Table of Contents

e e R e i eS|

1. Koto Release Overview

Introduction

Summary of Major Incompatibilities 2
Changes Affecting Intermezzo Release Users 3
How to Use this Document 3
2. Features 5
Characters 5
Keyboard 10
TTYIN 17
Input/Output 18
Printing 21
Graphics 22
Window System 22
Arithmetic 25
Common Lisp Support 26
Storag'e 27
Interlisp-D Environment 28
File Package 31
Masterscope 34
Record Package 34
Code Editor 34
1108 Local File 34
Communications 35
Virtual Memory 37
Miscellaneous 38
3. Bug Fixes a1
TTYIN 41
Printing 42
Fonts 42

KOTO RELEASE NOTES

TABLE OF CONTENTS

Window System 43
Stack and Interpreter 43
Microcode di
File System 44
1108 Local Disk 44
Floppy 44
Communications 45
4. Library Packages a7
Chat 47
CMLARRAY 48
File Browser 49
RS232 52
HASH 53
SINGLEFILEINDEX 53
TCP/IP 53
TEdit 54

KOTO RELEASE NOTES

1. KOTO RELEASE OVERVIEW

Introduction

The Koto release of Interlisp-D provides a wide range of added
functionality, increased performance and improved reliability
Central among these is that Koto is the first release of intertisp
that supports the new Xerox 1185/1186 artificial inteiligenca
work stations, including the new features of these work stations
such as the expanded 19" display and the PC emulation option.
Of course, like previous releases of Interlisp, Koto also supports
the other current members of the 1100 series of machines,
specifically the 1132 and various models of the 1108.

Notable new software features include a growing coilection of
library and system support for features of Commonlisp,
including CommonLisp arrays, bignums, catch and throw, and a
variety of speciai forms and functions; numerous improvements
to the XNS and TCP/IP networking code; a revised CHAT interface
which permits different communication options and a variety of
different terminal handlers, including VT100 and TEK 4010
emulation; a complete rewrite of the RS232 code for improved
speed and functionality; support for the Xerox extended
character set, which permits the use of an enormous variety of
different character sets and fonts in strings, documents and Lisp
data structures; a range of user interface improvements to the
text editor; significant extensions and generalizations to the
device independent graphics interface; support for the low-cost
Xerox 4045 laser printer; and, via the Busmaster, interface
support for a wide variety of industry standard bus peripherals.

In addition, the Koto release is accompanied by the first
complete revision of the Interlisp Reference Manual since 1983,
This revision is a comprehensive and total rewrite which has
packaged the manual into three conveniently sized and
organized binders covering both the Interlisp language, its
environment and its I/O. Collectively, these new features and the
many minor bug fixes and improvements that have been made
to the system constitute a major expansion of its functionality.
The rest of this document reviews all of these changes in a
comprehensive manner, and provides detailed information as to
the way in which the system has changed. :

KOTO RELEASE NOTES

KOTO RELEASE OVERVIEW

Summary of Major Incompatibilities

The Koto release contains fixes for over 450 problem reports.
Many of these were minor details which were never noticed by
the average user. Some, however, were of major impact to one
or more users and are summarized in this document.

In Koto, as with other Interlisp releases, we have made a strong
effort to retain a high degree of backward compatibility with
past releases. However, there are a number of areas in which we
have felt it necessary to make small incompatible changes in
existing interfaces to extend their functionality. Incompatibie
changes are clearly indicated for each area in the sections that
follow. The principal instances of this are summarized below:

Keyboard

® New meaning for META key

® Several key assignments have changed

Window System

& New semantics for:

DOATTACHEDWINDOWCOM,
DOATTACHEDWINDOWCOMZ2, and
DOMAINWINDOWCOMPFN (internal subfunctions of
ATTACHEDWINDOW package)

® Semantics of WINDOWCOMACTION = MAIN in
ATTACHWINDOW changed slightly

Arithmetic

¢ New arbitrary precision arithmetic; negative arguments to
RADIX are no longer allowed

Storage

& CDRofnon-list causeserror (setting of CAR/CDRERR)

® RPLSTRING and RPLCHARCODE not guaranteed to modify
substrings

Communications

® New meaning for SPP.OPEN argument WHENCLOSED
® SPP.EOMP superseded by EOFP

2 KOTO RELEASE NOTES

'KOTO RELEASE OVE3YIEW

Changes Affecting Intermezzo Release Users

The following forward incompatibilities should also be noted by
those users wishing to switch freely between the Intermezzo and
Koto releases:

® TheKoto 1108 Local File System cannot be read by
Intermezzo sysouts.

® Code compiled with the Koto compiler will not necessarily
runin Intermezzo.

® The TEdit file format has changed, so that documents
written in Koto TEdit cannot be read by Intermezzo TEdit,
unless the "Old Format" Put command is used.

How to Use this Document

All changes are described in more detail in the sections that
follow. Three major categories are defined. They are:

® Features
® BugFixes
® Library Packages

Within these categories, descriptions are organized roughly by
system and then by importance. Most of the principal changes
have already been summarized above. At the beginning of each
section, you will find a list of system areas that have changed for
the Koto release.

KOTO RELEASE NOTES

KOTO RELEASE OVERVIEW

[This page intentionally left blank.]

4
KOTO RELEASE NOTES

2. FEATURES

The following areas are addressed in this section:

® Characters ® Interlisp-D Environment
e Keyboard ® File Package

e TTYIN ® Masterscope

® nput/Output ® Record Package

® Printing ® Code Editor

® Graphics e 1108 Local File

e \Window System ® Communications

® Arithmetic ® Virtual Memory

® Common Lisp Support Miscellaneous

® Storage

Characters

Interlisp-D now supports the full 16-bit NS character set.

Interlisp-D now supports the Xerox corporate character code
standard, commonly referred to as the NS (Network Systems)
encoding, described in the document Character Code Standard
[Xerox System Integration Standards, XSIS 058404, April 1984].
Previous to the Koto release, Interlisp-D used the ASCII
(American Standard Code for Information Interchange)
encoding. While the extended-ASCll encoding provided for 8-bit
(256 available) characters (primarily Latin alphabet and
computer-specific symbols), the NS encoding supports 16-bit
(65536 available) characters comprising many foreign alphabets
and special symbols. For instance, Interlisp-D supports the
display and printing of the following:

Le systéme d’information Xerox 11xx est remarquablement
polyglotte.

Das Xerox 11xx Kommunikationssystem bietet merkwiirdige
multilinguale Nutzmoéglichkeiten.

Xerox 11xx HMeeT 3aMeUATeIbHY 0 MHOTO-H3bIYHY 10
CITOCODOHOCTb.

ME[Jwl & VvwithRwv: M E[v]

KOTO RELEASE NOTES

FEATURES

The benefit of having this large character set, in contrast to
approaches that use a small set of character codes and a
multiplicity of fonts (e.g., a Greek font, a math font), is that each
semantically distinct character is represented by its own
character code, completely independent of the character’s
appearance (font). Thus, the Greek character upper-case Beta Is
always character code 9794, independent of whether it appears
in printed form in a serif style, sans-serif style, italic, etc., and it s
unrelated tothe Roman letter B (character code 66).

NS characters can be used in strings, litatom print names,
symbolic files, or anywhere else that characters can be used. All
of the standard string and print name functions (RPLSTRING,
GNC, NCHARS, STRPOS, etc.) accept litatoms and strings
containing NS characters. For example:

«(STRPOS “char" "this is an 8-bit character string")

18

«(STRPOS "char" "celui-ci comporte des charactéres NS")
23

«—(SETQ MATKUH-3HAK 'b)

b

Characters are organized into 256-member character sets, each
of which generally consists of semantically related characters.
For example, character set 38 is the Greek character set and
contains the Greek alphabet and punctuation characters needed
to print Greek text. A 16-bit character code thus consists of an
8-bit character set and an 8-bit character number within that set.
The ASCII character set is contained in NS character set zero;
thus, ASCIl characters are still represented by the same 8-bit
character codes as previously (i.e., 16-bit character codes whose
high 8 bits are zero). Most strings and atoms still consist entirely
of characters from character set zero and are represented just as
space-efficiently in memory and on files as in earlier releases of
Interlisp-D that used only ASClI characters.

In almost all cases, a program does not need to know that it is
dealing with 16-bit characters rather than 8-bit characters—the
higher level system functions all treat them transparently. The
exception is in character-level input/output, where the
important fact to be aware of is that characters are not bytes.
The file pointer of a random-access file still counts bytes, and the
function NCHARS still counts characters, but the two are no
longer directly related. Thisisdiscussed in more detail below.

KOTO RELEASE NOTES

FEATURES

Character-level Input/Qutput

Incompatible Change: BIN and BOUT are no longer appropriate for character

input/output.

A character is no longer generally representable in 8 bits.
Therefore, characters can no longer, in general, be read or
written with the functions BIN and BOUT, which read and write
8-bit quantities. The change is mostly transparent to user
programs, especially if those programs use only the higher level
functions, such as READ and PRINT. However, itis likely that user
programs that manipulated a file character by character using
BIN and BOUT should now use the following functions, which
may produce or consume more than asingle byte:

(READCCODE STREAM) [Function]
(PEEKCCODE STREAM) (Function]
(PRINTCCODE CODE STREAM) [Function]

These functions are documented in the new Interlisp-D
Reference Manual. The functions BIN and BOUT are still
appropriate for use when reading and writing strictly binary
(rather than character) data.

Interlisp-D supports two ways of writing NS characters on files.
One way is to write the full 16-bits (two bytes) every time a
character is output. The other way, which is the system default,
is touse "run-encoding,"” in which a run of characters in the same
character set is written as a sequence of 8-bit character numbers
within the character set, preceded oy a "change character set”
command. The byte 255 (illegal as either a character set number
or a character number) followed by a character set number is
used to signal a change to a given character set; the following
bytes, up until the next change-character set sequence, are all
interpreted as coming from the specified character set.
Run-encoding can reduce the number of bytes required to
encode a string of NS characters, as long as there are long
sequences of characters from the same character set, which is
usually the case.

Most characters in common use, including those in the ASCII
character set, are in character set zero; a file containing only
these characters is thus in exactly the same format as in previous
releases, viz., one byte per character. However, this should not
be relied on.

The fact that the file representation of a character may be more
than a single byte has important consequences for any program
that uses random access on text files whose characters are
run-encoded. First, and most obviously, you cannot count the
characters in a string being printed and use that number to
derive the file pointer of where the string ends—you must use

KOTO RELEASE NOTES

FEATURES

Extensions to CHARCODE

GETFILEPTR. Second, programs that use SETFILEPTR need to be
aware of possible character set changes. At any point when a file
is being read or written, it has a "current character set,” viz., the
character set specified in the most recent "change character set”
command written on the file. If the file pointer is changed with
SETFILEPTR to a part of the file with a different character set, any
characters read or written may have the wrong character set.
Programs that use COPYBYTES to copy blocks of characters must
ensure both that they are copying on character boundaries and
copying to a place thatisin the correct character set.

The current character set can be accessed with the following
function:

(CHARSET STREAM CHARACTERSET) [Function]

Returns the current character set of the stream STREAM, or T if
STREAM is not run-encoded. |f CHARACTERSET is non-NIL, the
current character set for STREAM is set. For output streams this
causes bytes to be written to the stream if CHARACTERSET s
different from the current character set; for input streams it
merely changes the reader’s belief about the current character
set. If CHARACTERSET is T, run encoding for STREAM s
disabled—henceforth each character printed to the stream is
printed as exactly two bytes (the character set and the character
number).

Programs that wish to count characters or avoid worrying about
character set changes can thus disable run encoding for a
particular stream and count each character as two bytes. There
is, however, a cost in file space.

CHARCODE has been extended to allow specifying NS
Characters.

CHARCODE has been extended to allow the specification of
16-bit NS characters in multiple character sets. It also uses two
new variables, CHARACTERNAMES and CHARACTERSETNAMES,
so characters and character sets can be specified symbolically.
The new definition is the following:

(CHARCODE CHAR) [NLambda Function]

Returns the character code specified by CHAR (unevaluated). If
CHAR is a one-character atom or string, the corresponding
character code is simply returned. Thus, (CHARCODE A) is 65,
(CHARCODE 0) is 48. If CHAR is a multi-character litatom or
string, it specifies a character code as described below. If CHAR s
NIL, CHARCODE simply returns NIL. Finally, if CHAR is a list
structure, the value is a copy of CHAR with all the leaves replaced

KOTO RELEASE NOTES

FEATURES

by the corresponding character codes. For instance, (CHARCODE
(A(BCQ)) => (65(6667)).

If a character is specified by a multi-character litatom or string,
CHARCODE interprets it as follows:

CR, SPACE, etc. The variable CHARACTERNAMES contains an
association list mapping special litatoms to character codes
Among the characters defined this way are CR (13), LF (10),
SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB (9),
NULL (0), and DEL (127). Examples: (CHARCODE SPACE)
returns 32, and (CHARCODE CR) returns 13.

CHARSET,CHARNUM, CHARSET-CHARNUM If the character
specification is a litatom or string of the form
CHARSET,CHARNUM or CHARSET-CHARNUM, the character
code for the character number CHARNUM in the character set
CHARSET is returned. CHARSET is either an octal number, or a
litatom in the association list CHARACTERSETNAMES (which
defines GREEK, CYRILLIC, etc.). .CHARNUM is either an octal
number, a single-character litatom, or a litatom from the
association list CHARACTERNAMES. Examples: (CHARCODE
12,6), (CHARCODE 12,5SPACE), (CHARCODE GREEK,A) and
(CHARCODE 1 GREEK,A)

Note that if CHARNUM is a single-digit number, it is
interpreted as an octal character code, not as a character.
Thus (CHARCODE GREEK,3) denotes the fourth character in
the Greek character set, not the character "3" in that
character set.

T CHARSPEC If the character specification is a litatom or
string of one of the forms above, preceded by the character
“ 1", this indicates a "control character," derived from the
normal character code by cearing the seventh bit (100Q) of
the character code (normally set in alphabetic characters).
Example: (CHARCODE 1T A)

#CHARSPEC (8-bit character codes) If the character
specification is a litatom or string of one of the forms above,
preceded by the character "#", the eighth bit (200Q),
normally zero for 7-bit ASCll characters, is set. This is the way
to get character numbers greater than 127. 1 and # can both
be set at once. Examples: (CHARCODE #A), (CHARCODE
1 GREEK,A)

Note: In Intermezzo (and in some other operating systems),
characters with the eighth bit set were considered
“meta" characters. In the Koto release, however,
"meta" means character set 1, and the meta key
produces characters with the 400Q bit set, not 200Q.

KOTO RELEASENOTES

FEATURES

Keyboard

New keyboard interpretations have been assigned.

With this release, we have assigned actions to the various
function keys on the 1108 and 1186 keyboards, so that
applications like TEdit can use them sensibly. In the process, we
tried to minimize the differences among keyboards, and to
remain consistent with a later implementation of a user interface
for Lisp.

Four kinds of keyboards are supported:
Lisp keyboard on 1108s
Old office keyboard on 1108s
Lisp keyboard on 1186s
Office keyboard on 11865

New 1108 and 1186 Lisp keyboards will be configured as
indicated in Figures 1 and 2, respectively. The other two
keyboards require that some functions be rearranged.

1108 office keyboard: The latch of the "Lock" key is to be
defeated, as that key is now a lock-shift toggle key (i.e. hitting it
once turns shift-lock on, hitting it again turns shift-lock off).

1186 office keyboard: The shift-lock key stays a shift-lock (it
becomes the CONTROL key on the Lisp version of the keyboard)
The PROP'S key becomes the CONTROL key, and the CAPS-LOCK
key becomes EDIT.

Most of the function keys have been assigned codes in the Xerox
Character Code Standard's character set 2 range, 512-767. These
codes are represented below as 2,000, where 000 are octal digits
corresponding to the character's offset from 512. E.g., Character
524 = 2,14.

Generally, only a single character code is shown for each key. To
get the shifted character code (if it's not specified another way),
add 40 octal to the value shown. Sometimes, codes have only
been assigned to the shifted state of a key, or only the unshifted
state (e.g., onthe 1186's numeric keypad, the digit keys are digits
when shifted, and have special functions when unshifted); these
are noted.

10

KOTO RELEASE NOTES

FEATURES

1"

93 .
22y
aQ
v'5 0
= 2
o~
- - @
v o 3
2L
auw
B oo T
c o)
= o =
v Oy
3]
o a
pieoqAay dsiygoLL | 2anbiy
3¢ ST 83 i
g / w u q A b) X b4 szl
11a3 N 1414S ¢ < > W N q A b) X b4 L4IHS T0UINOD viinm
¢01$ " v
1434 d . .
x . . 3 [6 ' p N e [9°2) lze)
$X001 3 : X 5 r 5 3 a S v %301 InON Invs
94 ¥9'Z
(24 €L’z (444 p .
’ [) d o] n A 1 J 2 M b lee €7
SNIDNVYW i N¥N13IY ﬁ v & fe) | n A 1 Yl 3 M O vy AdOD ani4
X
0oanNn " =
Le N -) 6 8 9 < v € z L o o't
M 3IVdSNIVE 3 N) . 1 % $ # ® i uINa NIVOY
yidd
Sie o'e (114 €L’z 0L’z €017 zoL'z or'e
s1INv430 ¥I9UVY ans ¥3dns INNYIONN $IVLI a108 ¥IIND

3101609

KOTO RELEASE NOTES

Zl

S3ILON 3SVv313¥ OLOM

°
e &
Xa m
28 g
o 7 g’
- X -
LR
239
°Ko
Z o =
(o -’)
o °
>3 g_:
S®
F1 F2 F3 F4 T F5 F6 F7 F8 F9 F10
2,101 2,102 2,103 2,104 DES I 2,106 2,107 2,110 2,011 2,112
CENTER 8OLD ITALIC CASE STRIKEOUT =~ UNDERLINE SUPER LARGER MARGINS LOOKS
sus SMALLER
tG 2,27 ; @ $ 1 & @ (+ .
: # % N + BACKSPACE = X -
'szov moﬂ_m ESC 1 3 3 a 5 6 7 8 9 i - num fIscrout | emeax
11 *JZ 18
TAB Q w € R r Y u ' o i } RETURN Prisc 7 4 9
)UaNDO , ‘OAGAlN q W e ¢ t y u | o [] DOIT HOME 8 PguP
; ’ . 13 14 215
A S D F G H J K . " a 6
FIND copy
2.3 12.7] o a s d f] h J K ; N <o 5 -
¥ f [3 216
X
4 X Vv B N M < > ? T 1 2 3
SAME MOVE SHIFT SHIFT
z X 4 v b n m / END d PgDN
221 | [26] 222 220
e
HELP CONTROL META EXPAND "‘}S i
X 25 225 4344 221
Figure2 1186 Lisp Keyboard

S3UNLV3S

FEATURES

Four keys were treated specially: META, SAME, COPY, and
MOVE. The META key is a SHIFT-like key, with the effect of
shifting the typed character into NS character set 1. The SAME
key is equivalent to the META key for this release, to retain
compatibility with the TEdit use of the META key for copying
looks. The SAME, COPY and MOVE keys are left without key
actions. The intent is that these keys be used as selection
modifiers; in future releases, we plan to install shift states to
correspond to them, so that the functionality can be remapped
to other keys at the user's discretion. For those who wish to
assign real character codes to these keys for special use, the
assigned codes are: i

META 2,25
SAME 2,2
MOVE 2,6
COPY 2,7

These codes are shown in brackets in the keyboard tables below
toindicate that these keys initially have no code assignments.

Although we have attempted to minimize incompatibilities,
users may wish to note the following effects of the new
keyboard assignments:

® The BS key now generates T H rather than TA, making it
ASCll-compatible.

® There is no longer a single key on the 1108 or 1185/6 that
generates the ASCll character line feed. To type a line-feed,
use CONTROL-J.

® There are no longer any keys on the 1108 keyboard that
generate the same codes as the three blank keys on the
1100/1132 keyboard (these used to correspond to
KEYBOARD, OPEN, AND STOP).

® Since the EXPAND key (on 1108s) now generates the ASCIi
Escape character, the default TEdit syntax for the character
Escape, even on the the 1132, is now EXPAND. Users who
prefer the previous semantics of ESCAPE should execute

(TEDIT.SETSYNTAX (CHARCODE ESC) 'REDO).

® The META key generates characters in character set 1. In
earlier releases, it generated characters with the 200Q bit set.
Programs that tested META codes need to be changed.

KOTO RELEASE NOTES

FEATURES

1185/6 LISP Keyboard

Keys in the left-hand cluster:

Keylegend
HELP
SAME
FIND
UNDO
STOP
EDIT
MOVE
COPY
AGAIN
DEL

unshifted code

shifted code

2,01
(2,02]
2,03
2,04
TE
2,05
(2,06
(2,07]
2,10
177

Keys in the right-hand cluster:

Key legend

CAPS LOCK
NUM LOCK
SCROLLLOCK
BREAK

DOIT

7

(Vo e o]

NEXT

unshifted code

1G

2,27

shifted code

[lock toggle]
2,11
2,12
]
2,13
2,14
i3
2,15
-
2,16
>
2,17
v
3,20
2,21

2,22

[lock toggle]

X

[Vo R e o]

KOTO RELEASE NOTES

FEATURES

Function Keys:
Keylegend
F1/Center
F2/Bold
F3/italics
F4/Case
F5/Strikeout
F6/Underline
F7/Super-Sub
F8/Larger-Smaller
F9/Margins
F10/Looks

unshifted code

shifted code

2,101
2,102
2,103
2,104
2,105
2,106
2,107
2,110
2,111
2,152

Keys in the main cluster:

Key legend
Backspace
Return
EXPAND

META

1108 Lisp Keyboard

unshifted code

shifted code

TH
CR
2,24
[2,25]

TH
CR
2,64

Keys in the left-hand cluster:

Key legend
SAME
FIND
MOVE
COPY
AGAIN

DEL

unshifted code

shifted code

(2,02]
2,03
(2,06]
(2,07]
2,10

177

2,27

KOTO RELEASE NOTES

FEATURES

Setting Up Your Keyboard

Keys in the right-hand cluster:

Keylegend
HELP
UNDO
STOP

EDIT

DOIT

NEXT
LOOKS
EXPAND

unshifted code

shifted code

2,01
2,04
TE
2,05
2,13
2,22
2,111
ESC

1G

2,64

(note that this means there are two EXPAND characters)

Function Keys:
Keylegend
F1/Center
F2/Bold

F3/Italics
F4/Underline
F5/Superscript
F6/Subscript
F7/Larger-Smaller

F8/Defaults

unshifted code

shifted code

2,101
2,102
2,103
2,106
2,113
2,114
2,110
2,115

Keys in the main cluster:

Key legend
Backspace

Return

unshifted code

2,153
2,154

2,155

shifted code

TH
CR

TH
CR

If you have an older 1108 keyboard, or the office version of the
1185/6 keyboard, you should execute (or have your personal iNIT

file execute)

(SETUP OFFICE.KEYBOARD)

KOTO RELEASE NOTES

FEATURES

Keyboard Programmer Changes

The internal handing of keyboard buffering has changed in
Koto. For the most part, the changes were an internal
restructuring which will allow future enhancements.

New function, SHIFTDOWNP, for sensing shift flags.
(SHIFTDOWNP SHIFT) [Function]

Returns T if the internal "shift" flag specified by SHIFT is on; NIL
otherwise. If SHIFT = 1SHIFT, 2SHIFT, LOCK, META, or CTRL,
SHIFTDOWNP returns the state of the left shift, right shift, shift
lock, control, and meta flags, respectively. If SHIFT = SHIFT,
SHIFTDOWNP returns T if either the left or right shift flag is on. If
SHIFT = USERMODE1, USERMODE2, or USERMODES3,
SHIFTDOWNP returns the state of one of three user-settable flags
(see below) that have no other effect on key interpretation.
These flags can be set or cleared on key transitions by using
KEYACTION.

New KEYACTION types are accepted for changing the state of
shift flags:

LOCKTOGGLE

complements the lock shift flag (turning it off if the flag is on; on
if the flag is off) For keyboards where the lock-spring is
removed, a reasonable configuration might be (KEYACTION
'LOCK '(LOCKTOGGLE . IGNORE)) so that the lock state can be
changed just by hitting the key again instead of having 2 keys
(superscript and subscript) tied to this one function.

USERMODE1TUP, USERMODET1DOWN, USERMODE1TOGGLE
USERMODE2UP, USERMODE2DOWN, USERMODE2TOGGLE
USERMODE3UP, USERMODE3DOWN, USERMODE3TOGGLE

provide three user shift-modes. The transitions change an
internal bit that the user can read using SHIFTDOWNP. These
flags have no other effect on key interpretation.

TTYIN

TTYIN supports Copy/Move keys on 1108 or 1185/86.

TTYIN on an 1108 or 1185/86 now supports the COPY and MOVE
keys as synonyms for SHIFT and CTRL-SHIFT when doing mouse
selection.

KOTO RELEASE NOTES

17

FEATURES

TTYIN uses UNDO key to restore buffer or undo deletion.

This functionality is on the middle-blank key on the 1132, and
used to be on the OPEN key on the 1108. When pressed as the
first character of input, the UNDO key unreads the previous lines
of input. When pressed following a deletion (e.g., after a series
of backspaces), UNDO restores the deleted characters.

Input/Output

INTERRUPTCHAR specifies which process the interrupt occurs in.

The HARDFLG argument to INTERRUPTCHAR (previously ignored
in Interlisp-D) is now used to determine which process the
interrupt should run in. If HARDFLG is NIL, the interrupt will run
in the TTY process, which is the process currently receiving
keyboard input. If HARDFLG is T, the interrupt will occur in
whichever process happens to be running. If HARDFLG is
MOUSE, the interrupt will happen in the mouse process, if the
mouse is busy, otherwise in the TTY process.

RESET.INTERRUPTS has been changed to permit setting
HARDFLG.

The PERMITTEDINTERRUPTS argument to RESET.INTERRUPTS has
been extended to accept a list of elements (CHAR TYP/FORM
HARDFLG), instead of just (CHAR TYP/FORM).

SKREAD now takes a RDTBL argument.

SKREAD now takes a RDTBL argument like READ; unlike READ,
the RDTBL defaults to FILERDTBL, not the current primary read
table.

READFILE has new RDTBL and ENDTOKEN arguments.
(READFILE FILE RDTBL ENDTOKEN) (Function]

Reads successive expressions from FILE using READ (with read
table RDTBL) until the single litatom ENDTOKEN is read, or an
end of file encountered. Returns a list of these expressions.

If RDTBL is NIL, it defaults to FILERDTBL. If ENDTOKEN is NIL, it
defaults to the litatom STOP.

EOF errors no longer automatically close the file.

This change actually took place in the Intermezzo release, but
was not noted then. When an END OF FILE error occurs, the file
now remains open. Most well-structured code will close the file

KOTO RELEASE NOTES

FEATURES

after you exit the error, but programs that depended on the file
being closed by the system should be examined. To restore the
old behavior, where the file is closed by the system before the
END OF FILE error is signaled, (SETQ DEFAULTEQFCLOSE
‘CLOSEF).

Mouse event functions have been removed.

The functions ENABLEMOUSE, GETMOUSEBUF etc. have been
removed from the system. We believe these have not functioned
for the past several releases.

New function SKIPSEPRS exists for skipping over "white space.”
(SKIPSEPRS FILE RDTBL) [Function]

Advances the file pointer for FILE until it encounters a
non-separator character (as defined by RDTBL). The file pointer
is left positioned ready to read the character, which is also
returned. If no non-separator character is found before the end
of file is reached, SKIPSEPRS returns NIL and leaves the pointer
positioned at the end of the file. Useful for skipping over "white
space” whenscanning a file, character by character

DIRECTORY features "$", "?", "-" documentation has been
clarified.

The DIRECTORY function pattern-matching characters "S"
(escape) and "?" do not work for all file servers. In addition,
compound file specifications such as (T* - *. DCOM) have never
been totally debugged. These features never functioned
properly, and were poorly designed, so we are withdrawing
support for them, and removing them from the documentation.
There are currently no plans to re-implement them.

DIR and NDIR are now functions, not macros.

This means they can be called from any place you can evaluate a
Lisp expression (e.g., DEdit). However, it also means that DIR
typed as a single atom to the executive does not work. You must
type "DIR]" or "DIR *" instead of just "DIR" in order to
enumerate all files on the connected directory.

DELVER option has been added in DIRECTORY.
DIR <spec> DELVER [LispX Command]

This will delete all but the highest version of all files matching
<spec>.

KOTO RELEASE NOTES

FEATURES

Subdirectories are better supported.

The file system now understands partial names that contain a
subdirectory specification without the main directory. In the
case of a name being treated as a a file name, the name s
considered to contain a subdirectory if it does not start with any
directory punctuation, but there are terminating directory
delimiters in it. In the case of a name being treated as a
directory, the name is considered to be be a subdirectory if it
does not start with any directory punctuation, but ends in a
directory delimiter. CONN understands subdirectories, as does
the code that fillsin connected directory defaults.

For instance, if you are connected to {Server}<Foo>, then
"Bar>Fum.tmp" refers to {Server}<Foo>Bar>Fum.tmp.
" <Bar>Fum.tmp" refers to {Server} <Foo>Bar>.

“CONN Bar" or "CONN<Bar>" connects you to
{Server}<Bar>.

Vertical-bar syntax has been extended and now allows entering
numbers in arbitrary radices.

The read macro for vertical bar (|) has been extended to ailow a
number of new forms to be entered, including entering integers
in arbitrary radices.

When followed by an end-of-line, tab or space, | is ignored, i.e.,
treated as a separator character. Otherwise it is a "dispatching”
read macro whose meaning depends on the character(s)
followingit. The following are currently defined:

' (quote) - synonymous with back-quote.

(period) - returns the evaluation of the next expression, i.e.,
this is a synonym for control-Y.

, (comma) - returns the evaluation of the next expression at
load time, i.e., the following expression is quoted in such a
manner that the compiler treats it as a literal whose value is
not determined until the compiled function containing the
expression is loaded.

"0" or "0" (the letter Q) - treats the next number as octal,i.e.,
reads it in radix 8. For example,|012 = 10 (decimal).

“B" or "b"- treats the next number as binary, i.e., reads itin
radix 2. For example,|b101 = 5 (decimal).

“X" or "x" - treats the next number as hexadecimal, i.e_, reads
it in radix 16. The upper-case letters A though F are used as
the digits after 9. For example, [x1A = 26 (decimal).

"R" or "r" - reads the next number in the radix specified by
the (decimal) number that appears between the | and the R.

20

KOTO RELEASE NOTES

FEATURES

When inputting a number in a radix above ten, the upper-case
letters A through Z can be used as the digits after 9 (but there
is no digit above Z, so it is not possible to type all base-99
digits). For example, [3r120 reads 120 inradix 3, returning 15.

(. {, T - used internally by HPRINT and HREAD to print and
read unusual expressions.

Backquote read macro now transforms "," and ",@" prefixes.

The Backguote read macro transforms the "," and ",@" prefixes
in the body of the form to be the wrappers "\," and "\,@" . for
example, (A ,B ,@C) reads in as (BQUOTE (A (\, B) (\,@ C))). This
change allows certain forms to be read and translated correctly
that previously could not. However, the older forms of BQJOTE,
in which the comma prefixes appeared at top level, are still
recognized.

Printing

Landscape printing is now supported for Interpress.

Landscape printing is now supported on Interpress printers such
as the 8044. To print a landscape document, include the option
LANDSCAPE, wvalue T, in the OPTIONS argument to
OPENIMAGESTREAM or SEND.FILE.TO.PRINTER.

Note: When sending TEdit hardcopy to a landscape image
stream, using TEDIT.FORMAT HARDCOPY, it is still
necessary to set the margins in the page layout menus
relative to a portrait page.

Printing to Fax Print server is now supported.

Hardcopy output can now be sent to a telecopier if you have an
NS server with Fax (telecopier) service enabled. Any place that
Lisp needs a "printer name", such as in the "Hardcopy Server"
field of the TEdit menu, you can supply the name in the form of
Person@Place. The Person part of the name is optional; if
presentitis the name of the recipient of the telecopy (if omitted,
the @ is still required.) Place somehow specifies how to get
there: the name of the NS server to which the Fax request is to
be sent, and the phone number the server must dial to get tothe
desired remote telecopier. Place takes one of two forms:

1. A phone number (sequence of digits and hyphens), exactly as
the Faxserver must dial it from its dial-out phone, or

2. A place name, a single mnemonic of your choosing. You
register place names by adding them to the a-list

KOTO RELEASE NOTES

21

FEATURES

FAXADDRESSES. Each element in FAXADDRESSES is of the form
(PlaceName PhoneNumber FaxServerName), where the first
element is an uppercase litatom, the second is a string containing
the phone number (as in (1)), and the optional third is the name
of the desired NS Server.

The variable DEFAULTFAXHOST contains the name of the NS Fax
Server to use if not otherwise specified, such as in case (1), or if
the FaxServerName in the entry in FAXADDRESSES is missing in
case (2).

Variable INTERPRESSFAMILYALIASES allows coercing font
family names.

There is a new global variable to control the rendition of fonts
on NS printers: INTERPRESSFAMILYALIASES. It is a property list
of the nominal font name matched with the printer’s name for a
given font. For example, the initial value of this variable is

(LOGO Logotypes-Xerox)

PRINTERTYPE property can be used to determine printer type.

The function PRINTERTYPE uses a number of heuristics to
determine the printer type of a printer. Another useful way of
specifying the type of a printer is to put the type as the value of
the PRINTERTYPE property of the printer name.

Graphics

Polygon filling is now provided by Device Independent Graphics
(DIG) for the Display and Interpress Printers.

For details see the new revised Interlisp-D Reference Manual.
Because many Interpress printers do not implement the polygon
mask instruction, polygons are currently scan-converted in Lisp.
In spite of this, large or complex polygons may exceed the
capabilities of some printers. Scan-converted large or complex
polygons also create extremely large Interpress masters, and thus
may take a very long time to output. Future releases will provide
a mechanism to better address various printer capabilities and
restrictions.

Window System

New heuristic is used to reshape windows.

22

KOTO RELEASE NOTES

FEATURES

The new heuristic prefers to leave the upper left corner of the
window visible. Under some conditions, the part of a window
that is visible after it is reshaped to be smaller will be different
than in previous releases.

GETREGION and SHAPEW have been changed to allow
specification of initial "ghost" region.

Previously, the initial "ghost" region that GETREGION used to
prompt the user was always MINWIDTH by MINHEIGHT
GETREGION has been changed to take a new argument,
INITCORNERS, that specifies the initial ghost region. If
INITCORNERS is non-NIL, it should be a list of the form (BASEX
BASEY OPPX OPPY), where (BASEX, BASEY) describes the
anchored corner of the box, and (OPPX, OPPY) describes the
trackable corner (in screen coordinates). The cursor is moved to
(OPPX, OPPY). If INITCORNERS is NIL, the initial ghost region is
determined by MINWIDTH by MINHEIGHT, as before.

SHAPEW has been changed to use the INITCORNERS argument
when it calls GETREGION. If the window property
INITCORNERSFN is non-NIL, SHAPEW applies it to the window,
and the result is passed as the INITCORNERS argument to
GETREGION. This allows windows to specify their default size
when reshaped.

Attached windows can except themselves from individual
operations.

The attached window facility has been reworked to provide a
cleaner way of specifying whether window operations apply to
the whole window group, or just the individual window. Instead
of directly changing the DOWINDOWCOMFN of the main and
attached windows, each attached window has two new window
properties lists, PASSTOMAINCOMS and REJECTMAINCOMS.

PASSTOMAINCOMS is a list of window commands (e.g. CLOSEW,
MOVEW) which when selected from the attached window's
right-button menu are actually applied to the central window in
the group. If NIL, all window operations are directly applied to
the attached window. If T, all window operations are passed to
the central window.

REJECTMAINCOMS is a list of window commands that the
attached window will not allow the main window to apply toit.
This is how a window can say "leave me out of this group
operation.” If NIL, all window commands may be applied to this
attached window. If T, no window operations are accepted.

These changes have been made to preserve backward
compatibility as much as possible. ATTACHEDWINDOW still
interprets its WINDOWCOMACTION argument the same way,

KOTO RELEASE NOTES

23

FEATURES

Incompatible change:

Incompatible Change:

but implements it by setting the PASSTOMAINCOMS window
property appropriately.

For more complete documentation on the attached window
facility, see the Interlisp-D Reference Manual.

Calling ATTACHWINDOW with a WINDOWCOMACTION
argument of MAIN will now cause all window operations
selected from the attached window's right button menu to be

applied to the central window of the group.

In past releases MAIN caused the main window's
RIGHTBUTTONFN to be called.

New semantics exist for the functions DOATTACHEDWINDOWS,
DOATTACHEDWINDOWCOM?2, and DOMAINWINDOWCOMFN.

Because of the changes described above, the meanings of these
functions have changed. DOATTACHEDWINDOWCOM s exactly
the same as DOATTACHEDWINDOWCOM2; both examine the
PASSTOMAINCOMS properties of the window. Programs that call
these functions directly should be examined to be sure the new
semantics are consistent with the program’s intent.

New attached window function has been added:
REMOVEWINDOW.

The function (REMOVEWINDOW WINDOW) detaches and closes
WINDOW, which is assumed to be a window attached to
another. In addition, any other windows attached above or
below the same window, but farther away from the main
window, will be snuggled up closer to the main window to fill
the gap. (Gaps on the left and right, however, are not yet
handled.)

Extended scrolling capability has been implemented for EXTENT.

A new window property was added to control the way scrolling
deals with the window's EXTENT. Previously, scrolling was
limited to keep the X dimension of the EXTENT in the window
and to keep the Y dimension visible in the window or just off the
top of the window. This had two problems: the user was forced
to choose between thumb scrolling and the ability to scroll into
space that is outside of its EXTENT, and some applications didn't
want Y to scroll off the top.

To correct these shortcomings, the window property
SCROLLEXTENTUSE is used to indicate how the EXTENT field
limits scrolling. The possible values for it are:

NIL The current behavior (for backward compatibitity)
which is limit in X, allow Y off top. In this mode the
EXTENT is either in the window or just of the top of
the window.

24

KOTO RELEASE NOTES

FEATURES

T Doesn't limit in either dimension but does support
thumb scrolling. The user can scroll the window to
anywhere but can get back to the EXTENT by thumb
scrolling.

LIMIT Limits in both directions. The window is only allowed
toview things within the EXTENT.

+ Allow the EXTENT to scroll just off in the positive
direction.

- Allow the EXTENT to scroll just off in the positive
direction.

+-or-+ Allow the EXTENT toscroll just off in both positive and
negative directions.

CONS of the X behavior and the Y behavior:

Same atoms as above except that NIL is equivalent to
LIMIT.

Note: The default is equivalent to (LIMIT . +).

Inspector windows allow copy selection.

It is now possible to copy-select items from an Inspector window.
For printable objects (atoms, strings, numbers), the print name is
copy-selected: for unprintable objects, an expression of the form
(\WAG2 x vy), which when evaluated yields the object, is
copy-selected.

Arithmetic

Arbitrary-size integers (bignums) are now supported.

Interlisp-D now supports arbitrary-size integers, or “bignums.”
Whenever an arithmetic operation tries creating an integer
larger than MAX.FIXP, a bignum is automatically created. The
changes to the system are primarily invisible to the user: integer
functions manipulate bignums the same as other integers.
NUMBERP and FIXP of a bignum are true. Bignums can be tyoed
in and printed by the system, just like other integers. Some
related changes made to support bignums are:

1. With the addition of bignums, the concept of MAX.INTEGER
is meaningless. However, for some algorithms, it is useful
to have an integer that is larger than any other integer
Therefore, the values of MAX.INTEGER and MIN.INTEGER
are two special bignums; the value of MAX.INTEGER is
GREATERP than any other integer, and the value of
MIN.INTEGER is LESSP than any other integer Trying to do

KOTO RELEASE NOTES

25

FEATURES

Incompatible change:

arithmetic using these special bignums, other than for
comparison, will cause an error. The variables MAX.FiXP
and MIN.FIXP can be used, if necessary, to refer to the
largest and smallest integers representable without using
bignums.

2. Since integer overflow automatically creates bignums, the
function OVERFLOW now only affects floating point
overflow, and division by zero (either integer or floating
point).

3. With this implementation, there are very few operations
that are sensitive to the "word size" of the machine: for the
most part, the word size is virtually infinite.

However, for backward compatibility, the functions LLSH and
LRSH are defined to be modulo 21 32. For the most part, user
calls to LLSH and LRSH should instead be converted to LSH and
RSH. LLSH and LRSH cause errors if passed bignums. This may
cause some incompatibilities in current user code.

Negative arguments to RADIX are no longer allowed.

Negative radices, which caused the number printer to interpret
negative integers as unsigned numbers in the machine's "word
size,"no longer make sense with bignums, and have been
removed.

(OVERFLOW T) is the default setting.

The default setting for OVERFLOW has been changed to T,
meaning that divide by zero and floating overflow will cause an
error.

Common Lisp Support

This release contains a number of changes and enhancements
which support the use of the Common Lisp dialect. Some parts of
Common Lisp have been added into the basic Interlisp-D system,
although most of the new functions exist in the library package
CML. Included in the Lisp sysout are the integration of Common
Lisp style DEFMACRO with the Interlisp-D environment, and a
few minor functions such as PSETQ, LET,LET*, etc..

The CML library now supports Common Lisp arrays and array
functions (as an upward-compatible extension of Interlisp-D's
arrays, strings, and bitmaps), characters, full Common Lisp
argument passing syntax (including &OPTIONAL, &REST, &KEY,
etc), and many others. Please see the CML package's
documentation for full details.

26

KOTO RELEASE NOTES

FEATURES

Storage

Incompatible Change: In this release, attempting to take CDR of a non-list causes an

error.

This behavior is controlled by the global variable CAR/CDRERR. It
Is currently set to CDR. If you want CDR to behave as before and
return "{CDR of non-list}", (SETQ CAR/CDRERR NIL).

Warning now appears before disabling of garbage collection.

If the garbage collector's reference count table fills up, thereby
disabling garbage collection, a warning pops up, advising you to
save and reload as soon as possible (because without garbage
collection your storage is going to fill up more quickly and
operations will get steadily slower). The warning issimilar to the
one you get when your virtual memory backing file fills up.

Garbage collection algorithm has been modified.

The garbage collector now reclaims in one sweep entire
structures whose reference count goes to zero, even if the
structure is "bushy". This isin contrast to the previous behavior,
where only one "thread" through a structure was collected on
the first pass. This means you don't have to do (RPTQ 100
(RECLAIM)) in order to ensure that everything was coilected, and
has good consequences for working set and not filling up the
reference count table. On the other hand, it means that if a
large structure gets dropped on the floor, your next pause for
garbage collection may be noticeably longer than it used to be.
Exception: pointer arrays are not chased—they still require a
second collection pass before their contents are reclaimed as
well.

HASHARRAY has new args HASHBITSFN and EQUIVFN for
user-settable hash functions.

HASHARRAY has two additional arguments, HASHBITSFN and
EQUIVFN to support the creation of hash arrays that use an
equivalence notion other than EQ. EQUIVFN is a function of two
arguments that should return non-NIL when its arguments are to
be considered equal. HASHBITSFN must be a function of one
argument that produces a positive integer in the range
[0..65535] with the property that objects that are considered
equal produce the same integer.

The default for HASHARRAY is the same as it always has been; in
other words, the EQUIVFN is EQ, with a HASHBITSFN that extracts
bits from the pointer.

KOTO RELEASE NOTES

27

FEATURES

Incompatible change:

For assistance in building hash tables that take strings as hash
keys, there is a function STRINGHASHBITS that i1s a suitable
HASHBITSFN when EQUIVFN = STREQUAL.

For more information, see the new Interlisp-D Reference
Manual.

RPLSTRING and RPLCHARCODE are not guaranteed to modify
substrings.

There is a caution in the October 1983 Interlisp Reference
Manual that the value of a call to SUBSTRING shares storage with
the original string, and hence that destructively replacing the
characters of a string (using RPLSTRING or RPLCHARCODE) has
the side effect of smashing any substrings or superstrings of the
string as well. In Koto, the implementation of strings has
changed such that this side effect, while still possible, is no
longer guaranteed in all cases. Therefore, programmers should
not rely on RPLSTRING or RPLCHARCODE altering the characters
of any string other than the one directly passed as arguments to
those functions.

ALLOCSTRING has new argument to accomodate NS characters

ALLOCSTRING has a new optional argument, FATFLG. When
FATFLG is true, the string is allocated at full 16-bit character
width, so that "fat" (16-bit) characters can be stored into it
efficiently (using RPLSTRING or RPLCHARCODE). This flag hasno
other effect on the operation of the string functions, and is
completely optional—RPLSTRING or RPLCHARCODE can still be
used to store fat characters into a "thin" string, albeit less
efficiently.

A new function, STRING-EQUAL, has been added.

The function (STRING-EQUAL X Y) compares two strings or atoms
case-insensitively; that is, it returns true if they are equal when
all lowercase letters are taken to be their uppercase
counterparts.

Interlisp-D Environment

idle Mode has been added to basic Interlisp-D environment.

The Interlisp-D environment runs on single-user computers.
Often, users leave their computers up and running for days,
which can cause several problems. First, the phosphor in the
video display screen can be permanently marked if the same
pattern is displayed for a long time (weeks). Second, if the user

28

KOTO RELEASE NOTES

FEATURES

goes away, leaving an Interlisp-D system running, another
person could attempt to use the environment, taking advantage
of any passwords that had been entered To solve these
problems, the Interlisp-D environment implements the concept
of "idle mode."

If no keyboard or mouse action has occurred for a specified time,
the Interlisp-D environment automatically enters idle mode.
While idle mode is on, the display screen is blacked out, to
protect the phosphor. Idle mode also runs a program todisplay a
moving pattern on the black screen, so the machine doesn't
appear broken. Usually, idle mode can be exited by pressing any
key on the keyboard or mouse. However, the user can optionally
specify that idle mode should erase the current password cache
when it is entered, and require the next user to supply a
password to exitidle mode.

ldle mode can also be entered by calling the function IDLE, or by
selecting the Idle menu command from the background menu.
The Idle menu command has options that allow the user to
interactively set the idle options (display program, erase
password, etc.) specified by the variable IDLE.PROFILE:

IDLE.PROFILE , [Variable]

The value of this variable is a property list which controls many
aspects of idle mode. The most useful properties are:

TIMEQUT - value is a number that determines how long (in
minutes) Interlisp-D will wait before automatically entering
idle mode. If NIL, idle mode will never be entered
automatically. Defaultis 10 minutes.

ALLOWED LOGINS -determines who can exit idle mode. If the
value is NIL, this means that exiting idle doesn't check or
require any login. Otherwise, the value of ALLOWED LOGINS
is a list, specifying which users are allowed to exit idle mode.
This list can include * (require login, but let anyone exit idle
mode), T (let the previous user exit idle mode), user names (let
the specified users exit idle mode), and group names (allow
any members of this group to exit idle mode). The default
value of ALLOWED LOGINS is (*), which means that anyone is
allowed to exitidle mode, but an authorized loginis required.

FORGET - if FIRST, the user's password is erased when idle
mode is entered; if T, the user's password is erased when idle
mode is exited (to allow incomplete file operations to
terminate during the idle.) This value is irrelevant if
ALLOWED LOGINS is non-NIL, since the new login will
overwrite the previous user's password. Default is NIL.

DISPLAYFN - the value of this property, which should be a
function name or lambda expression, is called to display a
moving pattern on the screen while in idle mode This

KOTO RELEASE NOTES

29

FEATURES

function is called with one argument, a window covering the
whole screen.

For more information on idle mode, see the new Interlisp-D
Reference Manual.

Top-level functions accept quoted or unquoted arguments; new
function NLAMBDA.ARGS has been added.

Interlisp-D has a number of top level functions which take
‘'unquoted' arguments; for example, EDITF and BREAK. New
users were frequently confused by these functions, and often
would supply a QUOTE where one was not needed, e.g., as in
(EDITF 'FOO). To compensate for this frequent error, the
functions EDITF, EDITV, FILESLOAD, TRACE, BREAK, UNBREAK,
CLEANUP, BREAKDOWN, SEE, SEE* will accept either unquoted
arguments, or arguments of the form (QUOTE <arg>). Thus,
(EDITF 'FOO) is equivalent to (EDITF FOO), and (BREAK ‘A) will
break A, just as (BREAK A) does.

This new capability was implemented using the following new
function, which is available for general use:

(NLAMBDA.ARGS X) [Function]

This function interprets its argument as a list of unevaluated
Nlambda arguments. If the elements in this list are of the form
(QUOTE ..), the enclosing QUOTE form is stripped off.
NLAMBDA.ARGS stops processing the list after the first
non-quoted argument, on the assumption that the quoting was
not accidental. Therefore, whereas

(NLAMBDA.ARGS '((QUOTE FOO) BAR)) - > (FOO BAR),
(NLAMBDA.ARGS '(FOO (QUOTE BAR))) -> (FOO (QUOTE BAR)).

INSPECTCODE uses TEdit-type windows.

When TEdit is loaded, INSPECTCODE uses it to create a window
that is scrolled more efficiently, and from which you can
copy-select text. Also, the "InspectCode" menu item in the break
backtrace frame now calls INSPECTCODE on the actual code in
the frame (which makes a difference when the frame name is
different from the function name), and highlights the locationin
the code where the frame's PC indicates it was executing at the
time.

A warning has been added against modifying critical system
functions.

Many users got into various kinds of trouble when they
accidentally redefined or broke system functions. In order to
prevent accidental modification of internal system functions, the
following feature was added.

30

KOTO RELEASE NOTES

FEATURES

UNSAFE.TO.MODIFY.FNS [Variable]

Value is a list of functions that should not be redefined, because
doing so may cause unusual bugs (or crash the system). If the
user tries to modify a function on thislist (using DEFINEQ, TRACE,
etc), the system will print "Warning: XXX may be unsafe to
modify -- continue?" If the user types "Yes", the function is
modified, otherwise an error occurs. This provides a measure of
safety for novices who may accidentally redefine important
system functions. Users can add their own functions to this list

Note: By convention, all functions starting with the backsiash
character (\) are system-internal functions, which should
never be redefined or modified by the user. Backslash
functions are not on UNSAFE.TO.MODIFY FNS, so trying to
redefine them will not cause a warning.

File Package

New variable MARKASCHANGEDFNS provides muitiple
definitions of MARKASCHANGED.

The variable MARKASCHANGEDFNS is a list of functions that
MARKASCHANGED calls (with arguments NAME, TYPE, and
REASON). Functions can be added to this list to "advise"
MARKASCHANGED to do additional work for all types of objects.
The WHENCHANGED file package type property can be used to
specify additional actions when MARKASCHANGED gets called
on specific types of objects. Masterscope and DEdit use the new
mechanism rather than the old "built-in" way.

LOAD? is more careful about reloading files.

The function LOAD? has been changed to be more careful when
deciding whether to load a file. (LOAD? FILE) loads FILE except
when the same version of the file has been loaded (either from
the same place, or from a copy of it from a different place). This
means that if an old version of FILE is already loaded, but a new
version now exists, LOAD? will load a different version of FILE.
Specifically, LOAD? considers that FILE has already been loaded if
the full name of FILE is on the variable LOADEDFILELST or the
date stored on the FILEDATES property of the root file name of
FILE is the same as the FILECREATED expression on FILE.

Note that this is different from the behavior of the FILES File
Package command (and the function FILESLOAD), which does

KOTO RELEASE NOTES

31

FEATURES

not load a file if any version of that file is already loaded and the
file was created using the file package.

Function ADDFILE can be used for explicitly recognizing files.

The user can explicitly tell the file package to notice a
newly-created file by defining the filecoms for the file, and
calling ADDFILE:

(ADDFILE FILE — ——)

Tells the file package that FILE should be recognized as a file; it
adds FILE to FILELST, and also sets up its FILE property to reflect
the current set of changes which are "registered against” FILE

New file package type properties have been added: NULLDEF,
CANFILEDEF.

The function FILEPKGTYPE recognizes two new file package type
properties, NULLDEF and CANFILEDEF.

NULLDEF: The value of this property is returned by GETDEF
when there is no definition and the NOERROR option is
supplied. For example, the NULLDEF of VARS is NOBIND.

CANFILEDEF: If the value of this property is non-NIL, this
indicates that definitions of this file package type are not
loaded when a file is loaded with LOADFROM. The default is
NIL. Initially, only FNS has this property set to non-NIL.

MAKEFILE allows continuing without loading (DECLARE: --
DONTCOPY --) expressions.

When a remake is specified, MAKEFILE checks to see how the file
was originally loaded. If the file was originally loaded as a
compiled file, MAKEFILE will call LOADVARS to obtain those
DECLARE: expressions that are contained on the symbolic file,
but not the compiled file, and hence have not been loaded. If
the file was loaded by LOADFNS (but not LOADFROM), then
LOADVARS is called to obtain any non-DEFINEQ expressions.
Before calling LOADVARS to re-load definitions, MAKEFILE asks
the user, e.g. "Only the compiled version of FOO was loaded, do
you want to LOADVARS the (DECLARE: .. DONTCOPY .)
expressions from {DSK}<MYDIR>FOO ;3?". Respond Yes to
execute the LOADVARS and continue the MAKEFILE, No to
proceed with the MAKEFILE without performing the LOADVARS,
or Abort to abort the MAKEFILE. You may wish to skip the
LOADVARS if you circumvented the file package in some way,
and loading the old definitions would overwrite new ones.

32

KOTO RELEASE NOTES

FEATURES

File package handling of function definitions has been
regularized.

The internal structure of the file package and the way that it
deals with function definitions has been unified. Masterscope,
the editor, and other parts of the system all go through and use
the standard GETDEF interface. Most of the changes are invisible
to users.

EDITF, EDITV have changed.

The internal functioning of the editor entries EDITF, EDITV have
been regularized; the result, while backward compatible, looks
slightly different.

EDITF tries the following algorithm when asked to edit a
function: it defaults to LASTWORD if no function is supplied. If a
function is supplied, EDITDEF is invoked, with TYPE =FNS.
EDITDEF then calls the FNS edit-method, which has similar
behavior as before, with the exception that, if no definition is
found, it calls EDITFERROR.

If you say EDITF(FOQ) and FOO has no function definition but
does have a macro, the system will put you in an editor for the
macro instead.

New general-purpose function for calling editor has been
added: EDIT.

(EDIT NAME —) [Function]

This function figures out what type of definition NAME has
(function, variable, macro, etc.), and calls the editor to edit it. If
NAME has more than one definition of different types, the user is
prompted for the type of definition to edit. EDIT attempts to
capture the previous behavior of the inspector and DEdit when
asked to edit a given name.

New GETDEF option has been added: EDIT.

If the OPTIONS argument to GETDEF is (or contains) EDIT,
GETDEF returns a copy of the definition unless it is possible to
edit the definition "in place.” With some file package types,
such as functions, it is meaningful (and efficient) to edit the
definition by destructively modifying the list structure, without
calling PUTDEF. However, some file package types (like records)
need to be “installed"” with PUTDEF after they are edited. The
default EDITDEF calls GETDEF with OPTIONS of (EDIT NOCOPY),
so it doesn't use a copy unless it has to, and only calls PUTDEF if
the result of editing is not EQUAL to the old definition.

KOTO RELEASE NOTES

33

FEATURES

Masterscope

Masterscope no longer automatically analyzes functions not
explicitly mentioned.

Previously, if you typed ". ANALYZE FOO", and FOO called FUM,
and FUM had an expr definition, Masterscope would analyze
FUM too. This is no longer the case. It remains true that if you
reference a function in a question such as ". WHO DOES FOO
CALL," you imply that the function FOO should be analyzed

Record Package

CLisp characters are allowed in record field names.

The record package name parser has been changed to allow the
declaration of records with CLISP characters in field names,
including "-". Such field names can only be used with fetch and
replace, not in the "infix" notation, e.g., if you say (RECORD A
(B-C D)) then (fetch B-C of X) will work, but X:B-C will not.

Code Editor

Edit macro IFY translates COND statements to IF statements.

If the current expression is a COND statement, the IFY edit macro
replaces it with an eqivalent IF statement. This macro can be
easily used by typing CONTROL-Z to DEdit.

1108 Local File

1108's local file system is faster, more robust.

The local file system has been revised so that it reads or writes
multiple disk pages in a single operation, which makes disk
accesses much faster. Also, the file system now does more error
checking (at no loss in speed), so that errors are caught earlier,
before information on the disk can be damaged.

Note: If a HARD DISK ERROR occurs, do not simply continue from
the break. The problem will not be automatically fixed,
although you may be able to run successfully for a while

KOTO RELEASE NOTES

FEATURES

If such an error occurs, LOGOUT of Interlisp, run the Pilot
scavenger on the logical volume in question (to straighten
out any Pilot structures), restart Interlisp, call
SCAVENGEDSKDIRECTORY (to straighten out the Lisp
directory), and then continue.

You can now set initial position of DSKDISPLAY window.

The global variable DSKDISPLAY POSITION contains a POSITION
record which designates the screen position of the volume
display window. [f the DSKDISPLAY window is opened, it will
appear at this position. If it is moved, this variable is reset to the
new position.

DSKDISPLAY window now displays default volume.

The DSKDISPLAY window now includes a line displaying the
default volume (the next volume with a Lisp files directory after
the one you are running in). This is the volume that wiil be
accessed by using the device {DSK} without any volumea name.

(DISKFREEPAGES) uses default lisp files volume.

If given no argument, DISKFREEPAGES assumes the default
volume (the next volume with a Lisp directory after the one
you're running in.) If given an argument, it tells the number of
free pages on the volume whose name matches the argument.

Communications

Incompatible change:

SPP.OPEN argument WHENCLOSEDFN no longer exists.

The last argument to SPP.OPEN has been changed from
WHENCLOSEDFN to PROPS, an optional property list, used to set
the properties that determine the behavior of the SPP stream
when certain events occur. The following properties can be
specified:
CLOSEFN - a function or list of functions called (with the
stream as argument) when an SPP connection is closed.

ATTENTIONFN - a function called (with the stream as
argument) when an ATTENTION packet is received on the SPP
connection.

ERRORHANDLER - a function called (with the stream as
argument) when an error (such as end-of-stream) occurs on
the SPP connection.

OTHERXIPHANDLER - a function called (with the stream as
argument) when a non-SPP, non-error packet is received on
the socket associated with the SPP connection.

KOTO RELEASE NOTES

35

FEATURES

EOM.ON.FORCEQUTPUT - a property whose value shouid be
e-ther T or NIL (the defauit). If T, then the end-of-message oit
is set when the current collection of bytes buffered for
transmission is forcibly sent (e.g. by FORCEQUTPUT)

SERVER.FUNCTION - a property that can be used for creating
SPP servers. Normally, when a connection is opened with the
HOST argument set to NIL, a passive "listener” connection is
created. SPP.OPEN will not return until some other host
attempts to connect to the socket specified in the SPP OPEN
call.

If the SERVER.FUNCTION property is specified, a new listener
(and listener process) is created. SPP.OPEN will return
immediately. Whenever another host attempts to connect to
the specified socket, a new process and unique SPP connection
are created. The function specified by the SERVER.FUNCTION
property is run in the top level of the new process. The server
function should be a function of two arguments: the first
argument is the SPP input stream associated with the
connection; the second argument is the SPP output stream
associated with the connection.

COURIER.OPEN takes new argument OTHERPROPS.

If OTHERPROPS is non-NIL, it should be a property list of SPP
stream properties, as accepted by SPP.OPEN. Any CLOSEFN
property on this list is overridden by the value of the
WHENCLOSEDFN argument to COURIER.OPEN.

Incompatible change: SPP.EOMP has been removed.

The function SPP.EOMP has been removed. The appropriate way
to determine whether an SPP stream is open, or whether an
End-of-Message or Attention indication has been reached (for
input streams) is to use the EOFP function. When EOFP is applied
to an SPP stream, it returns one of the following values:

NIL: The connection is open and readable or writable.
T: The connection is closed.

EOM: (Input streams only) The End-of-Message bit was set in
the last packet received, and all bytes from the packet have
been read. The function SPP.CLEAREOM must be called to
clear this condition.

ATTENTION: (Input streams only) An attention packet is
waiting. SPP.CLEARATTENTION (below) must be called before
the single byte of data associated with the attention packet
can be read.

EOFP may wait if the input stream is not currently at EOM or
ATTENTION, but no data exists to be read (since the next packet

36

KOTO RELEASE NOTES

FEATURES

could be an Attention packet, for example). The function READP
in this case returns NILimmediately.

SPP.CLEARATTENTION has been added.
(SPP.CLEARATTENTION STREAM NOERRORFLG) (Function]

Clears the Attention packet indication on STREAM. This must oe
called before the single byte of data associated with the
attention packet can be read. Causes an error if the stream does
not have an attention packet waiting, unless NOERRORFLG is
non-NIL.

Virtual Memory

VMEM.PURE.STATE permits “freezing"” a given virtual memory
state.

(VMEM.PURE.STATE FLG) [Function]

If FLG is true, VMEM.PURE.STATE modifies the swapper's page
replacement algorithm so that dirty pages are only written at the
end of the virtual memory backing file, leaving the original
virtual memory pure. This "freezes" a given virtual memory
state, so that Interlisp will come up in that state whenever it is
restarted. This can be used tosetup a "clean" environmenton a
pool machine, allowing each user to initialize the system simply
by rebooting the computer.

The way to use VMEM. PURE.STATE is to set up the environment
as you wish it to be "frozen," evaluate (VMEM.PURE.STATE T),
and then call any function that saves the virtual memory state
(LOGOUT, SAVEVM, SYSOUT, or MAKESYS). From that point on,
whenever the system is restarted, it will return to the state as of
the saving operation. Future LOGOUT, SAVEVM, etc., operations
are not permitted while in this state.

Note: When the systemis runningin "pure state” mode, it uses a
significant amount of the virtual memory backing file to
save the "frozen" memory image, so this will reduce the
amount of virtual memory space available for use.

(VMEM.PURE.STATE NIL) returns the swapper to its normal state,
so that LOGOUT is again permitted. However, the additional
virtual memory backing file space consumed is not reclaimed.

(VMEM .PURE.STATE) returns T if the system is running in "pure
state” mode, NIL otherwise.

KOTO RELEASE NOTES

37

FEATURES

Miscellaneous

DATEFORMAT accepts new keyword: DAY.OF WEEK .

The DATEFORMAT keyword DAY.OF WEEK is now implemented
It causes the date to look like "date time (day of week)", e g.,
"28-Jun-85 12:32 (Friday)". When DAY .OF WEEK is specified,
you can also specify the keyword DAY.SHORT, which results in a
3-letter day.

IDATE ignores the parenthesized day of the week when parsing
a date. IDATE also now correctly handles time zone
specifications, at least for those time zones registered in the list
TIME.ZONES.

Middle button scrolling has been implemented in EDITBM,
bitmap editor.

Horizontal and vertical middle button scrolling and display of
EXTENT bars in scroll windows has been implemented.

New functions have been added to provide information about
the system and loaded patch files.

(PRINT-LISP-INFORMATION) [Function]

Prints out a summary of the lisp version and patch files, for
example:

Interlisp-D version KOTO of 7-Nov-85 00:00:10 on 1108,
microcode 5658, machine 222#0.125000.16750#0

Patch files: NIL

In order to implement this, the Common Lisp "Other
Environment Inquiries” functions were included. See Steele, p
447, for description of these functions.

(LISP-IMPLEMENTATION-TYPE)
Returns "Interlisp-D"

(LISP-IMPLEMENTATION-VERSION)
Returns the system name and date, e g.
"KOTO of 07-Sep-85 04:37: 12"

(MACHINE-TYPE)
Returns one of "1108", "1132","1186" etc.

(MACHINE-VERSION)
Currently returns the microcode version and real memory size.

(MACHINE-INSTANCE)
Returns the machine's NS address.

(SOFTWARE-TYPE)
Returns "Interlisp-D "

38

KOTO RELEASE NOTES

FEATURES

(SOFTWARE-VERSION)
Returns the time of the Interlisp kernel creation. Uniike the
value of (LISP-IMPLEMENTATION-VERSION), this does not
change when a MAKESYS is performed

(SHORT-SITE-NAME)
Returns (ETHERHOSTNAME) or "unknown"

(LONG-SITE-NAME)
Returns the same as (SHORT-SITE-NAME).

New value exists for (MACHINETYPE): DOVE.

On the 1185/6 workstation, the function MACHINETYPE returns
the value DOVE.

FIXP, NUMBERP, LITATOM performance has been improved.

Minor changes were made to the data type predicates to
increase the speed of these functions. Recompiling old code is
recommended but not required.

KOTO RELEASE NOTES

39

FEATURES

[This page intentionally left blank.]

40 KOTO RELEASE NOTES

3. BUG FIXES

A significant number of bugs have been corrected for the <oto
release. Some of these are described below, and affect the
following areas:

e TTYIN ® Microcode

® Printing ® File System

® Fonts ® 1108 Local Disk
® Window System ® Floppy

® Stack and Interpreter ® Communications

TTYIN

TTYIN no longer misgauges line height.

TTYIN no longer misgauges the line height when it reaches the
bottom of a window that is not an integral number of lines high.
Previously, it might have placed the cursor too high, a problem
most noticeable following the ? = command.

TTYIN ? = command fixes spelling in user type-in.

TTYIN's ?= command, when the function being asked about was
correctably misspelled, now fixes the speiling in the user's type-in
as well, not just when retrieving the function's argument list.

CTRL-W backs up over carriage return in TTYIN input.

CTRL-Win TTYIN now is able to back up over a carriage return to
delete words on the previous line. Backspace and CTRL-W at the
beginning of a non-blank line are also able to back up to the
previous line, moving the text in front of them along.

TTYIN command Meta-P works correctly; can reshape window.

The Meta-P command in TTYIN now correctly prettyprints the
current type-in, rather than erasing some or all of it. This also
means that a reshaped TTYIN input window will redisplay
correctly.

KOTO RELEASE NOTES

BUG FIXES

Printing

Non-Print Service error message has been modified.

NVhen attempting to print to an NS server that is not running
Print Service (including a Print Server that has just been booted),
the error message is now "no Such Service" rather than "no Such
Program Number."

Direct calls to NSPRINT show the file name in the prompt
window.

Direct calls to the function NSPRINT that do not include a
DOCUMENT.NAME property in their OPTIONS argument now
default the name to the name of the file or stream passed to
NSPRINT, rather than NOBIND, for purposes of the printer
notification printed in the prompt window.

SEND.FILE.TO.PRINTER creates scratch file for each call.

The function SEND.FILE.TO.PRINTER is now careful to create —
and keep track of — a unique scratch file for each invocation.
This lets you run more than one hardcopy at once, without one
walking on another.

Hardcopy printer menu has been corrected.

A bug that caused entries of type (type host) (e.g. (FULLPRESS
JEDI) on DEFAULTPRINTINGHOST to be displayed incorrectly on
the Hardcopy printer menu has been fixed.

Fonts

Error in FONTCLASS documentation in Harmony reiease notes
has been corrected.

The description of the FONTCLASS function in the Harmony
release notes is incorrect. It stated that the FONTLIST argument
should be a list of the form

(<Display Font> <press font> <interpress font> ..).

In fact, the CAR of the FONTLIST argument should be the font
number used by PRETTYPRINT to change to the font. The correct
form of the FONTLIST argument is therefore

(<font#> <Display Font> <press font> <interpress font>
g

42

KOTO RELEASE NOTES

BUG FIXES

Window System

CHANGEBACKGROUND

CHANGEBACKROUND has been fixed to return the previous
background shade, as documented

(OPENIMAGESTREAM NIL 'DISPLAY) now works.

It is no longer the case that calling (OPENIMAGESTREAM NIL
‘DISPLAY) causes an error. Instead, it creates a stream that points
at anuntitled window.

DRAWCURVE now handles over-sized brushes the same as
DRAWLINE.

DRAWCURVE was changed so that in the case where its brush
was an even number, the extra bit is up and/or to the left. It
previously had been down and/or to the left. The change makes
it compatible with DRAWLINE.

Stack and Interpreter

Stack Overflow

A microcode bug was fixed that had previously caused Lisp to die
when it encountered a hard stack overflow (a stack overflow that
occurs when you proceed after the "soft" stack overflow break
and completely exhaust the stack). Hard stack overflow now
correctly results in MP 9319, from which you can run TeleRaid or
reset back to top level (see description of MP 3319).

Microcode

Fatal microcode bug for 1132 has been fixed.

A serious bug in 1132 local disk which caused a fatal machine
crash (blank screen) when doing a directory listing has been
found and fixed.

KOTO RELEASE NOTES

43

BUG FIXES

File System

SAMEDIR

SAMEDIR now knows about device names.

1108 Local Disk

CNDIR returns the correct name when connecting to a
subdirectory on the local disk.

Previously, there was a bug that caused (CNDIR
"{DSK}<LISPFILES>FOO>) to return {DSK}<LiSPFILES>FOO
(dropping the final closing bracket) instead of
{DSK}<LISPFILES>FOO>. This has been fixed.

You can now continue from "File System Resources Exceeded”
errors.

If a "File System Resources Exceeded" break occurs because the
1108's local file system is full, it is possible to either (a) delete
some files to free up some space, and continue with OK, or (b)
exit the break, in which case (depending on circumstances) the
file will either be deleted, or will remain incomplete but
deletable.

Floppy
COPYFILES to FLOPPY using * only copies highest version.
The use of * as a wildcard in COPYFILES to or from {FLOPPY} with
multiple version files will copy only the version of the file with
the highest version number.
FLOPPY.FORMAT in CPM mode has been fixed.
Problems with formatting a single-sided, single density floppy in
CPM mode have been resolved.

44

KOTO RELEASE NOTES

BUG FIXES

FLOPPY in CPM mode has changed.

When FLOPPY MODE was set to CPM, files would be written to

the floppy under the convention that a simple <CR> would

determine the end of a line. However, on a CPM system (i.e. the .
Xerox 820-11), the <CR> < LF> convention is used instead.

DELFILE in FLOPPY.MODE CPM now updates directory.

In CPM mode, if you use DELFILE on a floppy file, DIR shows the
correct directory after the deletion.

CTRL-Z indicates EOF in FLOPPY.MODE CPM.

CTRL-Z works as an end of file specifier.

The space from deleted files is now reclaimed in FLOPPY.MODE
CPM.

(SYSOUT'{FLOPPY}) no longer formats bad floppy forever.

Previously, if an unformattable floppy was inserted while trying
to transfer a sysout to floppies, the system would try formatting
the floppy forever. Now, if (SYSOUT '{FLOPPY}) is given a bad
floppy, it will return a message “Bad floppy" and will wait for
another floppy to be inserted into the disk drive.

COPYFILE to FLOPPY correctly overwrites pre-existing file.

Using COPYFILE to copy a file to {FLOPPY} with an explicit
version number will overwrite a pre-existing file with that same
name and version number if it already exists on the floppy.

Communications

SPP.OPEN

SPP.OPEN has been fixed so as not to crash with an MP error code
of 9305 when the HOST argument is neither an NS host name nor
an NS host address constant.

The use of * as a wild card in COPYFILES to or from {FLOPPY}
with multiple version files will copy only the version of the file
with the highest version number.

KOTO RELEASE NOTES

45

BUG FIXES

[This page intentionally left blank.]

aq
6 KOTO RELEASE NOTES

4. LIBRARY PACKAGES

This section describes new versions of the following:

@ Chat ® HASH
e CMLARRAY ® SINGLEFILEINDEX
® File Browser ® TCP/IP
® RS232 e TEdit

Chat

Chat has been moved into the Lisp Library. The following Chat
files are of interest:

CHAT.DCOM —-the basic Chat kernel.

CHATTERMINAL.DCOM - the basic terminal emulator support
package.

PUPCHAT.DCOM - implements Pup-based Chat (use in
chatting to Stanford Unix, Xerox DEl, and Stanford Tops-20
Pup implementations).

NSCHAT.DCOM - implements the NS Chat protocol (use in
chatting to Xerox file and print servers, and Berkeley 4.3 Unix)

TCPCHAT.DCOM - implements TCPTELNET.

RS232CHAT.DCOM - provides terminal emulation capability
using the RS232 port on 1108/1185/1186.

TTYCHAT.DCOM - provides terminal emulation capability
using the TTY port on 1108/1185/1186. See the RS232
documentation for caveats on this package.

DMCHAT.DCOM - provides terminal emulator for Datamedia
2500 terminals.

VTCHAT - provides terminal emulator for Digital Equipment
Corporation’s VT100 terminals.

TEK4010CHAT.DCOM - provides terminal emulators for
Tektronix 4010 terminals.

TEDITCHAT.DCOM - provides a simple terminal interface
which is backed up by a TEdit stream. The TEdit terminal
emulator lets the user scroll the Chat window back and forth,
as well as copy-select text out of the Chat window.

KOTO RELEASE NOTES

47

LIBRARY PACKAGES

Changes to Chat

To use Chat, you must load: CHAT and CHATTERMINAL, one of
PUPCHAT, NSCHAT, TCPCHAT, RS232CHAT, TTYCHAT, and one of
DMCHAT, VTCHAT, TEK4010CHAT, TEDITCHAT

If you shrink an active Chat window, it becomes an icon
depicting a terminal. If the Chat connection is terminated while
the window is shrunk, the icon greys out. At this point, clicking
middle button in the icon window offers the same "Reconnect”
menu as you getin aninactive Chat window.

Two new variables control placement of Chat windows.
CHAT.WINDOW .REGION [Variable]

If non-NIL, should be a region specifying where the first
("primary") Chat window should be placed.

CHAT.WINDOW .SIZE [Variable]

If non-NIL, is a size, i.e., a dotted pair (width . height) specifying
the desired dimensions of any new Chat window (not counting
the window, if any, specified by CHAT WINDOW REGION). In this
case, Chat prompts you to place a box of the specified
dimensions, rather than requiring you to shape out aregion.

Chat Dribble and New now pre-empt tty.

The Chat Dribble and New commands now correctly switch the
tty to the prompting process, so that you don't have to click the
prompt window in order to type the requested input.

Handling of string argument passed to INITSTREAM modified.

Chat no longer smashes (destructively consumes) the string that
you pass as the INITSTREAM argument.

The “Ciear"” entry in the middle button Chat menu now works.

CMLARRAY

The CMLARRAY package has been almost completely rewritten.
Most known bugs have been fixed (including a number with the
function ADJUST-ARRAY). The documentation has also been
revised.

48

KOTO RELEASE NOTES

LIBRARY PACKAGES

Changes to CMLARRAY

Displaced arrays are now required to share only with others of
same type.

MAKE-ARRAY now allows displacement to floating point arrays

The primary array reference function, AREF, now has a SETFN
property.

Interlisp type specifiers (such as BYTE) are no longer supported as
:ELEMENT-TYPE arguments to MAKE-ARRAY. The equivalent
Commonlisp type specifiers should be used instead.

The functions LISTARRAY and FILLARRAY, the nibble functions
4AREF and 4ASET, and the non-error-checking versions of the
“fast" accessing functions (\PASET, \PAREF, \8AREF, etc.) have all
been removed.

The CMLARRAY file package command no longer exists.
Known Problems:

It is not possible to create a displaced array with MAKE-ARRAY
whose storage is in an array of datatype ARRAYP, STRINGP, or
BITMARP.

In order to create an array which will later be given as a
:DISPLACED-TO argument to MAKE-ARRAY, it is necessary to
call MAKE-ARRAY specifying :ADJUSTABLE as T.

Arrays currently have a maximum total size of 64k - 2 16-bit
words (32K-1 pointers.)

Future Changes:

In a future release, the "fast" accessing functions (PAREF,
PASET, NAREF, NASET, LAREF, LASET, 16AREF, 16ASET, 8AREF,
8ASET, 1AREF, 1ASET) will be removed, when specialization of
array access is supported via declarations.

In a future release, the function ASET will be removed, in favor
of SETF

File Browser

This release has a completely new File Browser. Some of the
interesting changes and bug fixes are as follows:

KOTO RELEASE NOTES

49

LIBRARY PACKAGES

Changes to File Browser

Window layout is now more compact.

The window layout is completely rearranged and is more
compact. The region you are prompted for is the whole region,
not just the region for one of the subwindows The prompt
window is independently closeable. The menu of information to
display comes up only on request, and is independently
closeable. Subcommands appear on roll-out submenus instead
of being hidden behind middle-button clicks.

File selection has been improved.

File selection is indicated by a little marker in the left margin,
rather than by inverting the entire line. The rules for selection
have changed slightly: The middie button always adds a file to
the current selection. To remove a file from the current
selection, select it with middle while holding down CTRL.
Extending a selection with the right button does not include
deleted files, unless you also hold down CTRL.

Copy-selection has been improved.

When you hold down a copy key, FileBrowser now correct!-
follows the mouse as you move it inside the window. The file, if
any, underlined when you let up on the mouse is the one whcse
name is copy-selected.

Options have been added to the Copy and Rename commands.

When the Filebrowser Copy and Rename commands are issued
for a single file, the destination can either be given as a regular
file name specification, or a directory specification; in the latter
case, the file is copied/renamed to the same named file on the
specified directory, just as if the command had been given with
multiple files selected.

Gratuitous Updates have been eliminated.

The Expunge and Rename commands simply remove files from
the display. The Update command itself is now called
Recompute, to make its meaning clearer. It has two roli-out
sub-commands, “New Pattern” and "New Info", which are used
to change the pattern and the information displayed,
respectively.

50

KOTO RELEASE NOTES

LIBRARY PACKAGES

Copy and Rename notice when the new file belongs in the
browser, and insert it accordingly.

A Delver (Delete Old Versions) command has been added to the
Delete rollout submenu.

New versions of the See command are now available.

The See command by default is a "Fast" See, similar to the
function SEE, which does not have the capability of scrolling
backwards, and does not require that TEdit be loaded. The "old”
See, which laboriously formats Lisp source files and presents
them to TEdit, is available on a roilout. There s also an
unformatted See for looking at files that might be binary. The
Fast versions of See reuse the same display window. If you click
See when several files are selected, you get to see them serially,
with the option of aborting each file after partially seeing it.

A new mechanism for displaying file count has been added.

The small window that used to cryptically keep track of the
number of files total, selected and deleted now is slightly more
verbose, keeping track of total number of files and of deleted
files, plus, if the displayed info includes a size attribute, the
number of pages in the files displayed and deleted.

FB command can request attributes.

You can follow the FB command with the set of attributes you
want to see displayed, much as with the DIR command. E.g., FB
<foo> SIZE READDATE. The set of default attributesis stored in
FB.DEFAULT.INFQ, initially (SIZE CREATIONDATE AUTHOR).

Subdirectories are displayed on separate heading lines, not as
part of the file name (much as with the DIR command).

Files are sorted by decreasing version.

The newest version of a file appears first. This provides some
uniformity across devices that do not normally agree on the
order in which toenumerate versions.

For more details, see the File Browser documentation in the Lisp
Library Packages manual.

KOTO RELEASE NOTES

51

LIBRARY PACKAGES

RS232

RS232 has been reimplemented in its entirety. Refer to the new
RS232 documentation in the Lisp Library packages. The Xoto
version of RS232 (for 1108/1185/1186 machines) is called
DLRS232C. Subsidiary Lisp Library packages of interest are
DLTTY, RS232CHAT, RS232CMENU, TTYCHAT, KERMIT, ana
KERMITMENU.

DLRS232C and DLTTY implement stream-oriented interfaces to
the RS232C, and TTY ports of the 1108 and 1185/1186 processors.
(Users of the TTY port need not load DLRS232C.) The TTY port s
now supported primarily as an output-only device. No extreme
measures are taken to capture all characters which enter the
port. The RS232C port (which requires the E30 option on an
1108) performs character buffering and flow control, and should
pose no problems to users with high speed connections to other
computers.

Programs which use the RS$232 stream interface should continue
to run with only minor changes. Programs which used the
RS232READBYTE/RS232WRITEBYTE interface will have to be
rewritten to use the standard stream interface.

RS232CHAT is a stub of the Interlisp-D generic Chat facility. As a
result, the DM2500, BT100, TEK4010, and TEDIT chat terminal
“emulators"” all work with the RS232 port.

TTYCHAT implements a similar stub for the TTY port. Itis meant
primarily as a means of testing low-speed RS232 devices, such as
printers. It will not support a reliable connection to 1200 baud
(or faster) modems.

RS232CMENU is a FREEMENU-based interface for controlling
RS232 and TTY port parameters. It is available by choosing the
“Options" entry of the middle-button Chat menu.

KERMIT implements both Kermit and Modem file transfer
programs on top of Chat. While this package will be of primary
interest to RS232 Chat users, users of other Chat protocols (such
as Pup, TCP, and NS) can also wuse Kermit/Modem.
Documentationis provided in the Lisp Library packages

KERMITMENU is a FREEMENU-based interface for KERMIT See
the Kermit documentation in the Lisp Library packages.

52

KOTO RELEASE NOTES

LIBRARY PACKAGES

HASH

Incompatible Change:

GETHASHFILE will now automatically reopen a closed hash file.

Koto hash files will are not readable in Intermezzo and vice
versa.

SINGLEFILEINDEX

SINGLEFILEINDEX inserts a blank page before the index f
necessary to ensure that the index starts on an odd-numbered
page, for the benefit of people who print on two-sided printers.

TCP/IP

TCP/IP now supports RFC940-style subnet routing.

If your site employs subnet routing, please refer to the
installation instructions at the end of the TCP/IP documentation
section in the Lisp Library packages. You will need to perform
the TCP configuration step to add subnet routing to your IP
configuration file. If you are unfamiliar with subnet routing,
refer to the section titled "A Primer on IP Networks," in the
TCP/IP document.

The file TCP/IP can now be part of a user-created sysout.

Previously, saving TCP/IP in a sysout while the package was
enabled caused problems when the saved sysout was started

New variable can now identify file type.
TCPFTP.DEFAULT.FILETYPES [Variable]

This variable is an association list, keyed by common file name
extensions (e.g. DCOM, BIN, etc.). The CDR of each entry in the
list id BINARY or TEXT. The initial value of
TCPFTP.DEFAULT.FILETYPES is:

((DCOM . BINARY) (BIN BINARY) (NIL. TEXT))

This variable is used when TCPFTP is trying to open a remote file
for input, and needs to know its type. On operating systems such
as Unix and Tops-20, it is imperative to open files in the proper
mode. Users may set this variable according to their own needs
in their personal or site initialization files.

KOTO RELEASE NOTES

53

LIBRARY PACKAGES

The file TCPNAMES is now documented.

This file contains routines for translating between file name
syntax of various operating systems. instructions are provided in
the documentation for extending the routines to handle new
operating system types.

The function TFTP.SERVER creates a “trivial file transfer
protocol” server, which can be used to copy files between
machines supporting TFTP.

See the TCP/IP documentation for details.

UDP.OPEN now successfully returns socket numbers between
1000 and 65535 when given a SKT# argument of NIL.

The case of host names is now ignored in HOSTS.TXT files.

TEdit

Changes to TEdit Functions

Considerable changes and improvements have been made to the
TEdit package. These are summarized below.

The relY argument to an IMAGEOBI's ButtonEventinFn is now
measured from the IMAGEOBIJ's baseline.

TEDIT.PARALOOKS now lets you specify baseline-to-baseline
spacing between the lines of a paragraph.

The BASETOBASE paralook is a distance in points, between the
baselines of adjacent lines of text in this paragraph-regardless of
things like type size, line leading, and so on. Paragraph leading,
though, does affect line spacing. Setting the BASETOBASE
paralook to NiLrevertstothe old behavior.

TEDIT.FORMATTEDFILEP now has another potential return:
NSCHARS, which signifies that the document contains
characters in other than NS character set 0.

This is an indication that you must save the file as a TEdit-format
file if you want TEdit to correctly read it back in at a later time.
However, it is not necessary to save TEdit formatting information
for the output file to contain text in proper NS-encoded format,
readable by other programs (e.g., SEE, LISTFILES) that accept the
full NS character set as text input.

54

KOTO RELEASE NOTES

LIBRARY PACKAGES

Beginning in this release, all properties that can be specified in
the PROPS argument can now be changed with TEXTPROP.

Those that were window properties in the past are no longer.
For example, to change the LOOPFN during an edit session, you
must now use TEXTPROP (or the PROPS argument to TEdit)
instead of WINDOWPROP.

Old WINDOWPROP New TEXTPROP/PROPS Argument
TEDIT.CMD.LOOPFN LOOPFN

TEDIT.CMD.CHARFN CHARFN

TEDIT.CMD.SELFN SELFN

TEDIT.CMD.AFTERQUITFN AFTERQUITFN
TEDIT.CMD.OVERFLOWEFN OVERFLOWEFN
TEDIT.CMD.PRESCROLLFN PRESCROLLFN
TEDIT.CMD.POSTSCROLLFN POSTSCROLLFN
TEDIT.CMD.QUITFN QUITFN

A new option for the PROPS argument, COPYBYBKSYSBUF, has
been added.

Normally, text is copied from TEdit document to TEdit document
internally. For some applications, you may want to have copied
text inserted into the keyboard buffer instead, and read as
though it had been typed. To do this, there is a new option for
the PROPS argument (and TEXTPROP): COPYBYBKSYSBUF If
that property's value is non-NIL, TEdit will copy characters via the
keyboard buffer.

There is a new character look, available via TEDIT.LOOKS,
“INVERTED".

If set to ON, the text with that look will appear in inverse video
on the screen-but not on hardcopy.

There is a new paragraph look, HEADINGKEEP.

If set to ON, the paragraph so marked will be kept with the
beginning of the next paragraph-so that, for example, a
heading will stay with the text it heads.

There is a new TEXTPROP, the GETFN.

It is analogous to the PUTFN (and is called with the same
arguments); havingitreturn DON'T will abort a GET.

OPENTEXTSTREAM no longer ignores the PROPS argument
when itsTEXT argument is an existing textstream.

Itis possible to SAME- select from a read-only window now.

KOTO RELEASE NOTES

55

LIBRARY PACKAGES

Changes to TEdit Commands

TEDIT.GETSYNTAX and similar functions will now take a
TEXTOBIJ/Text Stream in place of the TABLE argument, and will
use the table appropriate to the given TEXTOBJ.

The function TEDIT.SUBLOOKS can be used to change all
characters of a given font/size/etc. to another font/size/etc.

TEdit now allows a user-supplied PUTFN.

If you supply a PUTFN, TEdit no longer breaks with "file won't
open.”

The SEL property of the PROPS argument to TEdit will now
accept the value of DON'T, meaning that nothing is to be
selected initially.

Incompatible Change:

The Koto release of TEdit includes an incompatible change in file
formats; the latest file format should minimize backward
compatibility problems in the future.

Future additions to menu options such as Paragraph Looks will
not affect the ability of old TEdits to read a new file--though any
new information would perforce be lost in the process.

To help ease the transition, the PUT menu command has a new
sub-option, "Old-Format". Selecting this will save the file in the
OLD TEdit format, for backwardcompatibility.

It is no longer possible to LOGOUT while doing a PUT (thereby
preventing potential inconsistencies).

Expanding the DATE or > >DATE< < abbreviations now gives
a date in the form: month day, year

When EXPAND fails to expand an unknown abbreviation, the
caret is left where it was.

The default TEdit abbreviations now expand to NS characters.

The abbreviations and their expanded NS characters are:

n endash =
m em dash ==
b bullet e
T thinspace (1/5em) ||
d dagger ¥

KOTO RELEASE NOTES

LIBRARY PACKAGES

Changes to TEdit Menus

D double dagger t

single close quote

single open quote

opendouble qguote "’

close double quote

S sectionsign §

DATE the current date October 23, 1985

>>DATE< < the currentdate October 23, 1985

172 one half 1
1/4 one quarter +
3/4 three quarters 3

Note that to expand a multi-character abbreviation, you must
select the entire abbreviation before pressing EXPAND

Dotted leaders are now available.

To get them, use the "dotted leader” option when you set tabs
from the Paragraph Looks menu. This can be turned off and on
independently of what kind of tab you are setting.

Changing page layout now marks the document changed, and
in need of saving.

TEdit now supports roman numeral page numbers along with
arabic numerals.

You may also specify constant text to appear around each page
number (e.g., so that page numbers come out looking like "Page
xiv"). These options are available on the Page Layout menu.

TEdit's Page Layout menu now allows you to specify up to eight
different kinds of running heads and feet on a page.

TEdit can now display paragraphs in "hardcopy" mode.

Characters are displayed as they'll appear on paper (provided
you've set the paragraph margins.) This means that line breaks,
tab locations, etc., will be accurate.

The Page Layout menu now supports A4 and legal-size paper.

The Page Layout menu lets you choose the size of the paper you
want to print on. The function TEDIT.SINGLE.PAGEFORMAT has

KOTO RELEASE NOTES

57

LIBRARY PACKAGES

Changes to TEdit Windows

had a PAPERSIZE argument added to it, which may take as its
value one of the atoms Legal, Letter, A4, or NIL (defaults to letter
size).

The "Hardcopy" and "Press File" items have been removed from
the TEdit pop-up menu.

Use the right-button menu's "Hardcopy” option.

TEdit's Expanded Character Looks and Paragraph Looks menus
now contain a "NEUTRAL" option.

Selecting it resets the menu so that the other options have no
effect when you APPLY. After selecting NEUTRAL, you can select
one specific option from the menu that you want changed, then
APPLY. This is useful, for instance, for changing only the right
margin of a series of paragraphs.

When you close one of several Expanded menus, the remaining
menus now snuggle up to the Text Editor window.

TEdit now allows one to start a document at a page number
other than 1.

The Page Layout menu has a "starting page number" fieid If
you fill it in (when setting the layout of the first page), the
number you supply will be the first page's number, and
succeeding pages will be numbered accordingly.

Split-Window Editing is now provided.

There's a band along the right edge of the window (analogous
to the line bar at the left). If you're in that "window" bar, you
can use the middle mouse button to split the window, and the
right mouse button to unsplitit.

Note: You must be in the split-off section to unsplit. You can't
bein the "original" window.

In a future release, the left mouse button will let you move the
closest split point around to adjust the allocation of space among
windows. For now, you must unsplit and resplit todo this

TEdit now shows indication of unsaved changes.

TEdit now indicates when a document contains unsaved
changes. A "dirty" document will have a star to the left of its
title, e.g. "*Edit Window for...."

TEdit no longer brings the edit window to the top solely to flash
the caret.

53

KOTO RELEASE NOTES

LIBRARY PACKAGES

Miscellaneous Changes

This version of TEdit supports Xerox's extended characters.

You can type them in (by setting KEYACTIONs appropriateiy),
save them in files, and print them on Interpress printers.

If you TEdit a file which is already open, you now get the entire
document in the TEdit window, instead of just the part beyond
the current filepointer.

The time that TEdit spends inside its start-up monitor lock has
been drastically shortened .

This means that file-not-found errors and the like will not
impede other TEdits from starting up.

TEdit's support for invisible characters, both on the display and
hardcopy, has been made considerably more reliable.

Copying character looks (using the "SAME" key) now sets the
looks for future type-in, even if no existing characters' looks
change.

TEdit's post-paragraph leading now works.

Several scrolling bugs have been fixed.

In particular, a bug in TEdit's screen update code that caused an
infinite loop, scrolling the window looking for the caret's new
location, has been fixed.

KOTO RELEASE NOTES

59

