MASTERSCOPE

MasterScope is an interactive program for analyzing and cross
referencing user programs. It contains facilities for analyzing
user functions to determine what other functions are called, how
and where variables are bound, set, or referenced, and which
functions use particular record declarations. MasterScope can
analyze definitions directly from a file as well as in-memory
definitions.

MasterScope maintains a data base of the results of the analyses
it performs. Via a simple command language, you may
interrogate the data base, call the editor on those expressions in
functions that were analyzed which use variables or functions in
a particular way, or display the tree structure of function calls
among any set of functions.

MasterScope is interfaced with the editor and file manager so
that when a function is edited or a new definition loaded in,
MasterScope knows that it must reanalyze that function.

With the Medley release, MasterScope now understands
Common Lisp defun, defmacro, and defvar.

Requirements
MSANALYZE, MSPARSE, MSCOMMON, MS-PACKAGE
You may also want to make use of Browser, DataBaseFns, and
SEdit or DEdit.

Installation

Load MASTERSCOPE.DFASL and the other .DFASL files from the
library.

MasterScope Command Language

You communicate with MasterScope using an English-like
command language, e.g.,, WHO CALLS PRINT. With these
commands, you can direct that functions be analyzed,
interrogate the MasterScope data base, and perform other
operations. The commands deal with sets of functions, variables,
etc.,, and relations between them (e.g., call, bind). Sets
correspond to English nouns, relations correspond to verbs.

A set of atoms can be specified in a variety of ways, either
explicitly, e.g., FUNCTIONS ON FIE specifies the atoms in
(FILEFNSLST 'FIE), or implicitly, e.g., NOT CALLING Y, where the
meaning must be determined in the context of the rest of the

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 165

MASTERSCOPE

MasterScope Commands

command. Such sets of atoms are the basic building blocks with
which the command language deals.

MasterScope also deals with relations between sets.

For example, the relation CALL relates functions and other
functions; the relations BIND and USE FREELY relate functions
and variables. These relations get stored in the MasterScope
data base when functions are analyzed. In addition,
MasterScope “"knows" about file manager conventions;
CONTAIN relates files and various types of objects (functions,
variables).

Sets and relations are used (along with a few additional words)
to form sentence-like commands.

For example, the command WHO ON ‘FOO USE 'X FREELY will
print out the list of functions contained in the file FOO which use
the variable X freely. The command EDIT WHERE ANY CALLS
‘ERROR wiill call EDITF (see IRM) on those functions which have
previously been analyzed that directly call ERROR, pointing at
each successive expression where the call to ERROR actually
occurs.

The normal mode of communication with MasterScope is via
commands. These are sentences in the MasterScope command
language which direct MasterScope to answer questions or
perform various operations.

MasterScope commands are typed into the Executive window,
preceded by a period () to distinguish them from other
commands to the Exec. MasterScope keywords can be in any
package, so MasterScope commands can be issued in any type of
Exec. The commands may be typed uppercase or lowercase.

Note: Any MasterScope command may be followed by OUTPUT
FILENAME to send output to the given file rather than
the terminal, e.g. WHO CALLS WHO OUTPUT CROSSREF.

ANALYZE SET [MasterScope command]

Analyzes the functions in SET (and any functions called by them)
and includes the information gathered in the data base.
MasterScope will not reanalyze a function if it thinks it already
has valid information about that function in its data base. You
may use the command REANALYZE to force reanalysis.

Note that whenever a function is referred to in a command as a
subject of one of the relations, it is automatically analyzed; you
need not give an explicit ANALYZE command. Thus, WHO IN
MYFNS CALLS FIE will automatically analyze the functions in
MYENS if they have not already been analyzed.

Note also that only EXPR definitions will be analyzed; that is,
MasterScope will not analyze compiled code. If necessary, the
definition will be DWIMIFYed before analysis. If there is no
in-core definition for a function (either in the function definition
cell or an EXPR property), MasterScope will attempt to read in

166

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

the definition from a file. Files which have been explicitly
mentioned previously in some command are searched first. If the
definition cannot be found on any of those files, MasterScope
looks among the files on FILELST for a definition. If a function is
found in this manner, MasterScope will print a message
“(reading from FILENAME)". If no definition can be found at all,
MasterScope will print a message " FN can't be analyzed". If the
function previously was known, the message "FN disappeared!"
is printed.

REANALYZE SET [MasterScope command]

Causes MasterScope to reanalyze the functions in SET (and any
functions called by them) even if it already has valid information
in its data base. This would be necessary if you had disabled or
subverted the file manager; e.g. performed PUTD's to change
the definition of functions.

ERASE SET [MasterScope command]

Erases all information about the functions in SET from the data
base. ERASE by itself clears the entire data base.

SHOW PATHS PATHOPTIONS [MasterScope command]
Displays a tree of function calls. This is described fully in "SHOW
PATHS" below.

SET RELATION SET [MasterScope command]

SETIS SET [MasterScope command]

SET ARE SET [MasterScope command]

These commands have the same format as an English sentence
with a subject (the first SET), a verb (RELATION or IS or ARE), and
an object (the second SET). Any of the SETs within the command
may be preceded by the question determiners WHICH or WHO
(or just WHO alone).

For example, WHICH FUNCTIONS CALL X prints the list of
functions that call the function X.

RELATION may be one of the relation words in present tense
(CALL, BIND, TEST, SMASH, etc.) or used as a passive (e.g., WHO IS
CALLED BY WHO). Other variants are allowed, e.g. WHO DOES X
CALL, IS FOO CALLED BY FIE, etc.

The interpretation of the command depends on the number of
question elements present:

If there is no question element, the command is treated as an
assertion and MasterScope returns either T or NIL, depending on
whether that assertion is true. Thus, ANY IN MYFNS CALL HELP
will print T if any function in MYFNS call the function HELP, and
NIL otherwise.

If there is one question element, MasterScope returns the list of
items for which the assertion would be true.

For example,

MYFN BINDS WHO USED FREELY BY YOURFN

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 167

MASTERSCOPE

prints the list of variables bound by MYFN which are also used
freely by YOURFN.

If there are two question elements, MasterScope will print a
doubly indexed list:

. WHO CALLS WHO IN /FNS

RECORDSTATEMENT -- /RPLNODE
RECORDECL1 -- /NCONC, /RPLACD, /RPLNODE
RECREDECLARE1 -- /PUTHASH
UNCLISPTRAN -- /PUTHASH, /RPLNODE?2
RECORDWORD -- /RPLACA
RECORD1 -- /RPLACA, /SETTOPVAL
EDITREC -- /SETTOPVAL
EDIT WHERE SET RELATION SET [- EDITCOMS] [MasterScope command]

(WHERE may be omitted.) The first SET refers to a set of
functions. The EDIT command calls the editor on each expression
where the RELATION actually occurs.

For example, EDIT WHERE ANY CALL ERROR will call EDITF on
each (analyzed) function which calls ERROR stopping within a
TTY: at each call to ERROR. Currently you cannot EDIT WHERE a
file which CONTAINS a datum, nor where one function CALLS
another SOMEHOW.

EDITCOMS, if given, is a list of commands passed to EDITF to be
performed at each expression.

For example,
EDIT WHERE ANY CALLS MYFN DIRECTLY - (SW 2 3) P

will switch the first and second arguments to MYFN in every call
to MYFN and print the result. EDIT WHERE ANY ON MYFILE CALL
ANY NOT @ GETD will call the editor on any expression involving
a call to an undefined function.

Note that EDIT WHERE X SETS Y will point only at those
expressions where Y is actually set, and will skip over places
where Y is otherwise mentioned.

SHOW WHERE SET RELATION SET [MasterScope command]

Like the EDIT command except merely prints out the expressions
without calling the editor.

EDIT SET [- EDITCOMS] [MasterScope command]

Calls EDITF on each function in SET. EDITCOMS, if given, will be
passed as a list of editor commands to be Executed.

For example,
EDIT ANY CALLING FN1 - (R FN1 FN2)
will replace FN1 by FN2 in those functions that call FN1.

DESCRIBE SET [MasterScope command]

Prints the BIND, USE FREELY and CALL information about the
functionsin SET.

168

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

For example, the command DESCRIBE PRINTARGS might print

out:
PRINTARGS[N,FLG]
binds: TEM,LST, X
calls: MSRECORDFILE, SPACES,PRIN1

called by: PRINTSENTENCE ,MSHELP,CHECKER

This shows that PRINTARGS has two arguments, N and FLG; binds
internally the variables TEM, LST and X; calls MSRECORDFILE,
SPACES and PRIN1; and is called by PRINTSENTENCE, MSHELP,
and CHECKER.

You can specify additional information to be included in the
description. DESCRIBELST is a list each of whose elements is a list
containing a descriptive string and a form. The form is evaluated
(it can refer to the name of the funtion being described by the
free variable FN). If it returns a non-NIL value, the description
string is printed followed by the value. If the value is a list, its
elements are printed with commas between them.

For example, the entry

("types: " (GETRELATION FN '(USE TYPE) T)

would include a listing of the types used by each function.
CHECK SET [MasterScope command]

Checks for various anomalous conditions (mainly in the compiler
declarations) for the files in SET (if SET is not given, FILELST is
used).

For example, this command will warn about:
Variables which are bound but never referenced.

Functions in BLOCKS declarations which aren't on the file
containing the declaration.

Functions declared as ENTRIES but not in the block.

Variables which may not need to be declared SPECVARS
because they are not used freely below the places where
they are bound.

etc.
FOR VARIABLE SET I.S. TAIL [MasterScope command]

This command provides a way of combining CLISP iterative
statements with MasterScope. An iterative statement will be
constructed in which VARIABLE is iteratively assigned to each
element of SET, and then the iterative statement tail 1.S.TAIL is
Executed.

For example,

FOR X CALLED BY FOO WHEN CCODEP DO (PRINTOUT T X
.+, (ARGLIST X) T)

will print out the name and argument list of all of the compiled
functions which are called by FOO.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 169

MASTERSCOPE

MasterScope Relations

CALL

A relation is specified by one of the keywords below. Some of
these "verbs" accept modifiers.

For example, USE, SET, SMASH and REFERENCE all may be
modified by FREELY. The modifier may occur anywhere within
the command. If there is more than one verb, any modifier
between two verbs is assumed to modify the first one.

For example, in
USING ANY FREELY OR SETTING X,

FREELY modifies USING but not SETTING. The entire phrase is
interpreted as the set of all functions which either use any
variable freely or set the variable X, whether or not X is set freely.
Verbs can occur in the present tense (e.g., USE, CALLS, BINDS,
USES) or as present or past participles (e.g., CALLING, BOUND,
TESTED). The relations (with their modifiers) recognized by
MasterScope are:

[MasterScope relation]

Function F1 calls F2 if the definition of F1 contains a form (F2 --).
The CALL relation also includes any instance where a function
uses a name as a function, as in

(APPLY (QUOTE F2) --), (FUNCTION F2), etc.
(CALL and CALLS are equivalent.)

CALL SOMEHOW [MasterScope relation]

USE

SET

SMASH

One function calls another SOMEHOW if there is some path from
the first to the other. Thatis, if F1 calls F2, and F2 calls F3, then F1
CALLS F3 SOMEHOW.

This information is not stored directly in the data base; instead,
MasterScope stores only information about direct function calls,
and (re)computes the CALL SOMEHOW relation as necessary.

[MasterScope relation]

If unmodified, the relation USE denotes variable usage in any
way; it is the union of the relations SET, SMASH, TEST, and
REFERENCE.

[MasterScope relation]
A function SETs a variable if the function contains a form
(SETQ var --), (SETQQ var --), etc.

[MasterScope relation]

A function SMASHes a variable if the function calls a destructive
list operation (RPLACA, RPLACD, DREMOVE, SORT, etc.) on the
value of that variable. MasterScope will also find instances
where the operation is performed on a part of the value of the
variable. For example, if a function contains a form (RPLACA
(NTH X 3) T), it will be noted as SMASHing X.

170

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

If the function contains a sequence (SETQ Y X), (RPLACA Y T),
then Y is noted as being SMASHed, but not X.

TEST [MasterScope relation]

A variable is TESTed by a function if its value is only distinguished
between NIL and non-NIL.

For example, the form (COND ((AND X --) --)) tests the value of X.
REFERENCE [MasterScope relation]
This relation includes all variable usage except for SET.

Note: The verbs USE, SET, SMASH, TEST and REFERENCE may be
modified by the words FREELY or LOCALLY. A variable is
used FREELY if it is not bound in the function at the place
of its use. It is used LOCALLY if the use occurs within a
PROG or LAMBDA that binds the variable.

MasterScope also distinguishes between CALL DIRECTLY and
CALL INDIRECTLY. A function is called directly if it occurs as
CAR-of-form in a normal evaluation context. A function is called
indirectly if its name appears in a context which does not imply
its immediate evaluation, for example (SETQ Y (LIST (FUNCTION
FOO) 3)). The distinction is whether or not the compiled code of
the caller would contain a direct call to the callee.

Note that an occurrence of (FUNCTION FOO) as the functional
argument to one of the built-in mapping functions which
compile openis considered to be a direct call.

In addition, CALL FOR EFFECT (where the value of the function is
not used) is distinguished from CALL FOR VALUE.

BIND [MasterScope relation]

The BIND relation between functions and variables includes both
variables bound as function arguments and those bound in an
internal PROG or LAMBDA expression.

USE AS A FIELD [MasterScope relation]

MasterScope notes all uses of record field names within FETCH,
REPLACE or CREATE expressions.

FETCH [MasterScope relation]

Use of a field within a FETCH expression.

REPLACE [MasterScope relation]
Use of a record field name within a REPLACE or CREATE
expression.

USE AS A RECORD [MasterScope relation]

MasterScope notes all uses of record names within CREATE or
TYPE? expressions. Additionally, in (fetch (FOO FIE) of X), FOO is
- used as a record name.

CREATE [MasterScope relation]

Use of a record name within a CREATE expression.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 171

MASTERSCOPE

USE AS A PROPERTY NAME [MasterScope relation]

MasterScope notes the property names used in expressions such
as GETPROP, PUTPROP, GETLIS, etc., if the name is quoted; e.qg. if
a function contains a form (GETPROP X (QUOTE INTERP)), then
that function USEs INTERP as a property name.

USE AS A CLISP WORD [MasterScope relation]

MasterScope notes all iterative statement operators and user
defined CLISP words as being used as a CLISP word.

CONTAIN [MasterScope relation]
Files CONTAIN functions, records, and variables. This relation is
not stored in the data base but is computed using the file
manager.

DECLARE AS LOCALVAR [MasterScope relation]

DECLARE AS SPECVAR [MasterScope relation]
MasterScope notes internal calls to DECLARE from within
functions.

ACCEPT [MasterScope relation]

SPECIFY [MasterScope relation]

KEYCALL [MasterScope relation]
MasterScope notes keyword arguments of Common Lisp
functions when they are analyzed and when they are called.

FOO ACCEPTS :BAR is true if FOO is a Common Lisp function that
accepts the keyword :BAR. FOO ACCEPTS
&ALLOW-OTHER-KEYS is true if FOO has &ACCEPT-OTHER-KEYS
inits lambda list.

FOO SPECIFIES :BAR is true if FOO is a function that calls any
function with the keyword :BAR; the function in question must
ACCEPT :BAR.

FOO KEYCALLS BAR is true if FOO is a function and calls BAR with
one or more keywords it ACCEPTS.

FLET [MasterScope relation]

LABEL [MasterScope relation]

MACROLET [MasterScope relation]

LOCAL-DEFINE [MasterScope relation]

MasterScope tracks uses of Common Lisp local definition forms
(it currently does not expand them while analyzing them,
however).

FOO FLETS BARis true of FOO is a function with a FLET defining
BAR local to FOO.

LABELS and MACROLETS are similar. LOCAL-DECLARES is the
union of FLETS, LABELS, and MACROLETS.

172

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

Abbreviations

MasterScope Templates

The following abbreviations are recognized:

FREE = FREELY
LOCAL = LOCALLY
PROP = PROPERTY
REF = REFERENCE

Also, the words A, AN and NAME (after AS) are "noise" words
and may be omitted.

MasterScope Set Specifications

MasterScope uses templates (see "Effecting MasterScope
Analysis" below) to decide which relations hold between
functions and their arguments.

For example, the information that SORT SMASHes its first
argument is contained in the template for SORT. MasterScope
initially contains templates for most system functions which set
variables, test their arguments, or perform destructive
operations. You may change existing templates or insert new
ones in MasterScope's tables via the SETTEMPLATE function
(below).

MasterScope also constructs templates to handle Common Lisp
functions with keyword arguments. These constructed
templates are noticed by FILES? and can be saved if desired, or
MasterScope can recreate them by analyzing the functions
again.

'ATOM

A set is a collection of things (functions, variables, etc.). A setis
specified by a set phrase, consisting of a determiner (e.g., ANY,
WHICH, WHO) followed by a type (e.g., FUNCTIONS, VARIABLES)
followed by a specification (e.g., IN MYFNS). The determiner,
type and specification may be used alone or in combination.

For example,

ANY FUNCTIONS IN MYFNS,
VARIABLES IN GLOBALVARS, and
WHO

are all acceptable set phrases.

Note: Sets may also be specified with relative clauses
introduced by the word THAT, e.g. THE FUNCTIONS THAT
BIND 'X.

[MasterScope set specification]

The simplest way to specify a set consisting of a single thing is by
the name of that thing.

For example, in the command WHO CALLS 'ERROR, the function
ERROR is referred to by its name. Although the ' (apostrophe)

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 173

MASTERSCOPE

'LIST

can be left out, to resolve possible ambiguities names should
usually be quoted; e.g., WHO CALLS 'CALLS will return the list of
functions which call the function CALLS.

[MasterScope set specification]

Sets consisting of several atoms may be specified by naming the
atoms.

For example, the command WHO USES ‘(A B) returns the list of
functions that use the variables A or B.

IN EXPRESSION [MasterScope set specification]

The form EXPRESSION is evaluated, and its value is treated as a
list of the elements of a set.

For example, IN GLOBALVARS specifies the list of variables in the
value of the variable GLOBALVARS.

@ PREDICATE [MasterScope set specification]

LIKE ATOM

A set may also be specified by giving a predicate which the
elements of that set must satisfy. PREDICATE is either a function
name, a LAMBDA expression, or an expression in terms of the
variable X. The specification @ PREDICATE represents all atoms
for which the value of PREDICATE is non-NIL.

For example, @ EXPRP specifies all those atoms which have EXPR
definitions; @ (STRPOSL X CLISPCHARRAY) specifies those atoms
which contain CLISP characters. The universe to be searched is
either determined by the context within the command (e.g., in
WHO IN FOOFNS CALLS ANY NOT @ GETD, the predicate is only
applied to functions which are called by any functions in the list
FOOFNS), or in the extreme case, the universe defaults to the
entire set of things which have been noticed by MasterScope, as
in the command WHO IS @ EXPRP.

[MasterScope set specification]

ATOM may contain ESCapes; it is used as a pattern to be
matched, asin the editor.

For example, WHO LIKE /R$ IS CALLED BY ANY would find both
/RPLACA and /RPLNODE.

(The ESC character prints out as a $; it is a wildcard for any
number of characters.)

FIELDS OF SET [MasterScope set specification]

KNOWN

SET is a set of records. This denotes the field names of those
records.

For example, the command WHO USES ANY FIELDS OF BRECORD
returns the list of all functions which do a fetch or replace with
any of the field names declared in the record declaration of
BRECORD.

[MasterScope set specification]

The set of all functions which have been analyzed.

174

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

For example, the command WHO IS KNOWN will print out the list
of functions which have been analyzed.

THOSE [MasterScope set specification]
The set of things printed out by the last MasterScope question.
For example, following the command
WHO IS USED FREELY BY PARSE

you could ask WHO BINDS THOSE to find out where those
variables are bound.

ON PATH PATHOPTIONS [MasterScope set specification]

Refers to the set of functions which would be printed by the
command SHOW PATHS PATHOPTIONS.

For example,
IS FOO BOUND BY ANY ON PATH TO 'PARSE

tests whether FOO might be bound above the function PARSE
(that is, whether FOO is bound in any function that is higher up
in the calling tree than PARSE is) . SHOW PATHS is explained in
detail below.

Set Specifications by Relation

A set may also be specified by giving a relation its members must
have with the members of another set:

RELATIONING SET [MasterScope set specification]

RELATIONING is used here generically to mean any of the
relation words in the present participle form (possibly with a
modifier), e.g., USING, SETTING, CALLING, BINDING.
RELATIONING SET specifies the set of all objects which have that
relation with some element of SET.

For example, CALLING X specifies the set of functions which call
the function X; USING ANY IN FOOVARS FREELY specifies the set
of functions which uses freely any variable in the value of

FOOVARS.
RELATIONED BY SET [MasterScope set specification]
RELATIONED IN SET [MasterScope set specification]

This is similar to the RELATIONING construction.

For example, CALLED BY ANY IN FOOFNS represents the set of
functions which are called by any element of FOOFNS; USED
FREELY BY ANY CALLING ERROR is the set of variables which are
used freely by any function which also calls the function ERROR.

Set Specifications by Blocktypes

BLOCKTYPE OF FUNCTIONS [MasterScope set specification]
BLOCKTYPE ON FILES [MasterScope set specification]

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 175

MASTERSCOPE

Set Determiners

These phrases allow you to ask about BLOCKS declarations on
files (see IRM). BLOCKTYPE is one of LOCALVARS, SPECVARS,
GLOBALVARS, ENTRIES, BLKFNS, BLKAPPLYFNS, or RETFNS.

BLOCKTYPE OF FUNCTIONS specifies the names which are
declared to be BLOCKTYPE in any blocks declaration which
contain any of FUNCTIONS (a "set" of functions). The
"functions" in FUNCTIONS can either be block names or just
functionsin a block.

For example,

WHICH ENTRIES OF ANY CALLING 'Y BIND ANY
GLOBALVARS ON 'FOO.

BLOCKTYPE ON FILES specifies all names which are declared to be
BLOCKTYPE on any of the given FILES (a "set" of files).

Set Types

Set phrases may be preceded by a determiner, which is one of the
words THE, ANY, WHO or WHICH. The question determiners
(WHO and WHICH) are meaningful in only some of the
commands, namely those that take the form of questions. ANY
and WHO (or WHOM) can be used alone; they are wild-card
elements, e.g., the command WHO USES ANY FREELY, will print
out the names of all (known) functions which use any variable
freely. If the determiner is omitted, ANY is assumed; e.g. the
command WHO CALLS '(PRINT PRIN1 PRIN2) will print the list of
functions which call any of PRINT, PRIN1, PRIN2. THE is also
allowed, e.g. WHO USES THE RECORD FIELD FIELDX.

(1)

Any set phrase has a type; that is, a set may specify either
functions, variables, files, record names, record field names or
property names. The type may be determined by the context
within the command (e.g., in CALLED BY ANY ON FOO, the set
ANY ON FOO is interpreted as meaning the functions on FOO
since only functions can be CALLED), or you may give the type
explicitly (e.g., FUNCTIONS ON FIE).

The following types are recognized: FUNCTIONS, VARIABLES,
FILES, PROPERTY NAMES, RECORDS, FIELDS, 1.5.0OPRS. Also, the
abbreviations FNS, VARS, PROPNAMES or the singular forms
FUNCTION, FN, VARIABLE, VAR, FILE, PROPNAME, RECORD,
FIELD are recognized.

Note that most of these types correspond to built-in file manager
types (see IRM).

The type is used by MasterScope in a variety of ways when
interpreting the set phrase:

Set types are used to disambiguate possible parsings.
For example, both commands

WHO SETS ANY BOUND IN X OR USED BY Y

176

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

Conjunctions of Sets

(2

(3)

(4)

WHO SETS ANY BOUND IN X OR CALLED BY Y
have the same general form. However, the first case is parsed as
WHO SETS ANY (BOUND BY X OR USED BY Y)

since both BOUND BY X and USED BY Y refer to variables; while
the second case is parsed as

WHO SETS ANY BOUND IN (X OR CALLED BY Y),
since CALLED BY Y and X must refer to functions.

Note that parentheses may be used to group phrases.
The type is used to determine the modifier for USE:
FOO USES WHICH RECORDS isequivalentto

FOO USES WHO AS A RECORD FIELD.

The interpretation of CONTAIN depends on the type of its
object: the command

WHAT FUNCTIONS ARE CONTAINED IN MYFILE
prints the list of functions in MYFILE.

WHAT RECORDS ARE ON MYFILE

prints the list of records.

The implicit universe in which a set expression is interpreted
depends on the type:

ANY VARIABLES @ GETD

is interpreted as the set of all variables which have been noticed
by MasterScope (i.e., bound or used in any function which has
been analyzed) that also have a definition.

ANY FUNCTIONS @ (NEQ (GETTOPVAL X) 'NOBIND)

is interpreted as the set of all functions which have been noticed
(either analyzed or called by a function which has been
analyzed) that also have a top-level value.

Sets may be joined by the conjunctions AND and OR or preceded
by NOT to form new sets. AND is always interpreted as meaning
intersection; OR as union; NOT as complement.

For example, the set CALLING X AND NOT CALLED BY Y specifies
the set of all functions which call the function X but are not
called by Y.

Note: MasterScope's interpretation of AND and OR follow Lisp
conventions rather than the conventional English
interpretation.

“Calling X and Y" would, in English, be interpreted as the
intersection of (CALLING X) and (CALLING Y); but MasterScope
interprets CALLING X AND Y as CALLING ("X AND 'Y), which is the
null set.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 177

MASTERSCOPE

Only sets may be joined with conjunctions. Joining modifiers, as
in

USING X AS A RECORD FIELD OR PROPERTY NAME
is not allowed; in this case, you must type

USING X AS A RECORD FIELD OR USING X AS A
PROPERTY NAME

As described above, the type of set is used to disambiguate
parsings. The algorithm used is to first try to match the type of
the phrases being joined and then try to join with the longest
preceding phrase.

In any case, you may group phrases with parentheses to specify
the manner in which conjunctions should be parsed.

SHOW PATHS

FROM SET

TO SET

In trying to work with large programs, you can lose track of the
hierarchy of functions. The MasterScope SHOW PATHS
command aids you by providing a map showing the calling
structure of a set of functions. SHOW PATHS prints out a tree
structure showing which functions call which other functions.

Loading the Browser library module modifies the SHOW PATHS
command so the command's output is displayed as an undirected
graph.

The SHOW PATHS command takes the form: SHOW PATHS
followed by some combination of the following path options:

[MasterScope path option]
Display the function calls from the elements of SET.
[MasterScope path option]

Display the function calls leading to elements of SET. If TO is
given before FROM (or no FROM is given), the tree is inverted
and a message (inverted tree) is printed to warn you that if FN1
appears after FN2 it is because FN1 is called by FN2.

Note: When both FROM and TO are given, the first one
indicates a set of functions which are to be displayed
while the second restricts the paths that will be traced;
i.e., the command SHOW PATHS FROM X TO Y will trace
the elements of the set CALLED SOMEHOW BY X AND
CALLING Y SOMEHOW.

If TO is not given, TO KNOWN OR NOT @ GETD is assumed; that
is, only functions which have been analyzed or which are
undefined will be included.

Note that MasterScope will analyze a function while printing out
the tree if that function has not previously been seen and it
currently has an EXPR definition. Thus, any function which can
be analyzed will be displayed.

178

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

AVOIDING SET [MasterScope path option]

Do not display any function in SET. AMONG is recognized as a
synonym for AVOIDING NOT.

For example, SHOW PATHS TO ERROR AVOIDING ON FILE2 will
not display (or trace) any function on FILE2.

NOTRACE SET [MasterScope path option]

Do not trace from any element of SET. NOTRACE differs from
AVOIDING in that a function which is marked NOTRACE will be
printed, but the tree beyond it will not be expanded. The
functions in an AVOIDING set will not be printed at all.

For example,
SHOW PATHS FROM ANY ON FILE1 NOTRACE ON FILEZ2

will display the tree of calls eminating from FILE1, but will not
expand any function on FILE2.

SEPARATE SET [MasterScope path option]
Give each element of SET a separate tree.

Note: FROM and TO only insure that the designated functions
will be displayed. SEPARATE can be used to guarantee
that certain functions will begin new tree structures.
SEPARATE functions are displayed in the same manner as
overflow lines; i.e., when one of the functions indicated
by SEPARATE is found, it is printed followed by a forward
reference (a lower-case letter in braces) and the tree for
that function is then expanded below.

LINELENGTH N [MasterScope path option]

Resets LINELENGTH to N before displaying the tree. The
linelength is used to determine when a part of the tree should
"overflow" and be expanded lower.

Error Messages

When you give MasterScope a command, the command is first
parsed, i.e. translated to an internal representation, and then
the internal representation is interpreted.

If a command cannot be parsed, e.g. if you typed

SHOW WHERE CALLED BY X

MasterScope would reply

Sorry, | can't parse that!

and generate an error.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 179

MASTERSCOPE

If the command is of the correct form but cannot be interpreted
(e.g., the command EDIT WHERE ANY CONTAINS ANY)
MasterScope will print the message

Sorry, that isn't implemented!

and generate an error.

If the command requires some functions having been analyzed
(e.g., the command WHO CALLS X) and the data base is empty,
MasterScope will print the message

Sorry, no functions have been analyzed!

and generate an error.

Macro Expansion

As part of analysis, MasterScope will expand the macro definition
of called functions if they are not otherwise defined (see IRM).
MasterScope always expands Common Lisp DEFMACRO
definitions (unless it finds a template for the macro).

MasterScope Interlisp macro expansion is controlled by a
variable:

MSMACROPROPS [Variable]

Value is an ordered list of macro-property names that
MasterScope will search to find a macro definition. Only the
kinds of macros that appear on MSMACROPROPS will be
expanded. All others will be treated as function calls and left
unexpanded. Initially (MACRO).

Note: MSMACROPROPS initially contains only MACRO (not
10MACRO, DMACRO, etc.) on the assumption that the
machine-dependent macro definitions are more likely
"optimizers".

If you edit a macro, MasterScope will know to reanalyze the
functions which call that macro.

Note: If your macro is of the "computed-macro” style, and it
calls functions which you edit, MasterScope will not
notice. You must be careful to tell masterscope to
REANALYZE the appropriate functions (e.g., if you edit
FOOEXPANDER which is used to expand FOO macros, you
have to REANALYZE ANY CALLING FOO.

180

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

Effecting MasterScope Analysis

PPE

NIL

SET

SMASH

TEST

PROP

MasterScope analyzes the EXPR definition of a function, and
notes in its data base the relations that this function has with
other functions and with variables. To perform this analysis,
MasterScope uses templates which describe the behavior of
functions.

For example, the information that SORT destructively modifies its
first argument is contained in the template for SORT.
MasterScope initially contains templates for most system
functions that set variables, test their arguments, or perform
destructive operations.

A template is a list structure containing any of the following
atoms:

[in MasterScope template]

If an expression appears in this location, there is most likely a
parenthesis error.

MasterScope notes this as a call to the function ppe (lowercase).
Therefore, SHOW WHERE ANY CALLS ppe will print out all
possible parenthesis errors. When MasterScope finds a possible
parenthesis error in the course of analyzing a function
definition, rather than printing the usual ".", it prints out a "?"
instead. MasterScope notes functions called with keywords they
do not accept as calls to ppe.

[in MasterScope template]
The expression occuring at this location is not evaluated.

[in MasterScope template]
A variable appearing at this place is set.

[in MasterScope template]
The value of this expression is smashed.

[in MasterScope template]

Is used as a predicate (that is, the only use of the value of the
expression is whether it is NIL or non-NIL).

[in MasterScope template]

Is used as a property name. If the value of this expression is of
the form (QUOTE ATOM), MasterScope will note that ATOM is
USED AS A PROPERTY NAME.

For example, the template for GETPROP is (EVAL PROP . PPE).

KEYWORD key1... [in MasterScope template]

Must appear at the end of a template followed by the keywords
the templated function accepts.

For example, the template for CL:MEMBER is (EVAL EVAL
KEYWORDS :TEST :TEST-NOT :KEY).

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 181

MASTERSCOPE

FUNCTION

[in MasterScope template]
The expression at this point is used as a functional argument.
For example, the template for MAPC is
(SMASH FUNCTION FUNCTION . PPE).

FUNCTIONAL [in MasterScope template]

EVAL

RETURN

TESTRETURN

EFFECT

FETCH

REPLACE

RECORD

CREATE

BIND

CALL

CLISP

The expression at this point is used as a functional argument.
This is like FUNCTION, except that MasterScope distinguishes
between functional arguments to functions which compile open
from those that do not. For the latter (e.g. SORT and APPLY),
FUNCTIONAL should be used rather than FUNCTION.

[in MasterScope template]

The expression at this location is evaluated (but not set, smashed,
tested, used as a functional argument, etc.).

[in MasterScope template]

The value of the function (of which this is the template) is the
value of this expression.

[in MasterScope template]

A combination of TEST and RETURN: If the value of the function
is non-NIL, then it is returned. For instance, a one-element COND
clause is this way.

[in MasterScope template]

The expression at this location is evaluated, but the value is not
used. (Thatis, itis evaluated for its side effect only.)

[in MasterScope template]
An atom at this location is a field which is fetched.

[in MasterScope template]
An atom at this location is a field which is replaced.

[in MasterScope template]
An atom at this location is used as a record name.

[in MasterScope template]
An atom at this location is a record which is created.

[in MasterScope template]
An atom at this location is a variable which is bound.

[in MasterScope template]
An atom at this location is a function which is called.

[in MasterScope template]
An atom at this location is used as a CLISP word.

[in MasterScope template]

This atom, which can only occur as the first element of a
template, allows you to specify a template for the CAR of the

182

LISP LIBRARY MIODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

function form. If | doesn't appear, the CAR of the form is treated
as if it had a CALL specified for it. In cther words, the templates
(.. EVAL) and (! CALL .. EVAL) are equivalent.

If the next atom after a ! is NIL, this specifies that the function
name should not be remembered.

For example, the template for AND is (! NIL .. TEST RETURN),
which means that if you see an AND, don't remember it as being
called. This keeps the MasterScope data base from being
cluttered by too many uninteresting relations. MasterScope also
throws away relations for COND, CAR, CDR, and a couple of
others.

Special Forms

In addition to the above atoms that occur in templates, there are
some special forms which are lists keyed by their CAR.

.. TEMPLATE [in MasterScope template]

Any part of a template may be preceded by the atom .. (two
periods) which specifies that the template should be repeated an
indefinite number (N> = 0) of times to fill out the expression.

For example, the template for COND might be

(.. (TEST .. EFFECT RETURN))

while the template for SELECTQ is

(EVAL .. (NIL .. EFFECT RETURN) RETURN).

(Although MasterScope "throws away" the relations for COND,
it makes sense to template COND because there may be
important information within the arguments of COND.)

(BOTH TEMPLATE1 TEMPLATEZ2) [in MasterScope template]

Analyze the current expression twice, using the each of the
templatesin turn.

(IF EXPRESSION TEMPLATE 1 TEMPLATE) [in MasterScope template]

Evaluate EXPRESSION at analysis time (the variable EXPR will be
bound to the expression which corresponds to the IF), and if the
result is non-NIL, use TEMPLATE1, otherwise TEMPLATE2. |If
EXPRESSION is a literal atom, it is APPLYd to EXPR.

For example,
(IF LISTP (RECORD FETCH) FETCH)

specifies that if the current expression is a list, then the first
element is a record name and the second element a field name,
otherwise it is a field name.

(@ EXPRFORM TEMPLATEFORM) [in MasterScope template]

Evaluate EXPRFORM giving EXPR, evaluate TEMPLATEFORM
giving TEMPLATE. Then analyze EXPR with TEMPLATE. @ lets
you compute on the fly both a template and an expression to
analyze with it. The forms can use the variable EXPR, which is
bound to the current expression.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 183

MASTERSCOPE

(MACRO . MACRO) [in MasterScope template]

MACRO is interpreted in the same way as macros (see /RM) and
the resulting form is analyzed. If the template is the atom
MACRO alone, MasterScope will use the MACRO property of the
function itself. This is useful when analyzing code which
contains calls to user-defined macros. If you change a macro
property (e.g. by editing it) of an atom which has template of
MACRO, MasterScope will mark any function which used that
macro as needing to be reanalyzed.

Some examples of templates:
Function: Template:
DREVERSE (SMASH . PPE)
AND (! NIL TEST .. RETURN)
MAPCAR (EVAL FUNCTION FUNCTION)

COND (! NIL .. (IF CDR (TEST .. EFFECT
RETURN) (TESTRETURN . PPE)))

Templates may be changed and new templates defined using the
following functions:

(GETTEMPLATE FN) [Function]
Returns the current template of FN.
(SETTEMPLATE FN TEMPLATE) [Function]

Changes the template for the function FN and returns the old
value. If any functions in the data base are marked as calling FN,
they will be marked as needing reanalysis.

Updating the MasterScope Data Base

MasterScope is interfaced to the editor and file manager so that
it notes whenever a function has been changed, either through
editing or loading in a new definition. Whenever a command is
given which requires knowing the information about a specific
function, if that function has been noted as being changed, the
function is automatically reanalyzed before the command is
interpreted. If the command requires that all the information in
the data base be consistent (e.g., you ask WHO CALLS X) then all
functions which have been marked as changed are reanalyzed.

184

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

MasterScope Entries

(MASTERSCOPE COMMAND—) [Function]

Top level entry to MasterScope. If COMMAND is NIL, will enter
into an Executive in which you may enter commands. If
COMMAND is not NIL, the command is interpreted and
MASTERSCOPE will return the value that would be printed by the
command.

Note that only the question commands return meaningful
values.

(CALLS FN USEDATABASE—) [Function]
FN can be a function name, a definition, or a form.

Note: CALLS will also work on compiled code. CALLS returns a
list of four elements:

Functions called by FN
Variables bound in FN
Variables used freely in FN
Variables used globally in FN

For the purpose of CALLS, variables used freely which are on
GLOBALVARS or have a property GLOBALVAR value T are
considered to be used globally. If USEDATABASE is NIL (or FN is
not a symbol), CALLS will perform a one-time analysis of FN.
Otherwise (i.e. if USEDATABASE is non-NIL and FN a function
name), CALLS will use the information in MasterScope's data
base (FN will be analyzed first if necessary).

(CALLSCCODE FN —) [Function]

The subfunction of CALLS which analyzes compiled code.
CALLSCCODE returns a list of elements:

Functions called via "“linked" function calls (not
implemented in Interlisp-D)

Functions called regularly
Variables bound in FN
Variables used freely
Variables used globally
(FREEVARS FN USEDATABASE) [Function]

Equivalent to (CADDR (CALLS FN USEDATABASE)). Returns the
list of variables used freely within FN.

(SETSYNONYM PHRASE MEANING—) [Function]

Defines a new synonym for MasterScope's parser. Both
OLDPHRASE and NEWPHRASE are words or lists of words;
anywhere OLDPHRASE is seen in a command, NEWPHRASE will
be substituted.

For example,

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 185

MASTERSCOPE

Functions for Writing Routines

(SETSYNCNYM 'GLOBALS '(VARS IN GLOBALVARS OR
@(GETPROP X 'GLOBALVAR)))

would allow you to refer with the single word GLOBALS to the
set of variables which are either in GLOBALVARS or have a
GLOBALVAR property.

The following functions are provided for users who wish to write
their own routines using MasterScope's data base:

(PARSERELATION RELATION) [Function]

RELATION is a relation phrase; e.g., (PARSERELATION ‘(USE
FREELY)). PARSERELATION returns an internal representation
for RELATION. For use in conjunction with GETRELATION.

(GETRELATION ITEM RELATION INVERTED) [Function]

RELATION is an internal representation as returned by
PARSERELATION (if not, GETRELATION will first perform
(PARSERELATION RELATION)).

ITEM is an atom. GETRELATION returns the list of all atoms
which have the given relation to ITEM.

For example,

(GETRELATION 'X '(USE FREELY))
returns the list of variables that X uses freely.

If INVERTED is T, the inverse relation is used; e.qg.
(GETRELATION 'X '(USE FREELY) T)
returns the list of functions which use X freely.

If ITEM is NIL, GETRELATION will return the list of atoms which
have RELATION with any other item; i.e., it answers the question
WHO RELATIONS ANY.

Note that GETRELATION does not check to see if ITEM has been
analyzed, or that other functions that have been changed have
been reanalyzed.

(TESTRELATION ITEM RELATION ITEM2 INVERTED) [Function]

Is equivalent to (MEMB ITEMZ2 (GETRELATION ITEM RELATION
INVERTED)); that is, it tests if ITEM and ITEMZ2 are related via
RELATION.

If ITEM2 is NIL, the call is equivalent to
(NOT (NULL (GETRELATION ITEM RELATION INVERTED)))

i.e., TESTRELATION tests if ITEM has the given RELATION with
any other item.

(MAPRELATION RELATION MAPFN) [Function]

Calls the function MAPFN on every pair of items related via
RELATION. If (NARGS MAPFN) is 1, then MAPFN is called on every
item which has the given RELATION to any other item.

186

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) [Function]

Used to mark functions which depend on a changed record
declaration (or macro, etc.), and which must be LOADed or
UNSAVEd (see below). FNS is a list of functions to be marked,
and MSG is a string describing the records, macros, etc. on which
they depend. If MARKCHANGEFLG is non-NIL, each function in
the list is marked as needing reanalysis.

(UPDATEFN FN EVENIFVALID —) [Function]

Equivalent to the command ANALYZE 'FN; that is, UPDATEFN
will analyze FN if FN has not been analyzed before or if it has
been changed since the time it was analyzed. If EVENIFVALID is
non-NIL, UPDATEFN will reanalyze FN even if MasterScope thinks
it has a valid analysis in the data base.

(UPDATECHANGED) [Function]

Performs (UPDATEFN FN) on every function which has been
marked as changed.

(MSMARKCHANGED NAME TYPE REASON) [Function]

Mark that NAME has been changed and needs to be reanalyzed.
See MARKASCHANGED in the IRM.

(DUMPDATABASE FNLST) [Function]

Dumps the current MasterScope data base on the current output
file in a LOADable form. If FNLST is not NIL, DUMPDATABASE
will only dump the information for the list of functions in FNLST.
The variable DATABASECOMS is initialized to

((E (DUMPDATABASE)))

Thus, you may merely perform (MAKEFILE
'DATABASE.EXTENSION) to save the current MasterScope data
base. If a MasterScope data base already exists when a
DATABASE file is loaded, the data base on the file will be merged
with the one in memory.

Note: Functions whose definitions are different from their
definition when the data base was made must be
REANALYZEd if their new definitions are to be noticed.

Note: The DataBaseFns library module provides a more
convenient way of saving data bases along with the
source files to which they correspond.

Noticing Changes that Require Recompiling

When a record declaration, iterative statement operator or
macro is changed, and MasterScope has noticed a use of that
declaration or macro (i.e. it is used by some function known
about in the data base), MasterScope will alert you about those
functions which might need to be recompiled (e.g. they do not

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 187

MASTERSCOPE

currently have EXPR definitions). Extra functions may be
noticed.

For example if FOO contains (fetch (REC X) --), and some
declaration other than REC which contains X is changed,
MasterScope will still think that FOO needs to be
loaded/unsaved. The functions which need recompiling are
added to the list MSNEEDUNSAVE and a message is printed out:

The functions FN1, FN2,... use macros which have changed.
Call UNSAVEFNS() to load and/or unsave them.

In this situation, the following function is useful:

(UNSAVEFNS —) [Function]

Uses LOADFNS or UNSAVEDEF to make sure that all functions in
the list MSNEEDUNSAVE have EXPR definitions, and then sets
MSNEEDUNSAVE to NIL.

Note: If RECOMPILEDEFAULT (see /RM) is set to CHANGES,
UNSAVEFNS prints out

"WARNING: you must set RECOMPILEDEFAULT to EXPRS
in order to have these functions recompiled
automatically.”

Implementation Notes

MasterScope keeps a data base of the relations noticed when
functions are analyzed. The relations are intersected to form
primitive relationships such that there is little or no overlap of
any of the primitives.

For example, the relation SET is stored as the union of SET LOCAL
and SET FREE. The BIND relation is divided into BIND AS ARG,
BIND AND NOT USE, and SET LOCAL, SMASH LOCAL, etc.
Splitting the relations in this manner reduces the size of the data
base considerably, to the point where it is reasonable to
maintain a MasterScope data base for a large system of functions
during a normal debugging session.

Each primitive relationship is stored in a pair of hash tables, one
for the forward direction and one for the reverse.

For example, there are two hash tables, USE AS PROPERTY and
USED AS PROPERTY. To retrieve the information from the data
base, MasterScope performs unions of the hash values.

For example, to answer FOO BINDS WHO, MasterScope will look
in all of the tables which make up the BIND relation. The
internal representation returned by PARSERELATION is a list of
dotted pairs of hash tables. To perform GETRELATION requires
only mapping down that list, doing GETHASHs on the
appropriate hash tables and UNIONing the result.

188

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

Hash tables are used for a variety of reasons: storage space is
smaller; it is not necessary to maintain separate lists of which
functions have been analyzed (a special table, DOESN'T DO
ANYTHING is maintained for functions which neither call other
functions nor bind or use any variables); and accessing is
relatively fast. Within any of the tables, if the hash value is a list
of one atom, then the atom itself, rather than the list, is stored as
the hash value. This also reduces the size of the data base
significantly.

Example

Sample Session

The following illustrates some of the MasterScope facilities.
50 . ANALYZE FUNCTIONS ON RECORD

...............................

51 . WHO CALLS RECFIELDLOOK

(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC)
52 . EDIT WHERE ANY CALL RECFIELDLOOK
RECFIELDLOOK :

(RECFIELDLOOK (CDR Y) FIELD)

tty:

5*0K

ACCESSDEF

(RECFIELDLOOK DECLST FIELD VAR1)

6*0K

(RECFIELDLOOK USERRECLST FIELD)

7*N VAR1

8*0K

ACCESSDEF2

(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD)
tty:

(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD)
9*N (CAR TAIL]

10*0K

EDITREC

(RECFIELDLOOK USERRECLST (CAR EDITRECX))
11*0K

NIL

53 . WHO CALLS ERROR

(EDITREC)
54 . SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF
(inverted tree)

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 189

MASTERSCOPE

Event 50

Event 51

Statement 52

Statement 53

1. RECFIELDLOOK RECFIELDLOOK

2 ACCESSDEF

3% ACCESSDEF2 ACCESSDEF2

4. ACCESSDEF
5.

RECORDCHAIN ACCESSDEF

NIL

55 . WHO CALLS WHO IN /FNS

RECORDSTATEMENT -- /RPLNODE

RECORDECL1 -- /NCONC, /RPLACD, /RPLNODE
RECREDECLARE1 -- /PUTHASH

UNCLISPTRAN -- /PUTHASH, /RPLNODE2
RECORDWORD -- /RPLACA

RECORD1 -- /RPLACA, /SETTOPVAL
EDITREC: == /SETTOPVAL

You direct that the functions on file RECORD be analyzed. The
leading period and space specify that this line is a MasterScope
command. MasterScope prints a greeting and prompts with .
Within the top-level Executive of MasterScope, you may issue
MasterScope commands, programmer's assistant commands,
(e.g., REDO, FIX), or run programs. You can exit from the
MasterScope Executive by typing OK. The function "." is defined
as a Nlambda NoSpread function which interprets its argument
as a MasterScope command, Executes the command and returns.

MasterScope prints a"." whenever it (re)analyzes a function, to
let you know what it is happening. The feedback when
MasterScope analyzes a function is controlled by the flag
MSPRINTFLG: if MSPRINTFLG is the atom ".", MasterScope will
print out a period. (If an error in the function is detected, "?" is
printed instead.) If MSPRINTFLG is a number N, MasterScope will
print the name of the function it is analyzing every Nth function.
If MSPRINTFLG is NIL, MasterScope won't print anything. Initial
settingis ".".

Note that the function name is printed when MasterScope starts
analyzing, and the comma is printed when it finishes.

You ask which functions call RECFIELDLOOK. MasterScope
responds with the list.

You ask to edit the expressions where the function
RECFIELDLOOK is called. MasterScope calls EDITF on the
functions it had analyzed that call RECFIELDLOOK, directing the
editor to the appropriate expressions. You then edit some of
those expressions. In this example, the teletype editor is used. If
DEdit is enabled as the primary editor, it would be called to edit
the appropriate functions.

Next you ask which functions call ERROR. Since some of the
functions in the data base have been changed, MasterScope
reanalyzes the changed definitions (and prints out .'s for each
function it analyzes). MasterScope responds that EDITREC is the
only analyzed function that calls ERROR.

190

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

Statement54 You ask to see a map of the ways in which RECFIELDLOOK is
called from ACCESSDEF. A tree structure of the calls is displayed.

Statement 55 You then ask to see which functions call which functions in the
list /ENS. MasterScope responds with a structured printout of
these relations.

SHOW PATHS

The command SHOW PATHS FROM MSPARSE will print out the
structure of MasterScope's parser:

1.MSPARSE MSINIT MSMARKINVALID

2. | MSINITH MSINITH

3. MSINTERPRET MSRECORDFILE

4, | MSPRINTWORDS

b, | PARSECOMMAND GETNEXTWORD CHECKADV
6. | | PARSERELATION {a}
7. | | PARSESET {b}

8. | | PARSEOPTIONS {c}
9. | | MERGECONJ GETNEXTWORD
{5}

10. | GETNEXTWORD {5}

11. | FIXUPTYPES SUBJTYPE

12. | | OBJTYPE

13. | FIXUPCONJUNCTIONS MERGECONJ {9}
14. | MATCHSCORE
15. MSPRINTSENTENCE

overflow - a

16.PARSERELATION GETNEXTWORD {5}

17. CHECKADV

overflow - b

19.PARSESET PARSESET

20. GETNEXTWORD {5}

21. PARSERELATION {6}

22. SUBPARSE GETNEXTWORD {5}

overflow - ¢
23 .PARSEOPTIONS GETNEXTWORD {5}
24. PARSESET {19}

This example shows that the function MSPARSE calls MSINIT,
MSINTERPRET, and MSPRINTSENTENCE. MSINTERPRET in turn
calls MSRECORDFILE, MSPRINTWORDS, PARSECOMMAND,
GETNEXTWORD, FIXUPTYPES, and FIXUPCONJUNCTIONS. The
numbers in braces {} after a function name are backward
references: they indicate that the tree for that function was
expanded on a previous line. The lowercase letters in braces are
forward references: they indicate that the tree for that function

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 191

MASTERSCOPE

will be expanded below, since there is no more room on the line.
The vertical bar is used to keep the output aligned.

192 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MATCH

Match provides a fairly general pattern match facility that allows
you to specify certain tests that would otherwise be clumsy to
write, by giving a pattern which the datum is supposed to match.

Essentially, you write "Does the (expression) X look like (the
pattern) P?"

For example, (MATCH X WITH (& 'A -- 'B)) asks whether the
second element of X isan A, and the last element a B.

Requirements

DWIM must be enabled.

Installation

Load MATCH.LCOM from the library.

Programmer's Interface

(MATCH OBJECT WITH PATTERN) [CLISP operator]
Matches the OBJECT with the PATTERN.

The implementation of the matching is performed by computing
(once) the equivalent Lisp expression which will perform the
indicated operation, and substituting this for the pattern (rather
than by invoking each time a general purpose capability such as
that found in the Al languages FLIP or PLANNER).

For example, the translation of
(MATCH X WITH (& 'A -- 'B)) is:
(AND (EQ (CADR X) 'A)
(EQ (CAR (LAST (CDDR X))) 'B))

Thus the pattern match facility is really a pattern match compiler,
and the emphasis in its design and implementation has been
more on the efficiency of object code than on generality and
sophistication of its matching capabilities. The goal was to
provide a facility that could and would be used even where
efficiency was paramount, e.g., in inner loops. Wherever
possible, already existing Lisp functions are used in the
translation, e.g., the translation of ($ ‘A $) uses MEMB, ($ (‘A $) $)
uses ASSOC, etc.

The syntax for pattern match expressions is (MATCH FORM WITH
PATTERN), where PATTERN is a list as described below. If FORM
appears more than once in the translation, and it is not either a
variable or an expression that is easy to (re)compute, such as

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 193

MATCH

(CARY), (CDDR 2), etc., a dummy variable will be generated and
bound to the value of FORM so that FORM is not evaluated a
multiple number of times.

For example, the translation of
(MATCH (FOO X) WITH ($ 'A $))issimply
(MEMB 'A (F0OO0 X)),
while the translation of
(MATCH (FOO X) WITH ('A 'B --)) is:
[PROG ($3%2)

(RETURN

(AND (EQ (CAR (SETQ $%2 (FOO X))) 'A)
(EQ (CADR $%$2) 'B]

In the interests of efficiency, the pattern match compiler assumes

that all lists end in NIL, i.e., there are no LISTP checks inserted in
the translation to check tails.

For example, the translation of

(MATCH X WITH ('A & --))is

(AND (EQ (CAR X) (QUOTE A)) (CDR X)),
which will match with (A B) as well as (A . B).

Similarly, the pattern match compiler does not insert LISTP checks
on elements, e.g.,

(MATCH X WITH (('A --) --)) translatessimply as
(EQ (CAAR X) 'A),

and

(MATCH X WITH (($1 $1 --) --)) translatesas
(CDAR X).

Note that you can explicitly insert LISTP checks yourself by using
@, as described below, e.g.,

(MATCH X WITH (($1 $1 --)GLISTP --)) translatesas
(CDR (LISTP (CAR X))).

PATLISPCHECK [Variable]

The insertion of LISTP checks for ELEMENTS is controlled by the
variable PATLISTPCHECK. When PATLISTPCHECK is T, LISTP
checks are inserted, e.qg.,

(MATCH X WITH (('A --) --)) translatesas:
(EQ (CAR (LISTP (CAR (LISTP X)))) 'A).

PATLISTPCHECK is initially NIL. Its value can be changed within a
particular function by using a local CLISP declaration (see /IRM).

PATVARDEFAULT [Variable]

Controls the treatment of lATOM patterns (see below).

If PATVARDEFAULT is ' or QUOTE, 1ATOM is treated the same as
'ATOM.

If PATVARDEFAULT is = or EQUAL, same as = ATOM.
If PATVARDEFAULT is

= or EQ, same as = = ATOM.

194

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

MATCH

Pattern Elements

If PATVARDEFAULT is _or SETQ, same as ATOM &.
PATVARDEFAULT isinitially ' (quote).

PATVARDEFAULT can be changed within a particular function by
using a local CLISP declaration (see IRM).

Note: Numbers and strings are always interpreted as though
PATVARDEFAULT were =, regardless of its setting. EQ,
MEMB, and ASSOC are used for comparisons involving
small integers.

Note: Pattern match expressions are translated using the DWIM
and CLISP facilities, using all CLISP declarations in effect
(standard/fast/undoable; see IRM).

Element Patterns

A pattern consists of a list of pattern elements. Each pattern
element is said to match either an element of a data structure or
asegment.

For example, in the TTY editor's pattern matcher (see IRM), "--"
matches any arbitrary segment of a list, while & or a subpattern
match only one element of a list. Those patterns which may
match a segment of a list are called segment patterns; those that
match a single element are called element patterns.

$1or&
'EXPRESSION

=FORM

= =FORM
ATOM

(PATTERNT ... PATTERNN)

ELEMENT-PATTERN@FN

There are several types of element patterns, best given by their
syntax:

Matches an arbitrary element of a list.

Matches only an element which is equal to the given expression
e.g., 'A, '(AB).

EQ, MEMB, and ASSOC are automatically used in the translation
when the quoted expression is atomic, otherwise EQUAL,
MEMBER, and SASSOC.

Matches only an element which is EQUAL to the value of FORM:;
e.g., =X, = (REVERSE Y).

Same as =, but uses an EQ check instead of EQUAL.

The treatment depends on setting of PATVARDEFAULT (see
above).

Matches a list which matches the given patterns; e.g.,
(& &), (--'A).

Matches an element if ELEMENT-PATTERN matches it, and FN
(name of a function or a LAMBDA expression) applied to that
element returns non-NIL.

For example, &@NUMBERP matches a number, and (‘A --)@FOO
matches a list whose first element is A and for which FOO applied
to that list is non-NIL.

For simple tests, the function-object is applied before a match is
attempted with the pattern, e.g.,

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 195

MATCH

Segment Patterns

"ELEMENT-PATTERN

((-- '"A --)@LISTP --)translatesas
(AND (LISTP (CAR X)) (MEMB 'A (CAR X))),

not the other way around. FN may also be a FORM in terms of
the variable @, e.g., &@(EQ @ 3) is equivalent to = 3.

Matches any arbitrary element. If the entire match succeeds, the
element which matched the * will be returned as the value of the
match.

Note: Normally, the pattern match compiler constructs an
expression whose value is guaranteed to be non-NIL if
the match succeeds and NIL if it fails. However, if a *
appears in the pattern, the expression generated could
also return NIL if the match succeeds and * was matched
to NIL.

For example,

(MATCH X WITH ('A * --)) translatesas

(AND (EQ (CAR X) "A) (CADR X)),

soif X is equal to (A NIL B) then (MATCH X WITH (‘A * --)) returns
NIL even though the match succeeded.

Matches an element if the element is not (7) matched by
ELEMENT-PATTERN, e.g., 'A, " =X, "(--'A--).

(*ANY* ELEMENT-PATTERN ELEMENT-PATTERN ...)

Matches if any of the contained patterns match.

$ or--

Matches any segment of a list (including one of zero length).

The difference between $ and -- is in the type of search they
generate.

For example,
(MATCH X WITH ($ 'A 'B $)) translatesas
(EQ (CADR (MEMB 'A X)) 'B),whereas
(MATCH X WITH (-- 'A 'B $)) translates as:
[SOME X (FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 'A)
(EQ (CADR $3%1) 'B]

Thus, a paraphrase of ($ 'A 'B $) would be "Is B the element
following the first A?", whereas a paraphrase of (- 'A 'B $)
would be "Is there any A immediately followed by a B?"

Note that the pattern employing $ will result in a more efficient
search than that employing --. However, ($ 'A 'B $) will not
match with (XY ZAM O ABC), but (- 'A 'B $) will.

Essentially, once a pattern following a $ matches, the $ never
resumes searching, whereas -- produces a translation that will
always continue searching until there is no possibility of success.
However, if the pattern match compiler can deduce from the
pattern that continuing a search after a particular failure cannot
possibly succeed, then the translations for both -- and $ will be
the same.

196

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

MATCH

For example, both

(MATCH X WITH ($ 'A $3 $))and

(MATCH X WITH (-- 'A $3 --)) translate as
(CDDDR (MEMB (QUOTE A) X))

because if there are not three elements following the first A,
there certainly will not be three elements following subsequent
A’s, so there is no reason to continue searching, even for --.

Similarly, ($ 'A$'B$)and (--'A--'B--) are equivalent.
$2,$3,etc. Matches a segment of the given length.
Note that $1 is not a segment pattern.

'ELEMENT-PATTERN Matches any segment which ELEMENT-PATTERN would match as
a list.

For example, if the value of FOO is (A B C), ! = FOO will match the
segment ... ABC... etc.

Note: Since ! appearing in front of the last pattern specifies a
match with some tail of the given expression, it also
makes sense in this case for a ! to appear in front of a
pattern that can only match with an atom, e.g., ($2 I'A)
means match if CDDR of the expression is the atom A.

Similarly,

(MATCH X WITH ($! 'A)) translatesto
(EQ (CDR (LAST X)) 'A)

!ATOM The treatment depends on setting of PATVARDEFAULT.

If PATVARDEFAULT is ' or QUOTE, same as I'ATOM (see above
discussion).

If PATVARDEFAULT is
If PATVARDEFAULT is
If PATVARDEFAULT is __OrSETQ, same as ATOM_$.

or EQUAL, same as ! = ATOM.
= orEQ,sameas!= = ATOM.

1

The atom "." is treated exactly like "!". In addition, if a pattern
ends in an atom, the "." is first changed to "!", e.g., ($1 . A) and
($1 ! A) are equivalent, even though the atom "." does not

explicitly appear in the pattern.

One exception where "." is not treated like "!" is when
preceding an assignment does not have the special
interpretation that "!" has preceding an assignment (see below).

For example,
(MATCH X WITH ('A . FOO_'B)) translates as:
(AND (EQ (CAR X) 'A)

(EQ (CDR X) 'B)

(SETQ FOO (CDR X)))

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 197

MATCH

SEGMENT-PATTERN@FUNCTION-OBJECT

Assignments

but
(MATCH X WITH ('A ! FOO 'B)) translatesas:
(AND (EQ (CAR X) 'A)

(NULL (CDDR X))

(EQ (CADR X) 'B)

(SETQ FOO (CDR X)))

Matches a segment if the segment-pattern matches it, and the
function object applied to the corresponding segment (as a list)
returns non-NIL.

For example, ($@CDDR 'D $) matches (AB C D E) but not (ABD
E), since CDDR of (A B) is NIL.

Note: An @ pattern applied to a segment will require
computing the corresponding structure (with LDIFF) each
time the predicate is applied (except when the segment
in question is a tail of the list being matched).

Any pattern element may be preceded by "VARIABLE ",
meaning that if the match succeeds (i.e., everything matches),
VARIABLE is to be set to the thing that matches that pattern
element.

For example, if X is (A B CD E), (MATCH X WITH ($2 Y_$3)) will
setY to (CDE).

Note that assignments are not performed until the entire match
has succeeded, so assignments cannot be used to specify a search
for an element found earlier in the match, e.g., (MATCH X WITH
(Y $1 =Y -)) will not match with (A AB C ...), unless, of course,
the value of Y was A before the match started. This type of
match is achieved by using place-markers, described below.

If the variable is preceded by a !, the assignment is to the tail of
the list as of that point in the pattern, i.e., that portion of the list
matched by the remainder of the pattern.

For example, if X is (AB CD E), (MATCH X WITH ($ 'Y 'C'D$))
sets Y to (CDE), i.e., CDDR of X. In other words, when T precedes
an assignment, it acts as a modifier to the , and has no effect
whatsoever on the pattern itself, e.g., (MATCH X WITH (‘A 'B))
and (MATCH X WITH (‘A IFOO 'B)) match identically, and in the
latter case, FOO will be set to CDR of X.

Note: *_PATTERN-ELEMENT and !'* PATTERN-ELEMENT are
acceptable, e.g., o

(MATCH X WITH ($ 'A * ('B --) --)) translatesas:
[PROG ($$2) (RETURN
(AND (EQ (CAADR (SETQ $$2 (MEMB 'A X))) 'B)
(CADR $$2]

198

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

MATCH

Place Markers

Replacements

Variables of the form #N, where N is a number, are called place
markers, and are interpreted specially by the pattern match
compiler. Place markers are used in a pattern to mark or refer to
a particular pattern element. Functionally, they are used like
ordinary variables, i.e., they can be assigned values, or used
freely in forms appearing in the pattern.

For example,
(MATCH X WITH (#1 $1 =(ADD1 #1)))
will match the list (2 3).

However, they are not really variables in the sense that they are
not bound, nor can a function called from within the pattern
expect to be able to obtain their values. For convenience,
regardless of the setting of PATVARDEFAULT, the first
appearance of a defaulted place-marker is interpreted as though
PATVARDEFAULT were .

Thus the above pattern could have been written as
(MATCH X WITH (1 =(ADD1 1))).

Subsequent appearances of a place-marker are interpreted as
though PATVARDEFAULT were =.

For example,

(MATCH X WITH (#1 #1 --))isequivalentto
(MATCH X WITH (#1 $1 =#1 --)), and translates as
(AND (CDR X) (EQUAL (CAR X) (CADR X)).

Note that (EQUAL (CAR X) (CADR X)) would incorrectly match
with (NIL).

The construct PATTERN-ELEMENT _FORM specifies that if the
match succeeds, the part of the data that matched is to be
replaced with the value of FORM.

For example, if X =(AB CD E), (MATCH X WITH ($ 'C$1 Y $1))
will replace the third element of X with the value of Y. As with
assignments, replacements are not performed until after it is
determined that the entire match will be successful.

Replacements involving segments splice the corresponding
structure into the list being matched, e.g., if X is (AB CDE F) and
FOO is (1 2 3), after the pattern ('A$ FOO 'D $) is matched with
X, X willbe (A 123 DEF), and FOO will be EQ to CDR of X, i.e., (1
23DEF).

Note that ($ FOO_FIE $) is ambiguous, since it is not clear
whether FOO or FIE is the pattern element, i.e., whether .
specifies assignment or replacement.

For example, if PATVARDEFAULT is =, this pattern can be
interpreted as ($ FOO =FIE $), meaning search for the value of

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 199

MATCH

FIE, and if found set FOO to it, or ($ =FOO FIE $) meaning
search for the value of FOO, and if found, store the value of FIE
into the corresponding position. In such cases, you should
disambiguate by not using the PATVARDEFAULT option, i.e., by
specifying 'or =.

Note: Replacements are normally done with RPLACA or
RPLACD. You can specify that /RPLACA and /RPLACD
should be used, or FRPLACA and FRPLACD, by means of
CLISP declarations (see IRM).

Reconstruction

You can specify a value for a pattern match operation other than
what is returned by the match by writing (MATCH FORM1 WITH
PATTERN = > FORM?2).

For example,
(MATCH X WITH (FOO $ 'A --) => (REVERSE FO00))
translates as:
[PROG ($%2)
(RETURN
(COND ((SETQ $$2 (MEMB 'A X))
(SETQ FOO (LDIFF X $2))
(REVERSE F00]

Place markers in the pattern can be referred to from within
FORM, e.g., the above could also have been written as

(MATCH X WITH (!#1 'A --) => (REVERSE #1)).

If -> is used in place of = >, the expression being matched is
also physically changed to the value of FORM.

For example,
(MATCH X WITH (#1 'A !1#2) -> (CONS #1 #2))
would remove the second element from X, if it were equal to A.

In general, (MATCH FORM1 WITH PATTERN -> FORM?2) is
translated so as to compute FORM2 if the match is successful, and
then smash its value into the first node of FORM1. However,
whenever possible, the translation does not actually require
FORM2 to be computed in its entirety, but instead the pattern
match compiler uses FORM?2 as an indication of what should be
done to FORM1.

For example,

(MATCH X WITH (#1 'A 1#2) -> (CONS #1 #2))
translates as

(AND (EQ (CADR X) 'A) (RPLACD X (CDDR X))).

200 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

MATCH

Limitations

The pattern match facility does not contain some of the more
esoteric features of other pattern match languages, such as
repeated patterns, disjunctive and conjunctive patterns,
recursion, etc. However, you can be confident that what
facilities it does provide will result in Lisp expressions comparable
to those you would generate by hand.

Examples

(MATCH X WITH (-- 'A --))

-- matches any arbitrary segment. 'A matches only an A, and the
second -- again matches an arbitrary segment; thus this
translates to (MEMB 'A X).

(MATCH X WITH (-- 'A))

Again, -- matches an arbitrary segment; however, since there is
no -- after the 'A, A must be the last element of X. Thus this
translatesto: (EQ (CAR (LAST X)) 'A).

(MATCH X WITH ('A 'B -- 'C $3 --))

CAR of X must be A, and CADR must be B, and there must be at
least three elements after the first C, so the translation is:

(AND (EQ (CAR X) 'A)
(EQ (CADR X) 'B)
(CDDDR (MEMB 'C (CDDR X))))

(MATCH X WITH (('A 'B) 'C Y_$1 $))

Since (‘A 'B) does not end in $ or --, (CDDAR X) must be NIL. The
translation is:

(COND
((AND (EQ (CAAR X) 'A)
(EQ (CADAR X) 'B)
(NULL (CDDAR X))
(EQ (CADR X) 'C)
(CDDR X))
(SETQ Y (CADDR X)) T))

(MATCH X WITH (#1 'A'$ 'B 'C #1 §))

#1 is implicitly assigned to the first element in the list. The $
searches for the first B following A. This B must be followed by a
C, and the C by an expression equal to the first element. The
translation is:

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 201

MATCH

[PROG ($%2)
(RETURN
(AND (EQ (CADR X) 'A)
(EQ [CADR (SETQ $$2 (MEMB 'B (CDDR X] 'C)
(CDDR $$2)
(EQUAL (CADDR $$2) (CAR X]

(MATCH X WITH (#1 'A -- 'B 'C #1 $))

Similar to the pattern above, except that -- specifies a search for
any B followed by a C followed by the first element, so the
translation is:

[AND (EQ (CADR X) 'A)
(SOME (CDDR X)
(FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 'B)
(EQ (CADR $81) 'C)
(CDDR $$1)
(EQUAL (CADDR $$1) (CAR X]

202 LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

MATMULT

Two dimensional graphical transformations, such as rotations,
scalings, and translations are conveniently represented as
homogeneous 3-by-3 matrices, which operate on homogeneous
3-vectors. Similarly, three dimensional graphical transformations
are conveniently represented as homogeneous 4-by-4 matrices,
which operate on homogeneous 4-vectors. MatMult provides
utilities for creating and manipulating such matrices and vectors,
and takes advantage of microcode support for high-speed 3-by-3
and 4-by-4 matrix multiplication.

All matrices and vectors in MatMult are represented as Common
Lisp arrays of element type single-float, so the Common Lisp
array functions are sufficient to create and access individual
elements of these specialized arrays. However, MatMult provides
convenient wrapper functions for most common operations on
these arrays.

All the following functions that return arrays accept optional
array arguments. If given a result argument, these functions
alter the contents of that argument rather then allocating new
storage. It is an error for the optional array argument to be not
of element type single-float, or to have incorrect dimensions.

Requirements

MatMult should be run on an 1109 with a Weitek floating point
chip set, butis also quite efficient on an 1186.

Installation

Load MATMULT.LCOM from the library.

Matrix Creation Functions

(MAKE-HOMOGENEOUS-3-VECTOR XY) [Function]

Returns a 3-vector of element type single-float. If X or Y is
provided, then the corresponding element of the vector is set
appropriately, otherwise it defaults to 0.0. The third element of
the vector is always initialized to 1.0.

Note: Throughout this text, "set" is used to emphasize that the
value of the result element is altered and that no new
storage is allocated to it.

(MAKE-HOMOGENEOUS-3-BY-3 &KEY A00 A0T A10 A20 A21) [Function]

Returns a 3-by-3 matrix of element type single-float. If a keyword
argument is provided, the corresponding element of the matrix

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 203

MATMULT

is set appropriately, otherwise entries default to 0.0. The (2,2) is
always initialized to 1.0.

(MAKE-HOMOGENEOUS-N-BY-3 N &KEY INITIAL-ELEMENT) [Function]

Returns an N-by-3 matrix of element type single-float. If the
keyword argument is provided, all the elements in the first two
columns are set appropriately, otherwise they default to 0.0. The
third column is always initialized to 1.0.

(MAKE-HOMOGENEOUS-4-VECTOR XY 2) [Function]

Returns a 4-vector of element type single-float. If X, Y or Z is
provided then the corresponding element of the vector is set
appropriately, otherwise it defaults to 0.0. The forth element of
the vectoris always initialized to 1.0.

(MAKE-HOMOGENEOUS-4-BY-4 &KEY A00 A01 A02 A03 A10 A11 A12 A13
A20 A21 A22 A23 A30 A31 A2 [Function]

Returns a 4-by-4 matrix of element type single-float. If a keyword
arguments is provided, the corresponding element of the matrix
is set appropriately, otherwise entries default to 0.0. The (3,3) is
always initialized to 1.0.

(MAKE-HOMOGENEOUS-N-BY-4 N &KEY INITIAL-ELEMENT) [Function]

Returns an N-by-4 matrix of element type single-float. If the
keyword argument is provided, all the elements in the first three
columns are set appropriately, otherwise they default to 0.0. The
forth columniis always initialized to 1.0.

(IDENTITY-3-BY-3 RESULT) [Function]
Returns a 3-by-3 identity matrix.
If RESULT issupplied, it is side effected and returned.

(That is, the storage associated with the optional result
argument is reused for the result, rather than allocating new
storage for the result.)

(IDENTITY-4-BY-4 RESULT) [Function]

Returns a 4-by-4 identity matrix. If RESULT is supplied, it is side
effected and returned.

(ROTATE-3-BY-3 RADIANS RESULT) [Function]

Returns a 3-by-3 rotation matrix specified by a counter-clockwise
rotation of RADIANS radians. If RESULT is supplied, it is set and
returned.

(ROTATE-4-BY-4-ABOUT-X RADIANS RESULT) [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the X axis. If
RESULT is supplied, it is set and returned.

(ROTATE-4-BY-4-ABOUT-Y RADIANS RESULT) [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the Y axis. If
RESULT is supplied, it is set and returned.

204

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

MATMULT

(ROTATE-4-BY-4-ABOUT-Z RADIANS RESULT) [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the Z axis. If
RESULT is supplied, it is set and returned.

(SCALE-3-BY-3 SX SY RESULT) [Function]

Returns a 3-by-3 homogeneous scaling transformation that
scales by a factor of SX along the X-axis and SY along the Y-axis.
If RESULT is supplied, it is set and returned.

(SCALE-4-BY-4 SXSY SZ RESULT) [Function]

Returns a 4-by-4 homogeneous scaling transformation that
scales by a factor of $X along the X-axis, SY along the Y-axis, and
SZ along the Z axis. If RESULT is supplied, it is set and returned.

(TRANSLATE-3-BY-3 TX TY RESULT) [Function]

Returns a 3-by-3 homogeneous translation that translates by TX
along the X-axis and TY along the Y-axis. If RESULT is supplied, it
is set and returned.

(TRANSLATE-4-BY-4 TXTY TZ RESULT) [Function]

Returns a 4-by-4 homogeneous translation that translates by TX
along the X-axis, TY along the Y-axis and TZ along the Z axis. If
RESULT is supplied, it is set and returned.

(PERSPECTIVE-4-BY-4 PX PY PZ RESULT) [Function]

Returns a 4-by-4 homogeneous perspective transformation
defined by PX, PY, and PZ. If RESULT is supplied, it is set and
returned.

Matrix Multiplication Functions

If run on workstations equipped with the extended processor
option, these functions make good use of the hardware
floating-point unit. The three digits at the end of each function's
name describe the dimensions of their arguments.

Note: The results of the following matrix multiplication
functions are not guaranteed to be correct unless the
matrix arguments are all different (Not EQ).

(MATMULT-133 VECTOR MATRIX RESULT) [Function]

Returns the inner product of a 3-vector, VECTOR, and a 3-by-3
matrix, MATRIX. If RESULT is supplied, it is set and returned.

(MATMULT-331 MATRIX VECTOR RESULT) [Function]

Returns the inner product of a 3-by-3 matrix, MATRIX, and a
3-vector, VECTOR. If RESULT is supplied, it is set and returned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 205

MATMULT

(MATMULT-333 MATRIX-1 MATRIX-2 RESULT) [Function]

Returns the inner product of a 3-by-3 matrix, MATRIX-1, and
another 3-by-3 matrix, MATRIX-2. If RESULT is supplied, it is set
and returned.

(MATMULT-N33 MATRIX-1 MATRIX-2 RESULT) [Function]

Returns the inner product of an N-by-3 matrix, MATRIX-1, and a
3-by-3 matrix, MATRIX-2. If RESULT is supplied, it is set and
returned.

(MATMULT-144 VECTOR MATRIX RESULT) [Function]

Returns the inner product of a 4-vector, VECTOR, and a 4-by-4
matrix, MATRIX.If RESULT is supplied, it is set and returned.

(MATMULT-441 MATRIX VECTOR RESULT) [Function]

Returns the inner product of a 4-by-4 matrix, MATRIX, and a
4-vector, VECTOR. If RESULT is supplied, it is set and returned.

(MATMULT-444 MATRIX-1 MATRIX-2 RESULT) [Function]

Returns the inner product of a 4-by-4 matrix, MATRIX-1, and
another 4-by-4 matrix, MATRIX-2. |f RESULT is supplied, it is set
and returned.

(MATMULT-N44 MATRIX-1 MATRIX-2 RESULT) [Function]

Returns the inner product of an N-by-4 matrix, MATRIX-1, and a
4-by-4 matrix, MATRIX-2. If RESULT is supplied, it is set and
returned.

Miscellaneous Functions

(PROJECT-AND-FIX-3-VECTOR 3-VECTOR 2-VECTOR) [Function]

The homogeneous 3-VECTOR is projected onto the X-Y plane,
coerced to integer coordinates (rounding by truncation) and
returned. If 2-VECTOR is supplied, it is set and returned.

(PROJECT-AND-FIX-N-BY-3 N-3-MATRIX N-2-MATRIX) [Function]

The homogeneous N-by-3 matrix, N-3-MATRIX, is projected onto
the X-Y plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. If N-2-MATRIX is
supplied, it is set and returned.

(PROJECT-AND-FIX-4-VECTOR 4-VECTOR 2-VECTOR) [Function]

The homogeneous 4-vector, 4-VECTOR, is projected onto the X-Y
plane, coerced to integer coordinates (rounding by truncation)
and returned. If 2-VECTOR is supplied, it is set and returned.

206

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

MATMULT

(PROJECT-AND-FIX-N-BY-4 N-4-MATRIX N-2-MATRIX) [Function]

The homogeneous N-by-4 MATRIX, N-3-MATRIX, is projected
onto the X-Y plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. If N-2-MATRIX is
supplied, it is set and returned.

(DEGREES-TO-RADIANS DEGREES) [Function]
Returns DEGREES converted to radians.

Limitations
MatMult is not intended as a general matrix manipulation
package; itis specialized for the 3-by-3 and 4-by-4 cases.
Use CmiFloatArray for more general floating point array
facilities.

Example

(* ;3 "Try (spiral)")

(CL:DEFUN SPIRAL (ZOPTIONAL (WINDOW (CREATEW))
&AUX
éWIDTH (WINDOWPROP WINDOW 'WIDTH))
HALF-WIDTH (QUOTIENT WIDTH 2))
(HEIGHT (WINDOWPROP WINDOW 'HEIGHT))
HALF-HEIGHT (QUOTIENT HEIGHT 2))
SCALE-FACTOR (CL:EXP (QUOTIENT
(CL:LOG (QUOTIENT (MIN WIDTH HEIGHT) 2.0))
1440.0))))
(LET"((LINE-1 (MAKE-HOMOGENEOUS-3-VECTOR 1.0 0.0))
(LINE-2 (MAKE-HOMOGENEOUS-3-VECTOR))
(TEMP (MAKE -HOMOGENEQUS-3-VECTOR))
POINTS (CL:MAKE-ARRAY 2))
TRANSFORM (MATMULT-333 (ROTATE-3-BY-3 (DEGREES-TO-RADIANS 2.5))
(SCALE-3-BY-3 SCALE-FACTOR SCALE-FACTOR)))
(TRANSLATION (TRANSLATE-3-BY-3 HALF-WIDTH HALF-HEIGHT)))
(CL:DO ((L-1 LINE-1)
(L-2 LINE-2)
I 0 (CL:1+ 1)))
((EQ I 1728))
MATMULT-133"L-1 TRANSFORM L-2)
MATMULT-133 L-2 TRANSLATION TEMP)
PROJECT-AND-FIX-3-VECTOR TEMP POINTS)
(DRAWLINE HALF-WIDTH HALF-HEIGHT (CL:AREF POINTS 0)
(CL:AREF POINTS 1)
1
"REPLACE WINDOW)
(CL:ROTATEF L-1 L-2))))

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 207

MATMULT

[This page intentionally left blank]

208 LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

MINISERVE

MiniServe contains servers for three simple protocols: Time
Service (both PUP and XNS versions) and PUP ID Service. The
servers are intended to run in the background on an 1108 or
1186 on networks that lack other sources of these services.

Requirements
The time must be correctly set on the machine running MiniServe
(see "NS Time Service" below).

Installation
Load MINISERVE.LCOM from the library.
Either set the variable NS.TO.PUP.ALIST correctly, or make sure
that the variable NS.TO.PUP.FILE is the name of a file containing
a single form which will be used to set NS.TO.PUP.ALIST (see
"PUP ID Service" below).
Evaluate (STARTMINISERVER).

Functions

(STARTMINISERVE) [Function]

\NSTIMESERVER
\PUPTIMESERVER
\PUP.ID.SERVER

XNS Time Service

This function has no arguments; it adds three background
processes to the environment, one for each of the protocols that
miniserve handles. These processes and protocols are:

Provides the XNS Time Service
Provides the PUP Time Service
Provides the PUP ID Service

XNS Time Service answers requests for the time using the XNS
Time Protocol.

You must already have set the correct date and time on your
workstation, either via one of the installation utilities or by
evaluating

(SETTIME "dd-MMM-yy hh:mm:ss").

If you are not in the Pacific time zone, you should also make sure
the following variables are set correctly:

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 209

MINISERVE

\BEGINDST [Variable]

The ordinal day of the year (1= January 1, 366 = December 31)
on or before which daylight saving time starts in your area. Set it
to 367 if your area does not observe daylight saving time.

\ENDDST [Variable]
The ordinal day of the year on or before which daylight saving
time ends.

\TIMEZONECOMP [Variable]

The number of hours west of Greenwich; e.g., Eastern standard
time = 5.

PUP Time Service

PUP Time Service is like NS Time Service, but using a PUP
protocol. This service is not required by any Xerox workstation as
long as XNS Time Service is available, but may be of use to other
workstations.

You candisable it by evaluating

(MOVD 'NILL '"\PUPTIMESERVER).

PUP ID Service

PUP ID Service supplies workstations with PUP host numbers,
given their 48-bit XNS host numbers, so that they may
communicate via PUP protocols.

NS.TO.PUP.FILE [Variable]

The name of a file containing a single form which will be used to
set NS.TO.PUP.ALIST. Either this variable or NS.TO.PUP.ALIST
must be set for the PUP ID Service to work.

NS.TO.PUP.ALIST [Variable]

A list which maps a workstation's XNS host number to a pup host
number. Elements of this list are dotted pairs of the form:

((NSHOSTNUMBER A B C) . PUPNUMBER)

where A, B, C are the three 16-bit components of the
workstation's 48-bit XNS host number (the value of the variable
\MY.NSHOSTNUMBER), and PUPNUMBER is the corresponding
PUP host number to be assigned to the workstation. PUP host
numbers are integers in the range [1,254], and must be unique
among hosts on a single net.

To set up this list correctly you can do the following on each
workstation which will use the service (including the workstation
running MiniServe):

1. Decide on a unique PUP host number for this workstation.
It must be an integer inthe range [1,254]. For example we'll
choose PUP Host number 2.

210 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE

MINISERVE

2. Get the workstation's NS host number and add it to the PUP
host number. Evaluate the following form:

(CONS\MY.NSHOSTNUMBER YOURPUPNUMBER)

Using our chosen PUP host number of "2" and an example
value for \MY.NSHOSTNUMBER the result might be:

((NSHOSTNUMBER 0 43520 14312) . 2)

3. Back on the workstation which is about to run MINISERVE,
insert the dotted pair into NS.TO.PUP.ALIST.

Restarting MiniServe

If you need to restart MiniServe:

Use the PSW window to kill the three processes that were
started by STARTMINISERVE.

Evaluate (STARTMINISERVE).

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 211

MINISERVE

[This page intentionally left blank]

212 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE

