
DECL

DECL

lntroduction
The Decl Library package is contained on the f i le DECL.DCOM-
The Decl package requires the LambdaTran package
LAMBDATRAN.DCOM wi l l automat ical ly be loaded with De<l i f i t
is not already present.

The Decl package extends Inter l isp to al low the user to declare
the types of var iables and expressions appearing in funct ions. l t
provides a convenient way of constraining the behavior of
programs when the general i ty and f lexibi l i ty of ordinary Inter l isp
is ei ther unnecessary, confusing, or ineff ic ient.

Decl provides a simple language for declarat ions, and augments
the interpreter and the compi ler to guarantee that these
declarat ions are always sat isf ied. The declarat ions make
programs more readable by indicat ing the type, and therefore
something about the intended usage, of var iables and
expressions in the code. They faci l i tate debugging by local iz ing
errors that manifest themselves as type incompatibi l i t ies. Final ly,
the declarat ion information is avai lable for other purposes;
compi ler macros can consult the declarat ions to produce more
eff ic ient code; <oercions for arguments at user interfaces can be
automatical ly generated; and the declarat ions wi l l be not iced by
the Masterscope funct ion analyzer.

The declarat ions interpreted by the Decl package are in terms of
a set of declarat ion types cal led decltypes, each of which specif ies
a set of acceptable values and also (opt ional ly) other
type-specif ic behavior. The Decl package provides a set of
faci l i t ies for def ining decltypes and their relat ions to each other,
including type-valued expressions and a comprehensive
treatment of union types.

The fol lowing descript ion of the Decl package is div ided into
three parts. First , the syntact ic extensions that permit the concise
attachment of declarat ions to program elements are discussed.
Second, the mechanisms by which new Le-l types can be def ined
and manipulated are covered. Final ly, some addi t ional
capabi l i t ies based on the avai labi l i ty of declarat ions are out l ined.

LISP LIBRARY PACKAGES MANUAL 255

EXTENSIONS TO LISP

Using Declarat ions in Programs
Declarat ions may be attached to the values of arbi trary
expressions and to LAMBDA and PROG variables throughout (or
for part of) their lexical scope. The declarat ions are attached
using constructs that resemble the ordinary Inter l isp LAMBDA,
PROG, and PROGN, but which also permit the expression of
declarat ions. The fol lowing examples i l lustrate the use of
declarat ions i n programs.

Consider the fol lowing def ini t ion for the factor ial funct ion
(FACT N):

ILAMBDA (N)
(c0N0

((EQ N 0) 1)
(T (rTrMES N (FACT.(SUB1 Nl

Obviously, this funct ion presupposes that N is a number, and the
run-t ime checks in ITIMES and SUBI wi l l cause an error i f th is rs
not so. For instance, (FACT f) wi l l cause an error and or int the
message NON-NUMERIC ARG T. By def in ing FACT as a
DLAMBDA, the Decl package analog of LAMBDA, this
presupposit ion can be stated direct ly in the code:

IDLAMBDA ((N NUMBERP))
(coND

((Ea N 0) 1)
(T (rTrMES N (FACT (SU81 Nl

With th is def in i t ion, (FACT f) wi i l resutt in a NON-NUMERtC ARG
T error when the body of the code is executed. Instead, the
NUMBERP declarat ion wi l l be checked when the funct ion is f i rst
entered, and a declaration fault will occur. Thus, the message
that the user wi l l see wi l l not dwel l on the offending value T, but
instead give a symbol ic indicat ion of what var iable and
declarat ion were violated, as fol lows:
DECLARATION NOT SATISFIED
((N NUMBERP) BROKEN):

The user is lef t in a break from which the values of var iables, e.g.,
N, can be examined to determine what the problem is.
The funct ion FACT also makes other presupposit ions concerning
its argument, N. For example, FACT wi l l go into an inf ini te
recursive loop i f A/ is a number less than zero. Al though the user
could program an expl ic i t check for this unexpected si tuat ion,
such coding is tedious and tends to obscure the underly ing
algori thm. Instead, the requirement that N not be negat ive can
be succinct ly stated by declar ing i t to be a subtype of NUMBERp
that is restr icted to non-nelat ive numbers. This can be done by
adding a SATISFIES clause to N's type specif icat ion:

IDLAMBDA ([N NUMBERp (SATTSFTES (NOT (MrNUSp N])(coND
((EQ N 0) 1)

(T (TTTMES N (FACT (SUB1 Nl

266 LISP LIBRARY PACKAGES M,ANUAL

DECL

The predicate in the SAflsFtEs clause will be evaluated after rv is
bound and found to sat isfy NUMBERP, but before the funct ion
body is executed. In the event of a declarat ion faul t , the
SATlSFlEs condit ion wi l l be included in the error message. For
example, (FACT - l) would result in:
DECLARATION NOT SATISFIED
((N NUMBERp (SATTSFTES (NOT (MrNUSp
BR0KEtrt) :

N)))

The DLAMBDA construct also permits the type of the value that is
returned by the funct ion to be declared by means of the
pseudo'var iable RETU RN5. For example, the fol lowing def ini t ion
specifies that FACT is to return a positive integer:

IDLAMBDA ([N NUMBERp (SATTSFTES (NOT (MrNUSp N]
IRETURNS FrXp (sATrsFrEs (TGREATERp VALUE 0j)(coND

((EQ N 0) 1)
(T (rTrMES N (FACT (SU81 Nl

After the funct ion body is evaluated, i ts value is bound to the
variable VALUE and the RETURNS declarat ion is checked. A
declarat ion faul t wi l l occur i f the value is not sat isfactory. This
prevents a bad value from propagating to the caller of FACT,
perhaps causing an error far away from the source of the
difficulty.

Declar ing a var iable causes i ts value to be checked not only when
it is first bound, but also whenever that variable is reset by sETe
within the DLAMBDA. In other words, the type_checking
machinery wi l l not al low a declared var iable to take on an
improper value. An i terat ive version of the factor ial funct ion
i l lustrates this feature in the context of a DpRoG, the analog of
PROG:

(0LAM8DA ([N NUMBERp (SATiSFiES (NOr (MrNUSp N]
_ [RETURNS FIXp (SATTSFTES (TGREATERp VALUE Oj l
IDpRoc ([TEMp 1 FrXp (SArrsFrES (iGREATERp TEMpol

IRETURNS FIXP (SATISFIES (IGREAIERP VALUE O])
LP (CoND ((EQ N 0) (RETURN TEMP)))

(SETQ TEMP (ITIMES N TEMP))
(sETQ N (suB1 N))
(G0 LPI

DPROG declarat ions are much l ike DTAMBDA declarat ions,
except that they also al low an ini t ia l value for the var iable to be
specif ied. In the above example, TEMP is declared to be a
posit ive integer throughout the computat ion and N is declared
to be non-negat ive. Thus, a bug which caused an incorrect value
to be assigned by one of the SETe expressions would cause a
declarat ion fai lure. Note that the RETURN5 declarat ion for a
DPROG is also useful in detect ing the common bug of omit t ing
an expl ic i t RETURN.

LISP LIBRARY PACKAGES MANUAL 267

EXTENSIONS TO LISP

DLAMBDAS
The Decl package version of a IAMBDA expression is an
expression beginning with the atom DIAMBDA. Such an
expression is a function object that may be used in any context
where a t iMBDA expression may be used. l t resembles a
| jMBDA expression except that i t permits declarat ion
expressions in i ts argument l ist , as i l lustrated in the examples
given earl ier. Each element of the argument l ist of a DLAMBDA
may be a l i teral atom (as in a convent ional IAMBDA) or a l ist of
the form (NAME WPE .EXTRAS). Strictly, this would require a
declarat ion with a SATISFIES clause to take the form (N
(NUMBERP (SATISFIES -)) -) . However, due to the frequency
with which this construct ion is used, i t may be wri t ten without
the inner set of parentheses, e.9., (N NUMBERP (SATISFIES --) --) .

NAME ful f i l ls the standard funct ion of a parameter, i .e. ,
providing a name to which the value of the corresponding
argument wi l l be bound.

TYPE is either a Decl package type name or type expression.
When the DIAMBDA is entered, i ts arguments wi l l be evaluated
and bound to the corresponding argument names, and then,
after al l the argument names have been bound, the declarat ions
wi l l be checked. The type checking is delayed so that SAT|SFIES
predicates can include references to other var iables bound by
the same DIAMBDA. For example, one might wish to def ine a
funct ion whose two arguments are not only both required to be
of some given type, but are also required to sat isfy some
relat ionship (e.9., that one is less than the other).

EXTRAS allows some additional properties to be attached to a
variabfe. One such property is the accessibi l i ty of NAME outside
the current lexical scope. Accessibi l i ty specif icat ions include the
atoms LOCAL or SPECIAL, which indicate that this var iable is to
be compi led so that i t is ei ther a LOCALVAR or a SPECVAR,
respect ively. This is i l lustrated bythe fol lowing example:

IDLAMBDA ((A LrSTP SPECTAL)
(B FrxP LoCAL)). . .1

A more informative equivalent to the SPECIAL key word is the
USEDIN form, the tai l of which can be a l ist of the other funct ions
that are expected to have access to the var iable. l

IDLAMBDA ((A LrSTp (uSEDrN F0o FrE))
(B FrxP LoCAL))
. . .1

EXTRAS may also include a comment in standard format, sc that
descript ive information may be given where a var iable is bound:

IDLAMBDA ((A LrSTp (uSEDrN F0O FrE)
an ' important var i abl e))

(B FrxP LoCAL)). . .1

(* This is

2ffi LISP LIBRARY PACKAG E5 MANUAL

DECL

- As mentioned earl ier, the value returned by a DLAMBDA can also
be declared, by means of the pseudo-variable RETURNS. The
RETURNS declarat ion is just l ike other DTAMBDA declarat ions,
except (1) in any SAT|SF|ES predicate, the value of the funct ion is
referred to by the dist inguished name VALUE; and (2) i t makes
no sense to declare the return value to be LOCALoT SPECIAL.

DPROG

Just as D|AMBDA resembles LAMBDA, DPROG is analogous to
PROG. As for an ordinary PROG, a var iable binding may be
speci f ied as an atom or a l is t including an in i t ia l value form.
However, a DPROG binding also al lows TYPE and EXTRAS
information to appear fol lowing the ini t ia l value form. The
format for these augmented var iable bindings is (NAME
t N tTt ALVA L U E TY PE . E XTRASI .

The only di f ference between a DPROG binding and a DTAMBDA
binding is that the second posit ion is interpreted as the ini t ia l
value for the var iable. Note that i f the user wishes to supply a
type declarat ion for a var iable, an ini t ia l value rnust be specif ied-
The same rules apply for the interpretat ion of the type
information for DPROGs as for DLAMBDAs, and the same set of
opt ional EXTRAs can be used. DPROGs may also decla re the type
of the value they return, by specify ing the pseudo-variable
RETU RN5.

Just as for a DIAMBDA, type tests in a DPROG are not asserted
unt i l af ter al l the var iables have been bound, thus permit t ing
predicates to refer to other var iables being bound by this
DPROG. l f NIL appears as the in i t ia l value for a binding (i .e. , the
atom NIL actual ly appears in the code, not s imply an expression
that evaluates to NIL) the ini t ia l type test wi l l be suppressed, but
subsequent type tests, e.9., fol lowing a SETQ, wi l l st i l l be
performed.

A common construct in Lisp is to bind and ini t ia l ize a PROG
variable to the value of a compl icated expression in order to
avoid recomput ing i t , and then to use this value in in i t ia l iz ing
other PROG variables, e.g.

IPR0G ((A EXPRESST0N))
(RETURN (PRoG ((8. . . (A. . .))

(c. . . (A. . .))). . .1
The ugl iness of such construct ions in convent ional Lisp often
tempts the programmer to loosen the scoping relat ionships of
the var iables by binding them al l at a s ingle level and using
SETQ's in the body of the PROG to establ ish the ini t ia l values for
var iables that depend on the ini t ia l values of other var iables,
e.9. ,

LISP LIBRARY PACKAGES MANUAL 269

EXTENSIONS TO LISP

IPRoG ((A EXPRESST0N) B C)
(SETQ B (. . "A. ."))
(SETQ c (. . .A. . .)). . .1

In the Declpackage environment, th is procedure undermines the
protect ion offered by the type mechanism by encouraging the
use of unini t ia l ized var iables. Therefore, the DPROG offers a
syntact ic form to encourage more vir tuous ini t ia l izat ion of i ts
var iables. A DPROG variable l ist may be segmented by
occurrences of the special atom THEN, which causes the binding
of i ts var iables in stages, so that the bindings made in ear l ier
stages can be used in later ones, e.9.,

IDPROG ((A (LENGTH F00) Frxp L0CAL)
THEN (8 (SQRT A) FLoATP)
THEN (C (CoNS A B) LrSrP))
. . .1

Each stage is carr ied out as a convent ional set of DPROG bindings
(i .e. , s imultaneously, fol lowed by the appropriate type test ing).
This layering of the bindings permits one to gradual ly descend
into a inner scope, binding the local names in a very structured
and clean fashion, with ini t ia l values type-checked as soon as
possible.

Declarations in lterative Statements
The CLISP i terat ive statement provides a very useful faci l i ty for
specify ing a var iety of PROGs that fol low certain widely used
formats. fhe Decl package al lows declarat ions to be made for
the scope of an i terat ive statement via the DECLARE CLTSP (t .S.
operator). DECLARE can appear as an operator anywhere in an
iterat ive statement, fol lowed by a l ist of declarat ions, for
examole:

(for J from 1 to 10 declare (J FIXP) do. . .

Note that DECLARE declarat ions do not create bindings, but
merely provide declarat ions for exist ing bindings. For this
reason, an ini t ia l value cannot be specif ied and the form of the
declarat ion is the same as that of DIAMBDAs, namely create
(NAMETYPE. EXTRAS).

Note that var iables bound outside of the scope of the i terat ive
statement, i .e. , a var iable used freely in the 1.S., can also be
declared using this construct ion. Such a declarat ion wi l l only be
in effect for the sc^oe of the iterative statemenr.

270 LISP TIBRARY PACKAGES MANUAL

DECL

Declaring a Variable for a Restricted Lexical Scope

The Decl package also permits declar ing the type of a var iable
over some restr icted port ion of i ts existence. For example,
suppose the var iable X is ei ther a f ixed or f loat ing number, and a
program branches to treat the two cases separately. On one
path X is known to be f ixed, whereas on the other i t is known to
be f loat ing. The Decl package DPROGN construct can be used in
such cases to state the type of the var iable along each path.
DPROGN is exact ly l ike PROGN, except that the second element
of the form is interpreted as a l ist of DLAMBDA format
declarat ions. These declarat ions are added to any exist ing
declarat ions in the containing scope, and the composite
declarat ion (created using the ALLOF type expression), is
considered to hold throughout the lexical scope created by the
DPROGN. Thus, our example becomes:
(i f (FrxP x)
then (DPROGN ((X FIXP)). . .e ise (DPROGN ((x
FLoATP))))
Like DPROG and DLAMBDA, the value of a DPROGN may also be
declared, using the pseudo-variable RETU RN5.

DPROGN may be used not only to restr ict the declarat ions of
local var iables, but also to declare var iables that are being used
freely. For example, i f the var iable A is used freely inside a
funct ion but is known to be FIXP, this fact could be noted by
enclosing the body of the funct ion in (DPROGN ((A FIXP FREE))
BODfl . Instead of FREE, the more specif ic construct ion
(BOUNDIN FUNCTIONI FUNCTION 2. . . l can be used. This not
only states that the var iable is used freely but also gives the
names of the funct ionsthat might have provided this binding.2

5ince the DPROG N form introduces another level of
parenthesizat ion, which results in the enclosed forms being
prettypr inted indented, the Decl package also permits such
declarat ions to be attached to their enclosing DISMBDA or
DPROG scopes by placing a DEC expression, e.9. , (DECL (A FIXP
(BOUNDIN FUM)), before the f i rst executable form in that scope.
Like DPROGN's, DECLdeclarat ions use DLAMBDA format.

Declaring the Values of Expressions
The Decl package al lows the value of an arbi trary form to be
declared with rhe Decl construct THE. A THE expression is of the
form (THE TYPE. FORMS), e.9., (THE FIXP (FOO X)). FORMS are
evaluated in order, and the value of the /ast one is checked to see
if i t sat isf ies TYPE, a type name or type expression. l f so, i ts value
is returned, otherwise a declarat ion faul t occurs.

LISP LIBfuqRY PACKAGES M,ANUAL 271

EXTENSIONS TO LISP

Assertions
The Decl package also al lows for checking that an arbi trary
predicate holds at a part icular point in a program's execut ion,
e.9., a condit ion that must hold at funct ion entry but not
throughout i ts execut ion" Such predi(ates can be checked using
an expression of the form (ASSERT FORMI FORM2'), in which
each FORM I is ei ther a l ist (which wi l l be evaluated) or a var iable
(whose declarat ion wi l l be checked). Unless al l elements of the
ASSERT form are sat isf ied, a declarat ion faul t wi l l take place.

ASSERTing a var iable provides a convenient way of ver i fy ing that
the value of the var iable has not been improperly changed by a
lower funct ion. Al though a simi lar ef fect could be achieved for
predicates by explicit checks of the form (OR PRED|CAfE
(SHOULDNT)), A55ERT also provides the abi l i ty both to check
that a var iable's declarat ion is current ly sat isf ied and to remove
its checks at compi le t ime without source code modif icat ion (see
coMPTLETGNO RE DECL).

Using Type Expressions as Predicates
The Decl package extends the Record package TYPE? construct
so that i t accepts decltypes, as wel l as record names, e.9., (TYPE?
(FIXP (SATISFIES (lLE55P VALUE 0))) EXPR). Thus, a TYPE?
expression is exact ly the same as a THE expression except that,
rather than causing a declarat ion faul t , TYPE? is a predicate that
determines whether or not the value sat isf ies the given type.

Enforcement
The Decl package is a "soft" typing system-that is, the data
objects themselves are not inherent ly typed. Consequent ly,
declarat ions can only be enforced within the lexical scope In
which the declarat ion takes place, and then only in certain
contexts. In general , changes to a var iable's value such as those
result ing from side effects to embedded structure (e.g., RpLACA,
sETN, etc.) or f ree var iable references from outside the scope of
the declarat ion cannot be, and therefore are not, enforced.

Declarat ions are enforced, i .e. , checked, in three di f ferenr
si tuat ions: when a declared var iable is bound to some value or
rebound with SETQ or SETQQ, when a declared expression is
evaluated, and when an ASSERT expression is evaluated. In a
binding context, the type check takes place after the binding,
including any user-def ined behavior specif ied by the type's
binding funct ion. Any fai lure of the declarat ions causes a break

272 LISP LIBRARY PACKAGES MANUAL

DECL

to-o(cur and an informative--message to be pr inted. In that
break, the name to which the declarat ion is attached (or VALUE
if no name is avai lable) wi l l be bound to the of fending value.
Thus, in the FACT T example above, N would be bound to T: The
problem can be repaired ei ther by returning an acceptable value
from the break via the RETURN command, or by assigning an
acceptable value to the offending name and returning from the
break via an OK or GO command. The unsat isf ied declarat ion
wi l l be reasserted when the computat ion is cont inued, so an
unacceptable value wi l l be detected.3

The automatic enforcement of type declarat ions is a very f lexible
and powerful aid to program development. l t does, however,
exact a considerable run-t ime cost because of al l the checking
involved. Factors of two to ten in running speed are not
uncommon, especial ly where low-level, f requent ly used
funct ions employ type declarat ions. As a result , i t is usual ly
desirable to remove the declarat ion enforcement code when the
syttem is bel ieved to be bug-free and performance becomes
more central . This can be done with the var iable
COMPILEIG NO RE D ECL.

COMPILEIG NO RE D ECL [Var iable]
Sett ing the value of the var iable COMPILEIGNOREDECL to T
(ini t ia l ly NIL) instructs the compi ler not to insert declarat ion
enforcement tests in the compi led code. More select ive removal
can be achieved by sett ing COMPILEIGNOREDECL to a l ist of
funct ion names. Any funct ion whose name is found on this l ist is
com pi led without declarat ion enf orcem ent.

IGNOREDECL. VAL [Fi le Coml

Declarat ion enforcement may be suppressed select ively by a f i le
using the IGNOREDECL f i le package command. l f th is appears in
a f i le 's f i le commands, i t redef ines the value of
COMPILEIGNOREDECL to VAL for the compi lat ion of th is f i le
only.

Note: The per iod in the IGNOREDECL f i le package command is
signi f icant. Toset COMPILEIGNOREDECLto T, use (IGNOREDECL
. T), not (IGNOREDECL T).

Decltypes

A Decl package type, or decltype, specifies a subset of data values
to which values of this type are restr icteo For example, a
"posit ive number" type might be def ined to include only those
values that are numbers and greater than zero. A type may also
specify how certain operat ions, such as assignment or binding
(see BINDFN), are to be performed on variables declared to be of
this type.

LISP LIBRARY PACKAGES MANUAL 273

EXTENSIONS TO LISP

The inclusion relat ions among the sets of values that sat isfy the
dif ferent types def ine a natural part ial ordering on types, bound
by the universal type ANY (which al l values sat isfy) and the
empty type NONE (which no value sat isf ies). Each type has one
or more supertypes (each type has at least ANY as a supertype)
and one or more subtypes (each type has at least NONE as a
subtype). This structure is important to the user of Decl as i t
provides the framework in which new types are def ined.
Typical ly, much of the def ini t ion of a new type is defaulted,
rather than specif ied expl ic i t ly. The def ini t ion wi l l be completed
by inheri t ing attr ibutes which are shared by al l i ts immediate
supertypes.

An ini t ia l set of decl types that def ines the lnter l isp bui l t - in data
types and a few other commonly used types is provided.
Thereafter, new decltypes are created in terms of exist ing ones
using the type expressions described below. For conciseness,
such new types can be associated with l i teral atoms using the
funqt ion DECLTYPE.

Predefined Types
Some commonly used types, such as the Inter l isp bui l t - in data
types, are already def ined when the Decl package is loaded.
These types, indented to show subtype-supertype relat ions, are:4

ANY
ATOM

ARRAYP
L I TATOM

NIL
NUMBERP

FIXP
LARG E P
SMALLP

FLOATP

LST
STRINGP FUNCT ION STACKP

ALIST HARRAYP
LISTP READTABLEP

NONE

Note that the def ini t ion of LST causes NIL to have mult iple
supertypes, i .e. , LITATOM and LST, ref lect ing the dual i ty of NIL
as an atom and a (degenerate) l ist .

In addit ion, declarat ions made using the Record package also
def ine types that are attached as subtypes to an appropriate
exist ing type (e.9., a TYPERECORD declarat ion def ines a subtype
of L|STP, a DATATYPE declarat ion a subtype of ANY, etc.) and
may be used direct ly in declarat ion contexts.

274 LISP LIBRARY PACKAG ES MANUAL

DECL

Type Expressions
Type expressions provide convenient ways for def ining new
types in terms of modif icat ions to, or composit ions of one or
more exist ing types.

(MEMQ VALUEI. . .VALUE N) [Type Expression]

Specif ies a type whose values can be any one of the f ixed set of
elements VALUE 1.. .VALUE N. For example, the status of a
device might be represented by a datum restr icted to the values
BUSY and FREE. Such a "device status" type could be def ined via
(MEMQ BUSY FREE). The new type wi l l be a subtype of the
narrowest type that al l of the al ternat ives sat isfy (e.9., the
"device status" type would be a subtype of LITAIOM). The
membership test uses EQ i f this supertype is a LITATOM; EQUAL
otherwise. Thus, l ists, f loat ing point numbers, etc. , can be
included in the set of al ternat ives.
(ONEOF TYPE I. . .TYPE N) [Type Expression]

Specif ies a type that is the union of two or more other types. For
example, the not ion of a possibly degenerate l ist is something
that is ei ther LISTP or NlL. Such a type can be (and the bui l t - in
type LST in fact is) def ined simply as (ONEOF NIL LISTP). A union
data type becomes a supertype of all of the alternative types
specif ied in the ONEOF expression, and a subtype of their lowest
Common supertype. The type propert ies of a union type are
taken from i ts al ternat ive types i f they al l agree, otherwise from
the supertype.
(ALLOF TYPE 1. . .TYPE tll [Type Expressionl

Specif ies a type that is the intersect ion of two or more other
types. For example, a var iable may be required to sat isfy both
FIXP and also some type that is def ined as (NUMBERP (SATlSFlES
PREDICATE)). The lat ter type wi l l admit numbers that are not
FIXP, i .e. , f loat ing point numbers; the former does not include
PREDICATE. Both restr iqt ions can be obtained by using the type
(A LLO F (N U M B E RP (5AT rSFr ES PRE D TCATE)) FrXP).s

(OF AGGREGATE OF ELEMENN [Type Expression]

Specif ies DECLaggregafe, a type that is an aggregate of values of
some other type (e.9., l ist of numbers, array of str ings, etc.) .
AGGREGATE must be a type that provides an EVE RYFN property.
The EVERYFN is used to apply an arbi trary funct ion to each of
the elements of a datum of the aggregate type, and check
whether the result is non-NlL for each element. ELEMENT may
be any type expression. For example, the type " l ist of ei ther
str ings or atoms" can be def ined as (LISTP OF (ONEOF STRINGP
ATOM)). The type test for the new type wi l l consist of applying
the type test for ELEMENTto each element of the aggregate type
using the EVERYFN property. The new type wi l l be a subtype of
i ts aggregate type.6

LISP LIBR.ARY PACKAGES MANUAL 275

EXTENSIONS TO LISP

(SATISFIES ryPE (SATISFIES FORM 1. . .FORM A/)) [Type Expression]

Specif ies a type whose values are a subset of the values of an
exist ing type. fhe type test for the new type wi l l f i rst check that
the base type is sat isf ied, i .e. , that the object is a member of
TYPE, and then evaluate FORM l. " .FORM N. t f each form
returns a non-N lL value, the type is sat isf ied

The vafue that is being tested may be referred toin FORM 1. . .
FORM rV by ei ther (a) the var iable name i f the type expression
appears in a binding context such as DLAMBDA or DPROG, (b)
the dist inguished atom ELT for a SATlSFlES clause on the
elements of an aggregate type, or (c) the dist inguished atom
VALUE, when the type expression is used in a context where no
name is avai lable (e.9. , a RETURNS declarat ion). For example,
one might declare the program variable A to be a negat ive
integer v ia (FIXP (SATISFIES (MINUSP A))) or declare the value of a
DLAMBDA to be of type ((ONEOF FIXP FLOATP) (SAIISFIES
(GRE,ATE RP V,ALU E 25))) .

Note that more than one SAT|SF|ES clause may appear in a s ingle
type expression attached to di f ferent al ternat ives in a ONEOF
type expression, or at tached to both the elements and the
overal l structure of an aggregate. For example,

ILrsTP 0F IFrxp (sATrsFrEs (iLEQ ELT (CAR vALUE]
(sATrsFrES (rLESSp (LENGTH VALUE) 7l

specif ies a l ist of less than seven integers each of which is no
greater than the f i rst element of the l ist .
(SHARED rYPE) [Type Expression]

Specif ies DECLshared, a subtype of TYPE, with default binding
behavior, i .e. , the binding funct ion (see BINDFN), i f any, wi l l be
suppressed.T For example, i f the type FLOATP were redef ined so
that DLAMBDA and DPROG bindings of var iables that were
declared to be FLOATP copied their in i t ia l values (e.g. , to al low
SETNs to be free of s ide effects), then variabies declared (SHARED
FLOATP) would be in i t ia l ized in the normal fashion. wi thout
copying their in i t ia l values.

Named Types

Although type expressions can be used in any declarat ion
context, i t is of ten desirable to save the def ini t ion of a new type
if i t is to be used frequent ly, or i f a more com plex specif icat ion of
i ts behavior is to be given than is convenient i . an expression.
The abi l i ty to def ine a named type is provided by the funct ion
DECLTYPE.

276 LISP LIBRARY PACKAGE5 MANUAL

DECL

(DECLTYPE TYPENAMEWPE PROPI VALI
PROPN VALTO IFu nct ion]

NLambda, nospread function. TYPENAME is a literal atom, TYPE
is ei ther the name of an exist ing type or a type expression, and
PROP l , VAL 1.. .PROP N,VAL N is a specif icat ion (in property l ist
format) of other attr ibutes of the type. DECLTYPE derives a type
trom TYPE, associates it with TYPENAME, and then defines any
propert ies specif ied with the values given.

The fol lowing propert ies are interpreted by the Decl package.8
Each of these propert ies can have as i ts value ei ther a funct ion
name ora IAMBDA exoression.

TESTFN IProperty]
wi l l be used by the Decl package to test whether a given value
sat isf ies this type. The type is considered sat isf ied i f FN appl ied to
the i tem is non-NlL. For example, one might def ine the type
INTEG ER \^/ i th TESTFN FIXP.9

EVERYFN [Property]
EVERYFN speci f ies a mapping funct ion that can apply a
funct ional argument to each "element" of an instance of this
type, and which wi l l return NIL unless the result of every such
appl icat ion was non-NlL. Fnl must be a funct ion of two
arguments: the aggregate and the funct ion to be appl ied. For
example, the EVERYFN for the bui l t - in type LISTP is EVERY. The
Decl package uses the EVERYFN property of the aggregate type
to construct a type test for aggregate type expressions. In fact, i t
is the presence of an EVERYFN property that al lows a type to be
used as an aggregate type.10

BINDFN [Property]
BINDFN is used to compute f rom the in i t ia l value suppl ied for a
DLAMBDA or DPROG var iable of th is type, the value to which the
variable wi l l actual ly be ini t ia l ized. FN must be a funct ion of one
argument that wi l l be appl ied to the in i t ia l value, and which
should produce another value which is to be used to make the
binding.t l For example, a BINDFN could be used to bind
variables of some type so that new bindings are copies of the
ini t ia l value. Thus, i f FLOATP were given the BINDFN FPLU5, any
variable declared FLOATP would be ini t ia l ized with a new
float ing box, rather than shar ing wi th that of the or ig inal in i t ia l
value. l2

SETFN [Property]
is used for performing a SETQ or SETQQ of var iables of this
type. Fl \ / is a funct ion of two arguments, the name of the
variable and i ts new value. A SETFN is typical ly used to avoid the
al locat ion of storage for intermediate results. Note that the
SETFN is not the mechanism for the enforcement of type
compatibi l i ty, which is checked after the assignment has taken
place. Also note that not al l funct ions that can change values are
affected: in part icular, SET and SETN are not.

LISP LIBRARY PACKAGES MANUAL 277

EXTENSIONS TO LISP

Manipulat ingNamed Types
DECLTYPES is a f i le package type. Thus al l of the operat ions
relat ing to f i le package types, e.9. , GETDEF, PUTDEF, EDITDEF,
DELDEF, SHOWDEF, etc. , can be performed on decltypes. t 3

The f i le package command, DECLTYPES , is provided to dump
named decltypes symbol ical ly. They wi l l be wri t ten as a ser ies of
DECLTYPE forms that wi l l specify only those f ields that di f fer
from the corresponding f ie ld of their supertype(s). l f the type
depends on any unnamed types, those types wi l l be dumped (as
a compound type expression), cont inuing up the supertype chain
unt i l a named type isfound. Care should be exercised to ensure
that enough of the named type context is dumped to al low the
type def in i t ion to remain meaningful .

The funct ions GETDECLTYPEPROP and SETDECLfYPEPROP,
def ined analogously to the property l is t funct ions for atoms,
al low the manipulat ion of the propert ies of named types.
Sett ing a property to NIL wi th SETDECLTYPEPROP removes i t
f rom the type.

Relations Between Types
The not ion of equivalence of two types is not wel l def ined
However, type equivalence is rarely of interest. What is of
interest is type inclusion. i .e. , whether one type is a supertype or
subtype of another. The predicate COVERS can be used to
determine whether the values of one type include those of
another.

(COVERS HILO) IFu nct ion]

COVERS is T i f Hl can be found on some (possibly empty)
supertype chain of lO; else NlL. fhus, (COVERS FIXP (DECLOF
4))= T, even though the DECLTYPE of four is 5MALLP, not FIXP.
The extremal cases are the obvious ident i t ies:

(C0VERS 'ANY ANYTYPE) = (C0VERS ANYTYPE 'NONE) =
(C0VERS X) for any tyPe X = T.

COVERS al lows declarat ion-based transformations of a form that
depend on elements of the form being of a certain type to
express their appl icabi l i ty condi t ions in terms of the weakest
type to which they apply, without expl ic i t concern for other
types that may be subtypes of i t . For example, i f a part icular
transforrr : t ion is to be appl ied whenever an element is of type
NUMBERP, the program that appl ies that t ransformat ion does
not have to check whether the element is of type SMALLP,
IARGEP, FIXP, FLOATP, etc. , but can simply ask whether
NUMBERP COVERS the type of that e lement.

278 LISP LIBRARY PACKAG E5 MANUAL

DECL

The elementary relat ions among the types, out of which
arbi trary traversals of the type space can be constructed, are
made avai lable v ia:

(SUBTYPE TYPE) IFu nct ion]
Returns the list of types that are immediate subtypes of TypE.
(SUPERTYPES TYPE) IFu nct ion]
Returns the list of types that are immediate supertypes of TypE.

The Declaration Data Base

One of the pr imary uses of type declarat ions is to provioe
information that other systems can use to interpret or opt imize
code. For example, one might choose to wr i te al l ar i thmet ic
operat ions in terms of general funct ions l ike PLUS and TTMES and
then use variable declarat ions to subst i tute more eff ic ient,
special-purpose code at compi le t ime based on the types of the
operands. To this end, a data base of declarat ions is made
avai lable by the Decl package to support these operat ions.
(DECLOF FORMI IFu nct i on]
Returns the type of FORM in the current declarat ion context. l f
FORM is an atom, DECLOF wi l l look up that atom direct ly in i ts
data base of current declarat ions. Otherwise, DECLOF wi l l look
on the property l ist of (CAR FORM) for a DECLOF property, as
described below. l f there is no DECLOF property, DECLOF wi l l
check i f (CAR FORM) is one of a large set of funct ions of known
resul t type (e.9. , the ar i thmet ic funct ions). Fai l ing that , i f (CAR
FORM',) has a MACRO property, DECLOF wi l l appty i tsetf to the
resul t of expanding (wi th EXPANDMACRO), the macro
def in i t ion. Final ly, i f FORM is a Lisp program element that
DECLOF "understands" (e.9. , a COND, PROG, SELECTe, etc.) ,
DECLOF appl ies i tsel f recursively to the part(s) of the contained
form which wi l l be returned as value.14

DECLOF IProperty]
Al lows the specif icat ion of the type of the values returned by a
part icular funct ion. The value of the DECLOF property can be
either a type, i .e. , a type name or a type expression, or a l ist of
the form (FUNCTION Fi{ , where FN is a funct ion objea. FN wi l l
be appl ied (by DECLOF) to the form whose CAR has this DECLOF
property on i ts property l ist . The value of this funct ion
appl icat ion wi l l then be considered to be the type of the form.
As an example of how declarat ions can be used to automat ical ly
generate more eff ic ient code, consider an ar i thmetic package
Declarat ions of numeric var iables could be used to guide code
generat ion to avoid the ineff ic iencies of Inter l isp's handl ing of
ar i thmet ic values. Not only could the gener ic ar i thmet ic
funct ions be automatical ly special ized, as suggested above, but

LISP LIBRARY PACKAGE5 MANUAL 279

EXTENSIONS TO LISP

by redef ining the EINDFN and the SETFN propert ies for the types
FLOATP and LARG EP to reuse storage in the appropriate contexts
(i .e. , when the new value can be determined to be of the
appropriate type), t remendous economies could be real ized by
not al locat ing storage to intermediate results that must later be
reclaimed by the garbage col lector. The Decl package has been
used as the basis for several such code opt imizing systems.

Declarations and Masterscope
The Decl package not i f ies MASTERSCOPE about type
declarat ions and def ines a new MASTERSCOPE relat ion, TYPE,
which depends on declarat ions. Thus, the user can ask quest ions
such as "WHO USES MUMBLE A5 A TYPE?." " DOES FOO USE
FIXP AS A TYPE?," and so on.

End Notes
t"

2.

3.

USEDIN is mainly for documentat ion purposes, s ince there is
no way for such a restr ict ion to be enforced.

Like USEDIN declarat ions, FREE and BOUNDIN declarat ions
cannot be checked, and are for documentat ion purposes
only.

With this except ion, assignments to var iables from within the
break are not considered to be in the scope of the
declarat ions that were in effect when the break took olace
and so are not checked.

LST is def ined as ei ther LISTP or NlL. i .e. , a l is t or NlL. The
name LST is used because the name LIST is treated special ly
by CLISP. A L|ST is def ined as ei ther NIL or a l ist of elements
each of which is of type L|STP.

When a value is tested, the component type tests are appl ied
from left to r ight.

The bui l t - in aggregate types are ARRAP, L|STP, LST, and
STRINGP (and their subtypes).

As no predef ined type has a binding funct ion, th is is of no
concern unt i l the user def ines or red^f ines a type to have a
binding funct ion.

Actual ly, any property can be attached to a type, and wi l l be
avai lable for use by user funct ions v ia the funct ion
G ETDECLTYPEPROP.

Typical ly, the TESTFN for a type is der ived from i ts type
expression, rather than specif ied expl ic i t ly. The abi l i ty to

4.

l

5.

5.

8.

9.

280 LISP LIBRARY PACKAG E5 MANUAL

DECL

specify the TESTFN is provided for those cases where a
predicate is avai lable that is much more eff ic ient than that
which would be derived from the type expression. For
example, the type SMALLP is def ined to have the funct ion
SMALLP as i ts TESTFN, rather than (LAMBDA(DATUM)
(AND(NUMBERP DATUMXFIXP DATUM) (SMALLP DATUM)))
as would be derived from the subtype structure.

'10. Note that a type's EVERYFN is not used in type tests forthat
type, but only in type tests for types def ined by OF
expressions that used this type as the aggregate type. For
example, EVERY is not used in def in ing whether some value
sat isf ies the type LISTP. The Decl package never appl ies the
EVERYFN of a type to a value without f i rst ver i fy ing that the
value satisfies that type.

11. For a PPROG binding, FN wi l l be appl ied to no arguments i f
the in i t ia lvalue is lexical ly NlL.

12. The BINDFN, i f any, associated with a type may be suppressed
in a dedarat ion context by creat ing a subtype with the
type-expressi ng operator SHARE D.

13. Delet ing a named type could possibly inval idate other type
def ini t ions that have the named type as a subtype or
supertype. Consequent ly, the deleted type is sim ply
unnamed and lef t in the type space as long as i t is needed.

14. "The current declarat ion context" is def ined by the
environment at the t ime that DECLOF is cal led.
Code-reading systems, such as the compi ler and the
interpreter, keep track of the lexical scope within which they
are current ly operat ing, in part icular, which declarat ions are
in effect. Note that (current ly) DECLOF does not have access
to any global data base of declarat ions. For example,
DECLOF does not have information avai lable about the types
of arguments of, or the value returned by, a part icular
funct ion, unless i t is current ly " inside" that funct ion.
However, the DECLOF property can be used to inform
DECLOF of the type of the value returned by a part icular
funct ion.

LISP LIBRARY PACKAGES MANUAL 281

