD,
FIELD are recognized.

Note that most of these types correspond to bu ilt-i n f i le manager
types (see IRM).

The type is used by MasterScope in a variety of ways when
interpret ing the set phrase:

(1) Set types are used to disambiguate possible parsings.

For example, both commands

WHO SETS ANY BOUND IN X OR USED BY Y

176 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

(3)

WHO SETS ANY BOUND IN X OR CALLED BY Y

have the same general form. However, the first case is parsed as

t l tHo SETS ANY (BoUND BY X 0R USED BY Y)

since both BOUND BY X and USED BY Y referto var iables;  whi le
the second case is parsed as

t lJHo sETs ANY BOUND IN (X 0R CALLED BY Y),

since CALLED BY Y and X must refer to funct ions.

Note that parentheses may be used to group phrases.

The type is used to determine the modif ier for USE:

F00 USES WH ICH REC0RDS is equivalent to

FOO USES WHO AS A RECORD FIELD.

The interpretation of CONTAIN depends on the type of its
object:  the command

WHAT FUNCTIONS ARE CONTAINED IN MYFILE

prints the l ist  of  funct ions in MYFILE.

WHAT RECORDS ARE ON MYFILE

prints the list of records-

The impl ic i t  universe in which a set expression is interpreted
depends on the type:

ANY VARIABLES @ GETD

is interpreted as the set of  al l  var iables which have been not iced
by MasterScope ( i .e. ,  bound or used in any funct ion which has
been analyzed) that also have a def ini t ion.

ANy FUNCTToNS @ (NEQ (GETToPVAL X) 'NoBIND)

is interpreted as the set of  al l  funct ions which have been not iced
(ei ther analyzed or cal led by a funct ion which has been
analyzed) that also have a top- level value.

(4)

Coniunctions of Sets

Sets may be joined by the conjunct ions AND and OR or preceded
by NOTto form new sets. AND is always interpreted as meaning
intersect ion; OR as union; NOT as complement.

For example, the set CALLING X AND NOT CALLED BY Y specif ies
the set of  al l  funct ions which cal l  the funct ion X but are not
cal led by Y.

Note: MasterScope's interpretation of AND and OR follow Lisp
convent ions rather than the convent ional Engl ish
interpretation.

"Cal l ing X and Y" would, in Engl ish, be interpreted as the
intersection of (CALLING X) and (CALLING Y); but Masterscope
interprets CALLING X AND Y as CALLING ( 'X AND 'Y),  which is the
nul l  set.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 177



M.ASTERSCOPE

Only sets may be joined with conjunct ions. Joining modif iers,  as
in

USING X AS A RECORD FIELD OR PROPERTY NAME

is not al lowed; in this case, you must type

USING X AS A RECORD FIELD OR USING X AS A
PROPERTY NAME

As described above, the type of set is used to disambiguate
parsings. The algorithm used is to first try to match the type of
the phrases being joined and then try to join with the longest
preceding phrase.

In any case, you may group phrases with parentheses to specify
the manner in which conjunct ions should be parsed.

In try ing to work with large programs, you can lose track of the
hierarchy of functions. The MasterScope SHOW PATHS
command aids you by providing a map showing the cal l ing
structure of a set of functions. SHOW PATHS prints out a tree
structure showing which funct ions cal l  which other funct ions.

Loading the Browser l ibrary module modif ies the SHOW PATHS
command so the command's output is displayed as an undirected
graph.

The SHOW PATHS command takes the form: SHOW pATHs
fol lowed by some combinat ion of the fol lowing path opt ions:

FROM SEf [MasterScope path option]

Display the funct ion cal ls from the elements of SEL

TO SEf [MasterScope path option]

Display the funct ion cal ls leading to elements of SEL I f  TO is
given before FROM (or no FROM is given),  the tree is inverted
and a message (inverted tree) is printed to warn you that if FN1
appears after FN2 i t  is because FN 1 is cal led by FN2.

Note: When both FROM and TO are given, the f i rst  one

Ifi ; ijn: :.'.ff 
" 
jillT ?; "-#il, il""n ff ,i' 1?:x'#

i .e. ,  the command SHOW PATHS FROM X TO y wi l l  t race
the elements of the set CALLED SOMEHOW By X AND
CALLING Y SOMEHOW.

lf  TO is not given, TO KNOWN OR NOT @ CEfO is assumed; that
is,  only funct ions which have been analyzed or which are
undef ined wi l l  be included.

Note that Master5cope wi l l  analyze a funct ion whi le pr int ing out
the tree if that function has not previously been seen and it
current ly has an EXpR def ini t ion. Thus, any funct ion which can
be analyzed wi l l  be displayed.

178 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

A,VOIDING sET

NOTRACE sET

SEPARATE sET

LINELENGTH A/

IMasterScope path option]

Do not display any funct ion in SEL AMONG is recognized as a
synonym for AVOIDING NOT.

For example, SHOW PATHS TO ERROR AVOIDING ON FILE2 wi l l
not display (or trace) any funct ion on FlLE2.

IMasterScope path option]

Do not trace from any element of SEL NOTRACE differs from
AVOIDING in that a funct ion which is marked NOTRACE wi l l  be
printed, but the tree beyond it will not be expanded. The
funct ions in an AVOIDING set wi l l  not be pr inted at al l .

For example,

SHOW PATHS FROM ANY ON FILE1 NOTRACE ON FILEz

wi l l  d isplay the t ree of  cal ls eminat ing f rom F|LE1, but wi l l  not
expand any funct ion on FlLE2.

[MasterScope path option]

Give each element of SEf a separate tree.

Note: FROM and TO only insure that the designated funct ions
wi l l  be displayed. SEPARATE can be used to guarantee
that certain functions will begin new tree structures-
SEPARATE funct ions are displayed in the same manner as
overf low l ines; i .e. ,  when one of the funct ions indicated
by SEPARATE is found, it is printed followed by a forward
reference (a lower-case letter in braces) and the tree for
that function is then expanded below.

IMasterScope path option]

Resets LINELENGTH to N before displaying the tree. The
l inelength is used to determine when a part  of  the tree should
"overflow" and be expanded lower.

rror
When you give MasterScope a command, the command is f i rst
parsed, i.e. translated to an internal representation, and then
the internal representation is interpreted.

l f  a command cannot be parsed, e-9. i f  you typed

SHOW WHERE CALLED BY X

MasterScope would reply

Sorry, I can't parse that!

and generate an error.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 179



MASTERSCOPE

lf the command is of the correct form but cannot be interpreted
(e.9. ,  the command EDIT WHERE ANY CONTAINS ANY)
Master5cope will print the message

Sorry, that isn' t  implemented!

and generate an error.

l f  the command requires some funct ions having been analyzed
(e.9.,  the command WHO CALLS X) and the data base is empty,
MasterScope wi l l  pr int  the message

Sorry, no functions have been analyzed!

and generate an error.

Macro Expansion

As part  of  analysis,  MasterScope wi l l  expand the macro def ini t ion
of cal led funct ions i f  they are not otherwise def ined (see /RM).
MasterScope always expands Common Lisp DEFMACRO
defini t ions (unless i t  f inds a template for the macro).

MasterScope Inter l isp macro expansion is control led by a
variable:

MSMACROPROPS lVariablel

Value is an ordered l ist  of  macro-property names that
Masterscope wi l l  search to f ind a macro def ini t ion. Only the
kinds of macros that appear on MSMACROPROPS wi l l  be
expanded. Al l  others wi l l  be treated as funct ion cal ls and lef t
unexpanded. lni t ia l  ly (MACRO).

Note: MSMACROPROPS ini t ia l ly contains only MACRO (not
10MACRO, DMACRO, etc.)  on the assumption that the
machine-dependent macro def ini t ions are more l ikely
"opt imizers".

l f  you edit  a macro, Master5cope wi l l  know to reanalyze the
funct ions which cal l  that macro.

Note: l f  your macro is of the "computed-macro" style,  and i t
cal ls funct ions which you edit ,  MasterScope wi l l  not
notice. You must be careful to tell masterscope to
REANALYZE the appropriate funct ions (e.9.,  i f  you edit
FOOEXPANDER which is used to expand FOO macros, you
have to REANALYZE ANY CALLING FOO.

180 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

ecttn ter rse na

PPE

NIL

5ET

SMASH

TEST

KEYWORDkey1.. .

PROP

MasterScope analyzes the EXPR def ini t ion of a funct ion, and
notes in i ts data base the relat ions that this funct ion has with
other funct ions and with var iables. To perform this analysis,
MasterScope uses templates which describe the behavior of
funct ions.

For example, the information that SORT destruct ively modif ies i ts
f i rst  argument is contained in the template for SORT.
MasterScope initially contains templates for most system
functions that set variables, test their arguments, or perform
destructi ve operati ons.

A template is a l ist  structure containing any of the fol lowing
atoms:

[i n MasterScope tem plate]

l f  an expression appears in this locat ion, there is most l ikely a
parenthesis error.

MasterScope notes this as a call to the function ppe (lowercase).
Therefore, SHOW WHERE ANY CALLS ppe wi l l  pr int  out al l
possible parenthesis errors. When MasterScope finds a possible
parenthesis error in the course of analyzing a funct ion
def ini t ion, rather than pr int ing the usual " ." ,  i t  pr ints out a "?"
instead. MasterScope notes functions called with keywords they
do not accept as cal ls to ppe.

[i n MasterScope tem pl ate]

The expression occuring at this locat ion is not evaluated.

Ii n MasterScope tem pl ate]

A var iable appearing at this place is set.

Ii n MasterScope template]

The value of this expression is smashed.

Ii n MasterScope template]

ls used as a predicate (that is, the only use of the value of the
expression is whether i t  is NIL or non-NlL).

[i n MasterScope tem plate]

ls used as a property name. lf the value of this expression is of
the form (QUOTE ATOM), MasterScope will note that AIOM is
USED A5 A PROPERTY NAME.

For example, the template for GETPROP is (EVAL PROP . PPE).

Ii n MasterScope tem plate]

Must appear at the end of a template followed by the keywords
the templated function accepts.

For example, the template for CL:MEMBER is (EVAL EVAL
KEYWORDS :TEST :TEST-NOT : KEY).

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 181



MASTERSCOPE

FUNCTION l in Master5cope template]

The expression at this point is used as a funct ional argument-

For example, the template for MAPC is

(SMASH FUNCTIoN FUNCTIoN PPE).

FUNCTIONAL [ in MasterScope template]

The expression at this point is used as a funct ional argument-
This is l ike FUNCTION, except that MasterScope dist inguishes
between funct ional arguments to funct ions which compi le open
from those that do not. For the latter (e.9. SORT and APPLY),
FU NCTIONAL should be used rather than FU NCTION.

EVAL lin MasterScope template]

The expression at this locat ion is evaluated (but not set,  smashed,
tested, used as a funct ional argument,  etc.) .

RETURN [ in Master5cope template]

The value of the funct ion (of which this is the template) is the
value of this expression.

TESTRETURN [ in Master5cope template]

A combinat ion of TEST and RETU RN: l f  the value of the funct ion
is non-NlL, then i t  is returned. For instance, a one-element COND
clause is this way.

EFFECT [in MasterScope template]

The expression at this locat ion is evaluated, but the value is not
used. (That is, it is evaluated for its side effect only.)

FETCH [in MasterScope template]

,A,n atom at this location is a field which is fetched.

REPLACE [ in Master5cope template]

An atom at this locat ion is a f ie ld which is replaced.

RECORD [ in MasterScope template]

An atom at this location is used as a record name.

CREATE [in MasterScope template]

An atom at this location is a record which is created.

BIND [ in MasterScope template]

An atom at this locat ion is a var iable which is bound.

CALL [in Master5cope template]

An atom at this locat ion is a funct ion which is cal led.

CLISP [ in Master5cope template]

An atom at this locat ion is used as a CLISP word.

! [in MasterScope template]

This atom, which can only occur as the f i rst  element of a
template, allows you to specify a template for the CAR of the

182 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

function form. lf ! doesn't appear, the CAR of the form is treated
as i f  i t  had a CALL specif ied for i t .  In other words, the templates
(. .  EVAL) and (!  CALL..  EVAL) are equivalent.

l f  the next atom after a !  is NlL, this specif ies that the funct ion
name should not be remembered.

For example,  the template for  AND is ( !  NlL. .  TEST RETURN),
which means that i f  you see an AND, don't  remember i t  as being
cal led. This keeps the MasterScope data base from being
cluttered by too many uninteresting relations, MasterScope also
throws away relat ions for COND, CAR, CDR, and a couple of
others.

Special Forms

ln addit ion to the above atoms that occur in templates, there are
some special  forms which are l ists keyed by their  CAR.

.. TEMPLATE [in Master5cope template]

Any part of a template may be preceded by the atom .. (two
periods) which specif ies that the template should be repeated an
indef ini te number (A/> -  0) of  t imesto f i l l  out the expression.

For example, the template for COND might be

(. .  (TEST EFFECT RETURN))

whi le the template for SELECTQ is

(EVAL (NIL EFFECT RETURN) RETURN).

(Although Master5cope "throws away" the relations for COND,
i t  makes sense to template COND because there may be
important information within the arguments of COND.)

(BOTH TEMPLATE| TEMPLATE2) [i n MasterScope tem plate]

Analyze the current expression twice, using the each of the
templates in turn.

(lF EXPRESSTON TEMPLATE 1 TEMPLATE2) Ii n MasterScope tem plate]

Evaluate EXPRESSTON at analysis t ime (the var iable EXPR wi l l  be
bound to the expression which corresponds to the lF),  and i f  the
result is non-Nll, use TEMPLATE\, otherwise TEMPLATE2. lf
EXPRESSION is a literal atom, it is APPLYd to EXPR.

For example,

(  rF LrsrP (RECORD FETCH) FETCH)

specif ies that i f  the current expression is a l ist ,  then the f i rst
element is a record name and the second element a f ie ld name,
otherwise i t  is a f ie ld name.

(@ EXPRFORM TEMPLATEFORM) Ii n MasterScope tem pl ate]

Evaluate EXPRFORM giving EXPR, evaluate TEMPLATEFORM
giving TEMPLATE. Then analyze EXPR with TEMPLATE. @ lets
you compute on the fly both a template and an expression to
analyze with i t .  The forms can use the var iable EXPR, which is
bound to the current expression.

LISP LIBRARY MODULES, MEDLEY RELEA,sE, MASTERSCOPE 183



MASTERSCOPE

(MACRO . MACRO)

(GETTEMPLATE FM

Returns the current template of FN.

(SETTEM PLATE FAl TE M PLATE')

[in MasterScope template]

IFunction]

IFunction]

MACRO is interpreted in the same way as macros (see /RM) and
the result ing form is analyzed. l f  the template is the atom
MACRO alone, MasterScope will use the MACRO property of the
funct ion i tsel f .  This is useful  when analyzing code which
contains cal ls to user-def ined macros. l f  you change a macro
property (e.9. by editing it) of an atom which has template of
MACRO, MasterScope wi l l  mark any funct ion which used that
macro as needing to be reanalyzed.

Some examples of templates:

Funct ion: Template:

DREVERSE (SMASH PPE )

AND ( !  NrL TEST RETURN)

MAPCAR (EVAL FUNCTI0N FUNCTI0N)

coND (!  NrL ( IF CDR (TEST EFFECT
RETURN) (TESTRETURN PPE)))

Templates may be changed and new templates def ined using the
fol lowing funct ions:

Changes the template for the function FN and returns the old
value. l f  any functions in the data base are marked as call ing FN,
they wil l  be marked as needing reanalysis.

Updating the MasterScope Data Base

MasterScope is interfaced to the editor and file manager so that
it  notes whenever a function has been changed, either through
edit ing or loading in a new definit ion. Whenever a command is
given which requires knowing the information about a specif ic
function, i f  that function has been noted as being changed, the
function is automatical ly reanalyzed before the command is
interpreted. l f  the command requires that al l  the information in
the data base be consistent (e.9., you ask WHO CALLS X) then all
functions which have been marked as changed are reanalyzed.

184 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

as Entries
(MASTERSCOPE COM MAN D-) IFunction]

Top level entry to MasterScope. lf COMMAND is NtL, will enter
into an Execut ive in which you may enter commands. l t
COMMAND is not NlL, the command is interpreted and
MASTERSCOPE wi l l  return the value that would be pr inted by the
command.

Note that only the quest ion commands return meaningful
values.

(CALLS F N USE DATAEASF-) lFunctionl

FNcan be a funct ion name, a def ini t ion, or a form.

Note: CALLS wi l l  a lso work on compi led code. CALLS returns a
l ist  of  four elements:

Funct ions cal led by FN
Variables bound in FN
Variables used freely in FN
Variables used global ly in FN

For the purpose of CALLS, variables used freely which are on
GLOBALVARS or have a property GLOBALVAR value T are
considered to be used globally. lf USEDATABASE is NIL (or FN is
not a symbol), CALLS will perform a one-time analysis of FN.
Otherwise ( i .e.  i f  USEDATABASE is non-NlL and FN a funct ion
name), CALLS wi l l  use the information in Masterscope's data
base (FNwil l  be analyzed f i rst  i f  necessary).

(CALLSCCODE FN-) IFunct ion]

The subfunct ion of CALLS which analyzes compi led code.
CALLSCCODE returns a l ist  of  elements:

Funct ions cal led via " l inked" funct ion cal ls (not
implemented in Inter l isp-D)

Funct ions cal  led regular ly

Variables bound in FN

Variables used freely

Variables used global ly

(FREEVARS FN USEDATABASE) IFunction]

Equivalent to (CADDR (CALLS FN USEDATABASE)). Returns the
l ist  of  var iables used freely within FN.

(SETSYNONY M PH RASE MEAN I NG-) IFunct ion]

Defines a new synonym for Master5cope's parser. Both
OLDPHRASE and NEWPHRASE are words or lists of words;
anywhere OLDPHRASE is seen in a command, NEWPHRASE will
be substituted.

For example,

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 185



MASTERSCOPE

(SETSYNCNYM 'GLOBALS ' (VARS IN GLOBALVARS OR
@(GETPR0P X'GL0BALVAR)))

would al low you to refer with the single word GLOBALS to the
set of var iables which are ei ther in GLOBALVARS or have a
GLOBALVAR property.

Functions for Writing Routines

The fol lowing funct ions are provided for users who wish to wri te
their  own rout ines using MasterScope's data base:

(PARSERELATTON RELA ZON) IFunction]

RELATION is a relat ion phrase; e.9.,  (PARSERELATION '(USE
FREELY)). PARSERELATION returns an internal representation
for RELATION. For use in conjunct ion with GETRELATION.

(GETRELATION'TEM RELATION INVERTED) IFunction]

RELATION is an internal representation as returned by
PARSERELATION ( i f  not,  GETRELATION wi l l  f i rst  perform
(PARs E RE LATION RETA I'O'V)).

ITEM is an atom. GETRELATION returns the l ist  of  al l  atoms
which have the given relati on to ITEM.

For example,

(GETRELATI0N 'X ' (USE FREELY) )

returns the l ist  of  var iables that X uses freely.

l f  INVERTED is T, the inverse relat ion is used; e.g.

(GETRELATI0N 'X '  (USE FREELY) T )

returns the l ist  of  funct ions which use X freely.

l f  ITEM is NlL, GETRELATION wi l l  return the l ist  of  atoms which
have REIAIION with any other item; i.e., it answers the question
WHO REIAIIOA/5 ANY.

Note that GETRELATION does not check to see if ITEM has been
analyzed, or that other functions that have been changed have
been reanalyzed.

(TESTRELATION ,rEM RELATION ITEM2INVERTEDI [Function]

ls equivalent to (MEMB ITEM2 (GETRELATION ITEM RELATTON
INVERTED)); that is, it tests if ITEM and |TEM2 are related via
RELATION.

l f  ITEM2 is NlL, the cal l  is equivalent to

(NOT (NULL (GETRELATION /IEM RELATION INVERTED)))

i.e., TESTREL.ATION tests if ITEM has the given RFLAIIOw with
any other i tem.

(MAPRELATTON RELAnON MAPF N) IFunction]

Calls the function MAPFN on every pair of items related via
RELATION. l f  (NARGS MAPF&I) is l , then MAPFN iscal ledonevery
i tem which hasthe given REL,AIIONto anyother i tem.

186 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

(UPDATECHANGED)

Performs (UPDATEFN FN) on
marked as changed.

(MSMARKCHANG ED NAM E TYPE REASONI

(MSN EEDU NSAVE FNs MSG MARKCHANGEFLG) IFunction]

Used to mark funct ions which depend on a changed record
declarat ion (or macro, etc.) ,  and which must be LOADed or
UNSAVEd (see below). F,VS is a list of functions to be marked,
and MSG is a str ing describing the records, macros, etc.  on which
they depend. lf MARKCHA,NGEFLG is non-NlL, each function in
the l ist  is marked as needing reanalysis.

(UPDATEFN FN EVENIFVALI D _) IFunct ion]

Equivalent to the command ANALYZE 'FN; that is,  UPDATEFN
will analyze FN it FN has not been analyzed before or if it has
been changed since the t ime i t  was analyzed. l f  EVENIFVALIDis
non-NlL, UPDATEFN wi l l  reanalyze FN even i f  Masterscope thinks
i t  has a val id analysis in the data base.

lFunctionl

every function which has been

lFunctionl

Mark that NAME has been changed and needs to be reanalyzed.
See MARKASCHANGED in the /RM.

(DUMPDATABASE FNLSN IFunction]

Dumps the current Master5cope data base on the current output
f i le in a LOADable form. l t  FNLST is not NlL, DUMPDATABASE
wil l  only dump the information for the l ist  of  funct ions in FNISL
The variable DATABASECOMS is ini t ia l ized to

((E (DUMPDATABASE)))

Thus, you may merely perform (MAKEFILE
'DATABASE.EXTENSION) to save the current MasterScope data
base. lf a Masterscope data base already exists when a
DATABASE f i le is loaded, the data base on the f i le wi l l  be merged
with the one in memory.

Note: Funct ions whose def ini t ions are di f ferent from their
def ini t ion when the data base was made must be
REANALYZEd i f  their  new def ini t ions are to be not iced.

Note: The DataBaseFns l ibrary module provides a more
convenient way of saving data bases along with the
source f i les to which they correspond.

Notkinq Chanqes that Require Recompilinq

When a record declaration, iterative statement operator or
macro is changed, and MasterScope has noticed a use of that
declarat ion or macro ( i .e.  i t  is used by some funct ion known
about in the data base), MasterScope will alert you about those
funct ions which might need to be recompiled (e.9. they do not

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 187



MASTERSCOPE

(UNSAVEFNS -)

currently have EXPR definit ions).
noticed.

Extra functions may be

For example i f  FOO contains ( fetch (REC X) --) ,  and some
declarat ion other than REC which contains X is changed,
MasterScope wi l l  st i l l  th ink that FOO needs to be
loaded/unsaved. The funct ions which need recompil ing are
added to the l ist  MSNEEDUNSAVE and a message is pr inted out:

The functions FNI , FN2,... use macros which have changed.

Cal l  UNSAVEFNS0 to load and/or unsave them.

In this si tuat ion, the fol lowing funct ion is useful :

IFunction]

Uses LOADFNS or UNSAVEDEF to make sure that al l  funct ions rn
the l ist  MSNEEDUNSAVE have EXPR def ini t ions, and then sets
MSNEEDUNSAVE to NlL.

Note: l f  RECOMPILEDEFAULT (see /RM) is set to CHANGES,
U NSAVEFNS orints out

"WARNING: you must set RECOMPILEDEFAULT to EXPRS
in order to have these functions recompiled
automatical ly."

ementa on Notes

MasterScope keeps a data base of the relations noticed when
functions are analyzed. The relations are intersected to form
primit ive relationships such that there is l i t t le or no overlap o{
any of the primit ives.

For example, the relation SET is stored as the union of SET LOCAL
and SET FREE. The BIND relat ion is div ided into BIND AS ARG,
BIND AND NOT USE, and SET LOCAL, SMASH LOCAL, etc.
Spli t t ing the relations in this manner reduces the size of the data
base considerably, to the point where it  is reasonable to
maintain a MasterScope data base for a large system of functions
during a normal debugging session.

Each primit ive relationship is stored in a pair of hash tables, one
for the forward direction and one for the reverse.

For example, there are two hash tables, USE AS PROPERTY and
USED AS PROPERTY. To retrieve the information from the data
base, MasterScope performs unions of the hash values.

For example, to answer FOO BINDS WHO, MasterScope wil l  look
in al l  of the tables which make up the BIND relation- The
internal representation returned by PARSERELATION is a list of
dotted pairs of hash tables. To perform GETRELATION requires
only mapping down that l ist,  doing GETHASHs on the
appropriate hash tables and UNlONing the result.

188 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

Hash tables are used for a variety of reasons: storage space is
smal ler;  i t  is not necessary to maintain separate l ists of which
funct ions have been analyzed (a special  table, DOESN'T DO
ANYTHING is maintained for funct ions which neither cal l  other
funct ions nor bind or use any var iables);  and accessing is
relat ively fast.  Within any of the tables, i f  the hash value is a l ist
of one atom, then the atom itself, rather than the list, is stored as
the hash value. This also reduces the size of the data base
signif icant ly.

xample

!ample Session

The following illustrates some of the MasterScope facilities.
50 ANALYZE FUNCTIONS ON RECORD

NIL
51-.  I 'JHO CALLS RECFIELDLOOK
(RECFTELDLooK ACCESSDEF ACCESSDEF2 EDTTREC)
52_. EDIT WHERE ANY CALL RECFIELDLOOK
RECFIELDLOOK:
(RECFTELDLOOK (CDR Y) FrELD)
t tv:
5*OK
ACCESSDEF :
(RECFIELDL00K DECLST FIELD VARl)
6*0K
(RECTTELDLOOK USERRECLST FrELD)
7*N VAR1
8*0K
ACCESSDEF2 :
(RECFIELDLOoK (RECoRD.SUBDECS TRAN) FrELD)
t tv:
(RECFTELDL00K (RECoRD.SUBDECS TRAN) FrELD)
9*N (CAR TArLI
10*0K
EDITREC:
(RECFIELDLooK USERRECLST (CAR EDTTRECX))
11*OK
NIL
53-.  I IHO CALLS ERROR

( EDTTREC )
54-.  SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF
( i  nve r ted t  ree )

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 189



MASTERSCOPE

Event 50

Event 51

Statement 52

1. RECFIELDLOOK RECFIELDLOOK

2. ACCESSDEF

3. ACCESSDEFz ACCESSDEF2

4. ACCESSDEF

5.
RECORDCHAIN ACCESSDEF

NIL
55 WHO CALLS WHO IN /FNS

RECORDSTATEMENT /RPLNODE

RECORDECLl _- /NCONC, /RPLACD, /RPLNODE

RECREDECLAREl /PUTHASH

UNCLISPTRAN _- /PUTHASH, /RPLNODE2

RECORDWORD --  /RPLACA

RECORD1 /RPLACA, /SETTOPVAL

EDITREC --  /SETTOPVAL

You direct that the funct ions on f i le RECORD be analyzed. The
leading period and space specify that this l ine is a MasterScope
command. Masterscope pr ints a greet ing and prompts with
Within the top- level Execut ive of MasterScope, you may issue
MasterScope commands, programmer's assistant commands,
(e.g.,  REDO, FIX),  or run programs. You can exi t  f rom the
Master5cope Execut ive by typing OK. The funct ion "."  is def ined
as a Nlambda NoSpread funct ion which interprets i ts argument
as a MasterScope command, Executes the command and returns-

Master5cope pr ints a"."  whenever i t  ( re)analyzes a funct ion, to
let  you know what i t  is happening. The feedback when
MasterScope analyzes a funct ion is control led by the f lag
MSPRINTFLG: i f  MSPRINTFLG is the atom "." ,  MasterScope wi l l
pr int  out a period. ( l f  an error in the funct ion is detected, "?" is
pr inted instead.) l f  MSPRINTFLG is a number N, MasterScope wi l l
pr int  the name of the funct ion i t  is analyzing every lVth funct ion.
l f  MSPRINTFLG is NlL, MasterScope won't  pr int  anything. Ini t ia l
set t ing is " ." .

Note that the function name is printed when MasterScope starts
analyzing, and the comma is pr inted when i t  f in ishes.

You ask which funct ions cal l  RECFIELDLOOK. MasterScope
responds with the l ist .

You ask to edit  the expressions where the funct ion
RECFIELDLOOK is cal led. Masterscope cal ls EDITF on the
funct ions i t  had analyzed that cal l  RECFIELDLOOK, direct ing the
editor to the appropriate expressions. You then edit some of
those expressions. In this example, the teletype editor is used. l f
DEdit  is enabled as the pr imary editor,  i t  would be cal led to edit
the appropriate funct ions.

Next you ask which funct ions cal l  ERROR. Since some of the
funct ions in the data base have been changed, MasterScope
reanalyzes the changed def ini t ions (and pr ints out . 's for each
funct ion i t  analyzes).  MasterScope responds that EDITREC is the
only analyzed funct ion that cal ls ERROR.

r90

Statement 53

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MASTERSCOPE

Statement 54

Statement 55

You ask to see a map of the ways in which RECFIELDLOOK is
called from ACCESSDEF. A tree structure of the calls is displayed.

You then ask to see which functions call  which functions in the
list /FN5. MasterScope responds with a structured printout of
these relations.

SHOW PATHS

1 .  MSPARSE
2.
3.
4.
5.
6.
7.
8.
9.
{5}
10.
11.
72.
13.
74.
15.

The command SHOW PATHS FROM MSPARSE wi l l  pr int  out the
structure of MasterScope's parser:

MSINIT MSMARKINVALID

I MSINITH MSINITH
MSINTERPRET MSRECORDFILE

MSPR I  NTWORDS
PARSECOMMAND GETNEXTWORD CHECKADV

I PARSERELATION {a}
I  PARSESET {b}

PARSEOPTI0NS {c}
MERGECONJ GETNEXTWORD

GETNEXTWORD {5}
FIXUPTYPES SUBJTYPE

I oBJTYPE
FIXUPCoNJUNCTToNS MERGECoNJ {9}

MATCHSCORE
MSPRINTSENTENCE

overf low -  a
16. PARSERELATION
17.

GETNEXTWORD {5}
CHECKADV

overf low -  b
19. PARSESET
20.
27.
22-

PARSESET
GETNEXTWoRD {5}
PARSERELATTON {6}
SUBPARSE GETNEXTWoRD t5)

overf low -  c
23. PARSEOPTTONS GETNEXTWoRD {5}
24. PARSESET {1s}

This example shows that the funct ion MSPARSE cal ls MSlNlT,
MSINTERPRET, and MSPRINTSENTENCE. MSINTERPRET in turn
cal ls MSRECORDFILE, MSPRINTWORDS, PARSECOMMAND,
GETNEXTWORD, FIXUPTYPES, and FIXUPCONJUNCTIONS. The
numbers in braces {} after a function name are backward
references: they indicate that the tree for that function was
expanded on a previous line. The lowercase letters in braces are
forward references: they indicate that the tree for that function

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 19r



MASTERSCOPE

will be expanded below, since there is no more room on the line.
The vertical bar is used to keep the output aligned.

192 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE



MATCH
Match provides a fairly general pattern match facility that ailows
you to specify certain tests that would otherwise be clumsy to
write, by giving a pattern which the datum is supposed to match.

Essential ly, you write "Does the (expression) X look l ike (the
pattern) P?"

For example, (MATCH X WITH (& 'A -- 'B)) asks whether the
second element of X is an A, and the last element a B-

DWIM must be enabled.

Load MATCH.LCOM from the l ibrary.

(MATCH OBJ ECT W fi H PATTE RN) [CLl5P operator]

MAIChES ThE OBJECT With thE PATTERN.

The implementat ion of the matching is performed by computing
(once) the equivalent Lisp expression which wi l l  perform the
indicated operation, and substituting this for the pattern (rather
than by invoking each t ime a general  purpose capabi l i ty such as
that found in the Al languages FLtP or PLANNER).

For example, the translat ion of
(MATCH X WITH (& rA --  'B) )  is :
(AND (EQ (CADR x) 'A)

(Ea (cAR (LAST (CDDR x)))  'B))

Thus the pattern match facility is really a pattern match compiler,
and the emphasis in i ts design and implementat ion has been
more on the efficiency of object code than on generality and
sophist icat ion of i ts matching capabi l i t ies. The goal was to
provide a faci l i ty that could and would be used even where
eff ic iency was paramount,  e.g.,  in inner loops. Wherever
possible, already exist ing Lisp funct ions are used in the
translat ion, e.9.,  the translat ion of ($ 'A g) uses MEMB, ($ ( 'A $) $)
uses ASSOC, etc.

The syntax for pattern match expressions is (MATCH FORM WITH
PATTERN), where PATTERN is a list as described below. tI FORM
appears more than once in the translation, and it is not either a
variable or an expression that is easy to (re)compute, such as

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH r93



MATCH

PATLISPCHECK

PATVARDEFAULT

(CAR Y), (CDDR Z),  etc. ,  a dummy variable wi l l  be generated and
bound to the value of FORM so that FORM is not evaluated a
mult ip le number of  t imes-

For example, the translat ion of
(MATCH ( F00 x) wITH ($ 'A $) )  iss imply
(MEMB 'A (rO0 x)) ,
whi le the translat ion of
(MATCH (FoO X) WITH ( 'A 'B --))  is :

IPRoG ($$2)
(  RETURN

(AND (EQ (CAR (SETQ $$2 (F00 x)))  'A)
(Ea (CADR $$2) 'Bl

In the interests of efficiency, the pattern match compiler assumes
that al l  l ists end in NlL, i .e. ,  there are no LISTP checks inserted in
the translat ion to check tai ls.

For example, the translat ion of
(MATCH X WITH ( 'A & --)  )  is
(AND (E0 (CAR x) (OuOre n; ;  (CDR x)) ,
which wil l  match with (A B) as well as (A . B).

Similarly, the pattern match compiler does not insert LISTP checks
on elements, e.9.,
(MATCH X WITH (( 'A --)  - - ) )  t ranslatessimplyas
(EQ (CAAR x) 'A),
and
(MATCH X WITH (($1 $1 --)  - - ) ) t ranslatesas
(CDAR x).

Note that you can explicit ly insert LISTP checks yourself by using
@, as described below, e.g.,

(MATCH X WITH ( ($1 $1 --)@LISTP --)  )  t ranslatesas
(cDR (LTSTP (CAR x))) .

lVariablel

The insertion of L|STP checks for ELEMENIS is controlled by the
variable PATLISTPCHECK. When PATLISTPCHECK is T, LISTP
checks are inserted, e.9.,

(MATCH X U/ITH (( 'A --)  - - ) ) t ranslatesas:
(E0 (cAR (LrSTp (CAR (LrSTp x)))) 'A).

PATLISTPCHECK is init ial ly NlL. l ts value can be changed within a
particular function by using a local CLISP declaration (see /RM).

[Variable]

Controls the treatmenL of IATOM patterns (see below).

l f  PATVARDEFAULT is '  or QUOTE, IATOM is treated the same as
'ATOM.

lf PATVARDEFAULT is = or EQUAL, same as = ATOM.

lf PATVARDEFAULT is = = or EQ, same as = = ATOM.

194 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH



MATCH

lf PATVARDEFAULT is _ or SETQ, same as ATOM &.

PATVARDEFAU LT is ini t ia l ly '  (quote).

PATVARDEFAULT can be changed within a part icular funct ion by
using a local CLISP declarat ion (see /RM).

Note: Numbers and str ings are always interpreted as though
PATVARDEFAULT were =, regardl€ss of its setting. Ee,
MEMB, and A55OC are used for comparisons involving
smal l  integers.

Note: Pattern match expressions are translated using the DWIM
and CLISP faci l i t ies, using al l  CLISP declarat ions in effect
(standard/fasVu ndoable; see /RM).

Pattern Elements

A pattern consists of a list of pattern elements. Each pattern
element is said to match ei ther an element of a data structure or
a segment.

For example, in the TTY editor's pattern matcher (see /RM), "--"
matches any arbi trary segment of a l ist ,  whi le & or a subpattern
match only one element of a l ist .  Those patterns which may
match a segment of a list are called segment patterns; those that
match a single element are cal led element patterns.

Element Patterns

$1 or&
.EXPRESSION

=FORM

= =FORM

ATOM

(PATTERNI ... PATTERN n)

ELEMENT-PATTERN@FN

There are several types of element patterns, best given by their
syntax:

Matches an arbi trary element of a l ist .

Matches only an element which is equal to the given expression
€.g. , 'A, ' (A B).

EQ, MEMB, and ASSOC are automatical ly used in the translat ion
when the quoted expression is atomic, otherwise EeUAL,
MEMBER, and SASSOC.

Matches only an element which is EQUAL to the value of FORM;
€.9. ,  = X, = (REVERSE Y).

Same as =, but uses an EQ check instead of EQUAL.

The treatment depends on setting of PATVARDEFAULT (see
above).

Matches a list which matches the given patterns; e.g.,
(& &),  (-- 'A).

Matches an element if ELEMENT-PATTERN matches it, and FN
(name of a funct ion or a LAMBDA expression) appl ied to that
element returns non-NlL.

For example, &@NUMBERP matches a number, and ( 'A --)@FOO
matches a l ist  whose f i rst  element is A and for which FOO appl ied
to that l ist  is non-NlL

For simple tests, the function-object is applied before a match is
attempted with the pattern, e.9.,

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 195



MATCH

((--  'A --)@LISTP --) t ranslatesas
(AND (LrsTp (CAR x) )  (MEMB 'A (CAR x) )  ) ,
not the other way around. FN may also be a FORM in terms of
the var iable @, e.9. ,  &@(EQ @:) is equivalent to = 3.

Matches any arbi trary element.  l f  the ent ire match succeeds, the
element which matched the * wi l l  be returned as the value of the
match.

Note: Normal ly,  the pattern match compi ler constructs an
expression whose value is guaranteed to be non-NlL i f
the match succeeds and NIL i f  i t  fa i ls.  However,  i f  a *

appears in the pattern, the expression generated could
also return NIL i f  the match succeeds and * was matched
to NlL.

For example,
(  MATCH X WITH ( 'A *  - -  )  )  t ranslates as
(AND (EQ (CAR x) 'A) (CADR x)) ,
so i f  X is equal to (A NIL B) then (MATCH X WITH ( 'A * -))  returns
NIL even though the match succeeded.

Matches an element i f  the element is not (-)  matched by
ELEMENT-PATTERN, €.9., -'A, - = X, -(-- 'A --).

(*ANY* ELEMENT.PATTERN ELEMENT.PATTERN ...)

Matches if any of the contained patterns match.

. ELEMENT-PATTERN

Segment Patterns

$ or --  Matches any segment of a l ist  ( including one of zero length).

The difference between $ and - is in the type of search they
generate.

For example,
(MATCH X WITH ($ 'A 'B $)) t ranslatesas
(EQ (CADR (MEMB 'A X))  'B),whereas
(MATCH X WITH (--  'A 'B $)) t ranslatesas:

Is0ME x (FUNCTToN (LAMBDA ($$2 $$1)
(AND (EQ $$2 'A)

(Ea (cADR $$1) 'Bl

Thus, a paraphrase of  ($ 'A'B $) would be " ls B the element
following the first A?", whereas a paraphrase of (-- 'A 'B $)
would be "ls there any A immediately fol lowed by a B?"

Note that the pattern employing $ wil l  result in a more eff icient
search than that employing --. However, ($ 'n 'e g) wil l  not
match with (X Y ZAM OA B C),  but(-- 'A 'B g) wi l l .

Essential ly, once a pattern fol lowing a g matches, the g never
resumes searching, whereas -- produces a translation that wil l
always continue searching unti l  there is no possibi l i ty of success.
However, i f  the pattern match compiler can deduce from the
pattern that continuing a search after a particular failure cannot
possibly succeed, then the translations for both - and $ wil l  be
the same.

196 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH



MATCH

For example, both
(MATCH X WITH ($ 'A $3 $))and
(MATCH X WITH (--  'A $3 --  )  )  t ranslate as
(CDDDR (MEMB (QUOTE A) x))
because i f  there are not three elements fol lowing the f i rst  A,
there certainly wi l l  not be three elements fol lowing subsequent
A's,  so there is no reason to cont inue searching, euen for - .

Simi lar ly,  ($ 'A $ 'B g) and (--  'a --  'B -)  are equivalent.

$2, $3, etc. Matches a segment of the given length.

Note that $ 1 is not a segment pattern.

t'ELEMENT-PATTERN Matches any segment which ELEMENT-IATTERN would match as
a l ist .

For example, i f  the value of FOO is (A B C), I  = FOO wi l l  match the
segment. . .ABC-. .etc.

Note: s ince !  appearing in front of  the last pattern specif ies a
match with some tai l  of  the given expression, i t  a lso
makes sense in this case for a I  to appear in front of  a
pattern that can only match with an atom, e.g.,  ($2 l ,A)
means match if CDDR of the expression is the atom A.

Simi lar ly,

(MATCH X WITH ($ !  'A))  t ranslatesto
(EQ (CDR (LAST X)) 'A).

IATOM The treatment depends on setting of pATVARDEFAULT.

l f  PATVARDEFAULT is '  or eUOTE, same as t ,ATOM (see above
discussion).

lf PATVARDEFAULT is = or EQUAL, same as | = ATOM.

lf  PATVARDEFAULT is = = or EQ, same as |  = -  ATOM.

lf PATVARDEFAU LT is _ or SETe, same as ATOM _i.
The atom "."  is t reated exact ly l ike "1".  In addit ion, i f  a pattern
ends in an atom, the "."  is f i rst  changed to " !" ,  e.g.,  ($. t  .  A) and
($t  lA) are equivalent,  even though the atom "."  does not
expl ic i t ly appear in the pattern.

One except ion where "."  is not t reated l ike " l"  is when
preceding an assignment does not have the special
interpretat ion that "  !"  has preceding an assignment (see below).

For example,

(MATCH X WITH ( 'A F00_'B )  )  t ranslates as:
(AND (E0 (CAR x) 'A)

(EO (CDR X) 'B)
(SETQ Foo (cDR x)))

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 197



MATCH

S E G M E NT- P ATT E RN @ F U N CT I O N. O BJ E CT

Assignments

but
(MATCH X WITH ( 'A !  F00_'B))  t ranslatesas:
(AND (Ea (CAR x) 'A)

(NULL (CDDR x) )
(E0 (CADR x) 'B)
(sETQ Foo (cDR x)))

Matches a segment i f  the segment-pattern matches i t ,  and the
funct ion object appl ied to the corresponding segment (as a l ist)
returns non-NlL.

For example, ($@COoR 'D $) matches (A B C D E) but not (A B D
E), s ince CDDR of (A B) is NlL.

Note: An @ pattern appl ied to a segment wi l l  require
computing the corresponding structure (with LDIFF) each
t ime the predicate is appl ied (except when the segment
in quest ion is a tai l  of  the l ist  being matched).

Any pattern element may be preceded by "VARIABLE ",
meaning that i f  the match succeeds ( i .e. ,  everything matcl ies),
VARIABLE is to be set to the thing that matches that pattern
element.

For example, i f  X is (A B C D E),  (MATCH X WITH ($2 Y $3)) wi l l
set Y to (C D E).

Note that assignments are not performed unt i l  the ent ire match
has succeeded, so assignments cannot be used to specify a search
for an element found earl ier in the match, e.9.,  (MATCH X WITH
(Y $1 = Y -))  wi l l  not match with (A A B C . . . ) ,  unless, of  course,
thilvalue of Y was A before the match started. This type of
match is achieved by using place-markers, descr ibed below.

l f  the var iable is preceded by a ! ,  the assignment is to the tai l  of
the l ist  as of that point in the pattern, i .e. ,  that port ion of the l ist
matched by the remainder of the pattern.

For example, i f  X is (A B C D E),  (MATCH X WITH ($ !Y 'C 'D $))
sets Y to (C D E),  i .e. ,  CDDR of X. ln other words, when I  precedes
an assignment, it acts as a modifier to the , and has no effect
whatsoever on the pattern itself, e.g., (MATCH X WITH ('A 'B))
and (MATCH X WITH ( 'A !FOO 'B)) match ident ical ly,  and in the
latter case, FOO will be set to CDR of X.

Note: " PATTERN-ELEMENT and !* PATTERN-ELEMENT are
a-cceptable, e.g.,

(MATCH X t tJITH ($ 'A *_( 'B --)  - - ) )  t ranslatesas:

IPR0c ($$2) (RETURN
(AND (EQ (CAADR (SETQ $$2 (MEMB'A x)))  'B)

(CADR $$21

198 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH



MATCH

Place Markers

Variables of the form #N, where N is a number, are cal led place
markers, and are interpreted specially by the pattern match
compiler.  Place markers are used in a pattern to mark or refer to
a part icular pattern element.  Funct ional ly,  they are used l ike
ordinary var iables, i .e. ,  they can be assigned values, or used
freely in forms appearing in the pattern.

For example,

(MATCH x l ' , r rH (#1_$1 =(ADD1 #1)))

wi l l  match the l ist  (2 3).

However,  they are not real ly var iables in the sense thatthey are
not bound, nor can a funct ion cal led from within the pattern
expect to be able to obtain their  values. For convenience,
regardless of the setting of PATVARDEFAULT, the first
appearance of a defaulted place-marker is interpreted as though
PATVARDEFAULT were _.
Thus the above pattern could have been written as

(MATCH X WITH ( 1 =(ADD1 1))) .

Subsequent appearances of a place-marker are interpreted as
though PATVARDEFAULT were = .

For example,

(MATCH X WITH (#7 #1 --)) isequivalentto
(MATCH X WITH (#1_$1 =#1 --)) ,andtranslatesas
(AND (CDR x) (EQUAL (cAR x) (CADR x)) .

Note that (EQUAL (CAR X) (CADR X)) would incorrect ly match
with (NlL).

Replacements

The construct PATTERN-ELEMENT FORM specifies that if the
match succeeds, the part of the l-ata that matched is to be
replaced with the value of FORM.

Forexample,  i f  X =(ABCD E),(MATCHXWTTH ($'C$1 ygt))
wi l l  replace the third element of X with the value of y.  As with
assignments, replacements are not performed until after it is
determined that the ent ire match wi l l  be successful .

Replacements involving segments spl ice the corresponding
structure into the l ist  being matched, e.9.,  i f  X is (A B C D E F) and
FOO is (1 2 3),  af terthe pattern ( 'A $ FOO 'D g) is matched with
X, X will be (A 1 2 3 D E F), and FOO wJil be Ee to CDR of X, i.e., (l
23DEF).

Note that ($ FOO FIE $) is ambiguous, since i t  is not c lear
whether FOO or f t f  is the pattern element,  i .e-,  whether
specif ies assignment or replacement.

For example, i f  PATVARDEFAULT is - ,  this pattern can be
interpreted as ($ FOO = FIE $),  meaning search for the value of

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 199



MATCH

FlE, and i f  found set FOO to i t ,  or ($ = FOO FIE $) meaning
search for the value of FOO, and if found, storFthe value of FIE
into the corresponding posit ion. In such cases, you should
disambiguate by not using the PATVARDEFAULT opt ion, i .e. ,  by
speci fy ing'or =.

Note: Replacements are normally done with RPLACA or
RPLACD. You can specify that /RPLACA and /RPLACD
should be used, or FRPLACA and FRPLACD, by means of
CLISP declarat ions (see /RM).

Reconstruction

You can specify a value for a pattern match operation other than
what is returned by the match by writing (MATCH FORMI WITH
PATTERN = > FORM2).

For example,
(MATCH X t tJITH (F00 $ 'A --)  =) (REVERSE F00))
translates as:

IPRoG ($$2)
(  RETURN

( coND ( (  SETQ $$2 (  MEMB 'A x )  )
(SETQ F00 (LDTFF x $2))
(  REVERSE F00l

Place markers in the pattern can be referred to from within
FORM, e.g-, the above could also have been written as

(MATCH X t l l lTH ( !#1 'A --)  =) (REVERSE #1)) .

l f  -> is used in place of - >, the expression being matched is
also physical ly changed to the value of FORM.

For example,
(MATCH X WITH (#1 'A l#2) ->
would remove the second element from X, if it were equal to A.

ln general, (MATCH FORMI WITH PAITFRAI -> FORM2I is
translated so as to compute FORM2 if the match is successful, and
then smash its value into the first node of FORM|. However,
whenever possible, the translation does not actually require
FORM2 to be computed in its entirety, but instead the pattern
match compiler uses FORM2 as an indication of what should be
done to FORMT .

For example,
(MATCH X WrTH (#r
translates as
(AND (EQ (CADR x) 'A)

'A t#2) ->

(RPLACD x (CDDR x))) .

200 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH



MATCH

Limitations

The pattern match faci l i ty does not contain some of the more
esoteric features of other pattern match languages, such as
repeated patterns, disjunctive and conjunctive patterns,
recursion, etc. However, you can be confident that what
faci l i t ies i t  does provide wi l l  result  in Lisp expressions comparable
to those you would generate by hand.

(MATCH X WrTH (--  ,A --))

--  matches any arbi trary segment.  'A matches only an A, and the
second again matches an arbi trary segment;  thus this
translates to (MEMB 'A X).

(MATCH X wrTH (--  'A))

Again, --  matches an arbi trary segment;  however,  s ince there is
no -- after the 'A, A must be the last element of X. Thus this
translatesto:  (EQ (CAR (LAST X)) 'A).

(MATCH X WITH ( 'A 'B 'C $3 --))

CAR of X must be A, and CADR must be B, and there must be at
least three elements after the first C, so the translation is:

(AND (EQ (CAR x) 'A)
(EQ (CADR x) 'B)
(CDDDR (MEMB 'C (CDDR x))))

(MATCH X WrTH (( 'A 'B) 'C Y_$1 $))

Since ( 'A 'B) does not end in $ or -- ,  (CDDAR X) must be NtL. The
translat ion is:

(  coND
(  (AND EQ (CAAR x) 'A)

EQ (CADAR X) 'B)
NULL (CDDAR x))
EQ (CADR x) 'C)

(  SETQ

(MATCH X WITH (#7 '

CDDR x))
Y (CADDR x))  T))

A $ 'B 'C #1 $))

#1 is impl ic i t ly assigned to the f i rst  element in the l ist .  The $
searches for the first B following A. This B must be followed by a
C, and the C by an expression equal to the first element. The
translat ion is:

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 201



MATCH

IPRoc ($$2)

(  RETURit

(Ai tD (EQ (CADR X) 'A)

(EQ ICADR (SETQ $$2 (MEMB 'B (CDDR x]  'C)

(CDDR $$2)

(EQUAL (CADDR $$2) (CAR xl

(MATCH X t ' r ITH (#1 'A --  'B 'C #1 $) )

Similar to the pattern above, except that .. specifies a search for
any B followed by a C followed by the first element, so the
translation is:

IAND (EQ (CADR x) 'A)
(soME (CDDR x)

( Fuitcrroi l  ( LAMBDA ( $$2 $$1 )
(AND (EQ $$2 'B)

(E0 (CADR $$1) 'C)
(CDDR $$1)
(EQUAL (CADDR $$1) (CAR X]

202 LISP LIBMRY MODULES, MEDLEY RELEASE, MATCH



MATMULT

Two dimensional graphical  t ransformations, such as rotat ions,
scalings, and translations are conveniently represented as
homogeneous 3-by-3 matr ices, which operate on homogeneous
3-vectors. Si  mi lar ly,  three di  mensional graphical  t ransformations
are convenient ly represented as homogeneous 4-by-4 matr ices,
which operate on homogeneous 4-vectors. MatMult provides
ut i l i t ies for creat ing and manipulat ing such matr ices and vectors,
and takes advantage of microcode support for high-speed 3-by-3
and 4-by-4 matr ix mult ip l icat ion.

Al l  matr ices and vectors in MatMult  are represented as Common
Lisp arrays of element type single-float, so the Common Lisp
array funct ions are suff ic ient to create and access individual
elements of these specialized arrays. However, MatMult provides
convenient wrapper funct ions for most common operat ions on
these arrays.

All the following functions that return arrays accept optional
array arguments. l f  g iven a result  argument,  these funct ions
alter the contents of that argument rather then allocating new
storage. l t  is an error for the opt ional array argument to be not
of element type single-float, or to have incorrect dimensions.

Requirements

MatMult  should be run on an 1109 with a Weitek f loat ing point
chip set,  but is also quite eff ic ient on an 1 186.

lnstallation

Load MATMULT.LCOM from the library.

Matrix Creation Functions

(MAKE-HOMOG ENEOUS-3-VECTOR X v) lFunctionl

Returns a 3-vector of element type single-float. lf X or Y is
provided, then the corresponding element of the vector is set
appropriately,  otherwise i t  defaults to 0.0. The third element of
the vector is always ini t ia l ized to 1.0.

Note: Throughout this text, "set" is used to emphasize that the
value of the result  element is al tered and that no new
storage is allocated to it.

(MAKE-HOMOGENEOUS-3-BY-3 &KEY A00 A01 A10 A20 A21) IFunct ion]

Returns a 3-by-3 matrix of element type single-float. lf a keyword
argument is provided, the corresponding element of the matrix

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 203



MATMULT

is set appropriately,  otherwise entr ies default  to 0.0. The (2 ,2) is
always in i t ia l ized to 1.0.

(MAKE-HOMOCENEOUS-N-BY-3 N &KEY INITIAL-ELEMENN IFunction]

Returns an N-by-3 matr ix of element type single-f loat.  l f  the
keyword argument is provided, al l  the elements in the f i rst  two
columns are set appropriately,  otherwise they default  to 0.0. The
third column is alwavs in i t ia l ized to 1.0.

(MAKE-HOMOGENEOUS-4-VECTOR X Y Z) IFunction]

Returns a 4-vector of element type single-f loat.  l f  X, Y or Z is
provided then the corresponding element of the vector is set
appropriately,  otherwise i t  defaults to 0.0. The forth element of
the vector is always ini t ia l ized to 1.0.

(MAKE-HOMOGENEOUS-4-BY-4 &KEY A00 Aot A02 A03 Ato Al l  A12 A13
A20 A21 A22 A23 A30 A31 Ar2 IFunction]

Returns a 4-by-4 matrix of element type single-float. lf a keyword
arguments is provided, the corresponding element of the matr ix
is set appropriately,  otherwise entr ies default  to 0.0. The (3 ,3) is
always in i t ia l ized to 1.0.

(MAKE-HOMOGENEOUS-N-BY-4 N &KEY INITIAL-ELEMEND IFunction]

Returns an N-by-4 matrix of element type single-float. lf the
keyword argument is provided, al l  the elements in the f irst three
columns are set appropriately, otherwise they default to 0.0. The
forth column is alwavs init ial ized to 1.0.

(TDENTTTY-3-BY-3 RESULn IFunction]

Returns a 3-by-3 ident i ty matr ix.

l f  RESUIf is suppl ied, i t  is s ide effected and returned.

(That is, the storage associated with the optional result
argument is reused for the result, rather than allocating new
storage for the result.)

(l DE NTITY-4-BY -4 RESU Ln

Returns a 4-by-4 identity matrix.
effected and returned.

(ROTATE-3-BY -3 RADTA'Vs RESUI_D IFunction]

Returns a 3-by-3 rotation matrix specified by a counter-clockwise
rotation of RAD|ANS radians. lf RESULT is supplied, it is set and
returned.

(ROTATE-4-BY-4-ABOUT-X RAD'AAI5 RESU Ln IFunction]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation oI RADIANS radians about the X axis. l f
RESULf is supplied, it is set and returned.

(ROTATE-4-BY-4-ABOUT-Y RADIAA/S RESULD lFunctionl

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the y axis. lf
RESULTis supplied, i t  is set and returned.

IFunction]

lf  RESULT is supplied, i t  is side

204 LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT



MATMULT

(ROTATE-4-BY-4-ABOUT -Z RADI ANS RESU Ln IFunct ion]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the Z axis. t f
RFSUIf is supplied, i t  is set and returned.

(scALE-3-BY-3 SX sy RESU Ln IFunct ion]

Returns a 3-by-3 homogeneous scal ing transformation that
scales by a factor of 5X along the X-axis and 5Y along the Y-axis.
l f  RESULf is suppl ied, i t  is set and returned.

(SCALE-4-BY-4 SX SY SZ RESULD IFunction]

Returns a 4-by-4 homogeneous scaling transformation that
scales by a factor of 5X along the X-axis, 5Y along the Y-axis, and
5Z along the Z axis. l f  RESUIf is supplied, i t  is set and returned.

(TRANSLATE-3-BY-3 TX TY RESU LN lFunctionl

Returns a 3-by-3 homogeneous translation that translates by TX
along the X-axis and fY along the Y-axis.  l f  RESULT is suppl ied, i t
is set and returned-

(TRANSLATE-4-BY-4 TXTY TZ RESULD IFunct ion]

Returns a 4-by-4 homogeneous translation that translates by TX
afong the X-axis,  fYalong the Y-axis and TZ along the Z axis.  l f
RESULf is suppl ied, i t  is set and returned.

(PERSPECTTVE-4-BY-4 PX py pZ RESU Ln IFunctionl

Returns a 4-by-4 homogeneous perspective transformation
defined by PX, PY, and PZ. lf RESUIf is supplied, it is set and
retu rned.

Matr ix Mult ip l icat ion Funct ions

lf run on workstations equipped with the extended processor
opt ion, these funct ions make good use of the hardware
f loat ing-point uni t .  The three digi ts at the end of each funct ion's
name describe the dimensions of their  arguments.

Note: The results of the fol lowing matr ix mult ip l icat ion
functions are not guaranteed to be correct unless the
matr ix arguments are al l  di f ferent (Not EQ).

(MATMULT-133 VECTOR MATRTX RESULn IFunct ion]

Returns the inner product of a 3-vector, VECTOR, and a 3-by-3
matr ix,  MATRIX.l f  RESUII is suppl ied, i t  is set and returned.

(MATMU LT-331 MATRTX VECTOR RESU LT) IFunct ion]

Returns the inner product of a 3-by-3 matrix, MATRIX, and a
3-vector,  VECTOR.l f  RESUIf is suppl ied, i t  is set and returned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 205



MATMULT

(MATMU LT-333 MATRTX-I MATRIX-2 RESULD lFunctionl

Returns the inner product of a 3-by-3 matrix, MATRIX-I, and
another 3-by-3 matrix, MATRIX-2. lf RESULT is supplied, it is set
and returned.

(MATMU LT-N33 MATR tx-l MATRIX-2 RESULD IFunction]

Returns the inner product of an N-by-3 matr ix,  MATRIX-I,  and a
3-by-3 matrix, MATRTX-2. lf RESULT is supplied, it is set and
returned.

(MATM U LT-1 44 VECTOR MATRIX RESU LT) lFunctionl

Returns the inner product of a 4-vector, VECTOR, and a 4-by-4
matr ix,  MATR|X.l f  RESUtf is suppl ied, i t  is set and returned.

(MATMU LT-441 MATRIX VECTOR RESULN IFunct ion]

Returns the inner product of a 4-by-4 matr ix,  MATRIX, and a
4-vector, VECTOR. lf RESIJLTissupplied, it is set and returned.

(MATMULT-444 MATRIX.I MATRIX-2 RESU LN IFunction]

Returns the inner product of a 4-by-4 matrix, MATRIX-I, and
another 4-by-4 matrix, MATRIX-2.lt  RESULT is supplied, i t  is set
and returned.

(MATMU LT-N44 MATRIX- 1 MATRIX-2 RESU LN IFunction]

Returns the inner product of an N-by-4 matr ix,  MATRIX-I,  and a
a-by-  matr ix,  MATRIX-2. l f  RESULT is suppl ied, i t  is set and
returned.

neous Funct ions

(PROJECT-AND-FlX-3-VECTOR 3-VECTOR 2-VECTOR) lFunctionl

The homogeneous 3-VECTOR is projected onto the X-Y plane,
coerced to integer coordinates (rounding by truncation) and
returned. lf 2-VECTOR is supplied, it is set and returned.

(PROJ ECT-AN D- FIX-N-BY -3 N-3 - M ATRTX N -2- M ATRI X) IFunction]

The homogeneous N-by-3 matrix, N-3-MATRIX, is projected onto
the X-Y plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. l f  N-2-MATRIX is
supplied, i t  is set and returned.

( PROJ ECT-AN D- F I X -4-V ECTO R 4-V E CTO R 2 -V E CTO R) lFunctionl

The homogeneous 4-vector,  -VECTOR, is projected onto the X-Y
plane, coerced to integer coordinates (rounding by truncation)
and returned.lf  2-VECTOR is supplied, i t  is set and returned.

206 LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT



MATMULT

(PROJ E CT-,A N D- F tX -N - B y -4 N -4- M AT R t X N _2_ M ATR| X)

(DEG REES-TO-RADtANS DEG REESI

Returns DEGREES converted to radians.

The homogeneous N-by-4 MATRIX, N-3-MATR|X, is projected
onto the X-Y plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. lf N-2-MATRIX is
supplied, i t  is set and returned.

IFunction]

IFunction]

MatMult is not intended as a general matrix manipulation
package; it is specialized for the 3-by-3 and 4-by-4 cases.

Use CmlFloatArray for more general floating point array
faci l i t ies.

Exampte

(*  ;  "Try (spiral)")

(CL:DEFUN SPIRAL (&oPTIory4l  ( t lJ INDow (cREATEtr l ) )
&AUX
(WIDTH (WINDoWpRop WINDoW'WTDTH))
(Hl ! f - ryrqTH (QUoTTENT t l , rDTH 2))
(  HETcHT (WrNDOWpR0p WrNDow 'HEicHT )  )
(HALF-HETGHT (QUoTTENT HETGHT 2))
(SCALE-FAcT0R (CL:EXP (QUOTIENT' '

7440.0))))  
(CL:LoG (QUOTIENT (MIN wIDTH HEIGHT) 2.0))

(LET (( ! l l l ! -1 ( l ' !4KE-HoMoGENE0us-3-vEcToR 1.0 0.0))
(  LrNE-2 (MAKE-H0M0GENEoUS-3-VECToR ) )
(TEMP (MAKE-H0M0GENEoUS-3-VECToR) )  

"
(P0INTS (CL:MAKE-ARRAY 2) )
(TRANSF0RM (MATMULI: !s3 (ROTATE-3-BY-3 (DEGREES-TO-RADIANS 2.5))

(scALE-3-By-3 SCALE-FACToR SCALE-FACTOR) )  )
. ( IRl lStr4lrgN. (TRANSLATE-3-By-3 HALF-t lJrDTH HALF_HETGHT) )  )(CL:Do ((L-1 LiNE-1)

(  L-2 LrNE-2 )
( I  0 (CL:1+ I)))

( (EQ r 1728))
(MATMULT-133 L-1 TRANSFoRM L-2)
(MATMULT-133 L-2 TRANSLATT0N TEMp)
( pRoJECT-AND-FrX-3-VECToR TEMP poiNTS)
(DRAWLINE HALF-WIDTH HALF-HEIGHT (CL:AREF PoINTS O)

(CL:AREF POINTS 1)

'REPLACE WINDOW)
(CL:RoTATEF L-1 L-2))))

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 207



MATMULT

lThis page intent ional ly lef t  blank]

208 LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT



MINISERVE

MiniServe contains servers for three simple protocols: Time
Service (both PUP and XNS versions) and PUP lD Service. The
servers are intended to run in the background on an 1108 or
1 186 on networks that lack other sources of these services.

Requirements

The t ime must be correctly set on the machine running MiniServe
(see "NS Time Service" below).

Installation

Load MINISERVE.LCOM from the l ibrary.

Either set the var iable NS.TO.PUP.ALIST correct ly,  or make sure
that the var iable NS.TO.PUP.FILE is the name of a f i le containing
a single form which wi l l  be used to set N5.TO.PUP.ALI5T (see
"PUP lD Service" below).

Eval uate (STARTM I N ISERVER).

Functions

(STARTMINISERVE) lFunct ion]

This funct ion has no arguments; i t  adds three background
processes to the environment, one for each of the protocols that
miniserve handles. These processes and protocols are:

\NSTIMESERVER Provides the XNS Time Service
\PUPTIMESERVER Provides the PUP Time Service

\PUP.ID.SERVER Provides the PUP lD Service

XNS Time Service

XNS Time Service answers requests for the t ime using the XNS
Time Protocol.

You must already have set the correct date and time on your
workstat ion, ei ther via one of the instal lat ion ut i l i t ies or by
eval uati ng

(SETTIME "dd-MMM-yy hh:mm: ss" ) .

l f  you are not in the Pacif ic t ime zone, you should also make sure
the following variables are set correctly:

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 209



MINISERVE

\ENDDST

\BEGINDST lVariablel

The ordinal day of the year (1 = January 1, 366 = December 31)
on or before which dayl ight saving t ime starts in your area. Set i t
to 367 i f  your area does not observe dayl ight saving t ime.

lVariablel

The ordinal day of the year on or before which dayl ight saving
t ime ends.

\TIMEZONECOMP [Variable]

The number of hours west of Greenwich; e.9.,  Eastern standard
t ime = 5.

PUP Time Service

PUP Time Service is l ike NS Time Service, but using a PUP
protocol. This service is not required by any Xerox workstation as
long as XNS Time Service is avai lable, but may be of use to other
workstations.

You can disable i t  by evaluat ing

(MovD'NILL' \PUPTIMESERVER).

PUP lD Service

NS-TO.PUP.FILE

NS.TO.PUP.ALIST

PUP lD Service supplies workstations with PUP host numbers,
given their 48-bit XNS host numbers, so that they may
communicate via PUP protocols.

[Variable]

The name of a f i le containing a single form which wi l l  be used to
set NS.TO.PUP.ALIST. Either this var iable or NS.TO.PUP.ALIST
must be set for the PUP lD Service to work-

[Variable]

A l ist which maps a workstation's XNS host number to a pup host
number. Elements of this l ist are dotted pairs of the form:

((NSHoSTNUMBER A B C) PUPNUMBER)

where A, B, C are the three 16-bit components of the
workstation's 48-bit XNS host number (the value of the variable
\MY.NSHOSTNUMBER), and PUPNUMBER is the corresponding
PUP host number to be assigned to the workstation. PUP host
numbers are integers in the range [1,2541, and must be unique
among hosts on a single net.

To set up this l ist correctly you can do the fol lowing on each
workstation which wil l  use the service ( including the workstation
running MiniServe):

1. Decide on a unique PUP host number for this workstation.
l t  must be an integer inthe range 11,2541. For example we'l l
choose PUP Host number 2.

210 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE



MINISERVE

2. Get the workstation's NS host number and add it to the PUP
host number. Evaluate the fol lowing form:

(CONS \MY. NSHOSTN U MB ER YOU RPU PNU M BE R)

Using our chosen PUP host number of "2" and an example
value for \MY.NSHOSTNUMBER the result  might be:

((NSHoSTNUMBER 0 43520 74372) 2)

Back on the workstat ion which is about to run MINISERVE,
insert the dotted pair into NS.TO.PUP.ALIST.

3.

estartinq MiniServe

lf you need to restart MiniServe:

Use the PSW window to kill the three processes that were
started by STARTM I N ISERVE.

Eval uate (STARTM lN ISERVE).

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 211



MINISERVE

[This page intent ional ly lef t  blank]

212 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE


