DECL

DECL

Introduction

The Decl Library package is contained on the file DECL.DCOM.
The Decl package requires the LambdaTran package.
LAMBDATRAN.DCOM will automatically be loaded with Decl if it
is not already present.

The Decl package extends Interlisp to allow the user to declare
the types of variables and expressions appearing in functions. It
provides a convenient way of constraining the behavior of
programs when the generality and flexibility of ordinary Interlisp
is either unnecessary, confusing, or inefficient.

Decl provides a simple language for declarations, and augments
the interpreter and the compiler to guarantee that these
declarations are always satisfied. The declarations make
programs more readable by indicating the type, and therefore
something about the intended usage, of variables and
expressions in the code. They facilitate debugging by localizing
errors that manifest themselves as type incompatibilities. Finally,
the declaration information is available for other purposes:
compiler macros can consult the declarations to produce more
efficient code; coercions for arguments at user interfaces can be
automatically generated; and the declarations will be noticed by
the Masterscope function analyzer.

The declarations interpreted by the Decl package are in terms of
a setof declaration types called decitypes, each of which specifies
a set of acceptable values and also (optionally) other
type-specific behavior. The Decl package provides a set of
facilities for defining decltypes and their relations to each other,
including type-valued expressions and a comprehensive
treatment of union types.

The following description of the Decl package is divided into
three parts. First, the syntactic extensions that permit the concise
attachment of declarations to program elements are discussed.
Second, the mechanisms by which new ce-ltypes can be defined
and manipulated are covered. Finally, some additional
capabilities based on the availability of declarations are outlined.

LISP LIBRARY PACKAGES MANUAL

265

EXTENSIONS TO LISP

Using Declarations in Programs

Declarations may be attached to the values of arbitrary
expressions and to LAMBDA and PROG variables throughout (or
for part of) their lexical scope. The deciarations are attached
using constructs that resemble the ordinary Interlisp LAMBDA,
PROG, and PROGN, but which also permit the expression of
declarations. The following examples illustrate the use of
declarations in programs.

Consider the following definition for the factorial function
(FACTN):

[LAMBDA (N)
(COND
((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

Obviously, this function presupposes that Nis a number, and the
run-time checks in ITIMES and SUB1 will cause an error if this is
not so. For instance, (FACT T) will cause an error and print the
message NON-NUMERIC ARG T. By defining FACT as a
DLAMBDA, the Dec package analog of LAMBDA, this
presupposition can be stated directly in the code:

[DLAMBDA ((N NUMBERP))
(COND
((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

With this definition, (FACT T) will resultin a NON-NUMERIC ARG
T error when the body of the code is executed. Instead, the
NUMBERP declaration will be checked when the function is first
entered, and a declaration fault will occur. Thus, the message
that the user will see will not dwell on the offending value T, but
instead give a symbolic indication of what variable and
declaration were violated, as follows:

DECLARATION NOT SATISFIED
((N NUMBERP) BROKEN):

The user is leftin a break from which the values of variables, e.g.,
N, can be examined to determine what the problem is.

The function FACT also makes other presuppositions concerning
its argument, N. For example, FACT will go into an infinite
recursive loop if Nis a number less than zero. Although the user
could program an explicit check for this unexpected situation,
such coding is tedious and tends to obscure the underlying
algorithm. Instead, the requirement that N not be negative can
be succinctly stated by declaring it to be a subtype of NUMBERP
that is restricted to non-ne-jative numbers. This can be done by
adding a SATISFIES clause to N's type specification:

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP NJ)
(COND
((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

266

LISP LIBRARY PACKAGES MANUAL

DECL

The predicate in the SATISFIES clause will be evaluated after N is
bound and found to satisfy NUMBERP, but before the function
body is executed. In the event of a declaration fault, the
SATISFIES condition will be included in the error message. For
example, (FACT -1) would result in:

DECLARATION NOT SATISFIED
((N NUMBERP (SATISFIES (NOT (MINUSP N)))
BROKEN) :

The DLAMBDA construct also permits the type of the value that is
returned by the function to be declared by means of the
pseudo-variable RETURNS. For example, the following definition
specifies that FACT is to return a positive integer:

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])
(COND
((EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

After the function body is evaluated, its value is bound to the
variable VALUE and the RETURNS declaration is checked. A
declaration fault will occur if the value is not satisfactory. This
prevents a bad value from propagating to the caller of FACT,
perhaps causing an error far away from the source of the
difficulty.

Declaring a variable causes its value to be checked not only when
itis first bound, but also whenever that variable is reset by SETQ
within the DLAMBDA. In other words, the type-checking
machinery will not allow a declared variable to take on an
improper value. An iterative version of the factorial function
illustrates this feature in the context of a DPROG, the analog of
PROG:

(DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]J

[RETURNS FIXP (SATISFIES (IGREATERP VALUE 07])
[DPROG ([TEMP 1 FIXP (SATISFIES (IGREATERP TEMP
0

[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])
LP (COND ((EQ N 0) (RETURN TEMP)))
(SETQ TEMP (ITIMES N TEMP))
(SETQ N (SUB1 N))
(GO LP]

DPROG declarations are much like DLAMBDA declarations,
except that they also allow an initial value for the variable to be
specified. In the above example, TEMP is declared to be a
positive integer throughout the computation and N is declared
to be non-negative. Thus, a bug which caused an incorrect value
to be assigned by one of the SETQ expressions would cause a
declaration failure. Note that the RETURNS declaration for a
DPROG is also useful in detecting the common bug of omitting
anexplicit RETURN.

LISP LIBRARY PACKAGES MANUAL

267

EXTENSIONS TO LISP

DLAMBDAs

The Decl package version of a LAMBDA expression is an
expression beginning with the atom DLAMBDA. Such an
expression is a function object that may be used in any context
where a LAMBDA expression may be used. It resembles a
LAMBDA expression except that it permits declaration
expressions in its argument list, as illustrated in the examples
given earlier. Each element of the argument list of a DLAMBDA
may be a literal atom (as in a conventional LAMBDA) or a list of
the form (NAME TYPE .EXTRAS). Strictly, this would require a
declaration with a SATISFIES clause to take the form (N
(NUMBERP (SATISFIES --)) --). However, due to the frequency
with which this construction is used, it may be written without
the inner set of parentheses, e.g., (N NUMBERP (SATISFIES --) --).

NAME fulfills the standard function of a parameter, ie.,
providing a name to which the value of the corresponding
argument will be bound.

TYPE is either a Decl package type name or type expression.
When the DLAMBDA is entered, its arguments will be evaluated
and bound to the corresponding argument names, and then,
after all the argument names have been bound, the declarations
will be checked. The type checking is delayed so that SATISFIES
predicates can include references to other variables bound by
the same DLAMBDA. For example, one might wish to define a
function whose two arguments are not only both required to be
of some given type, but are also required to satisfy some
relationship (e.g., that one is less than the other).

EXTRAS allows some additional properties to be attached to a
variable. One such property is the accessibility of NAME outside
the current lexical scope. Accessibility specifications include the
atoms LOCAL or SPECIAL, which indicate that this variable is to
be compiled so that it is either a LOCALVAR or a SPECVAR,
respectively. This isillustrated by the following example:

[DLAMBDA ((A LISTP SPECIAL)
(B FIXP LOCAL))

-]

A more informative equivalent to the SPECIAL key word is the
USEDIN form, the tail of which can be a list of the other functions
that are expected to have access to the variable.'

[DLAMBDA ((A LISTP (USEDIN FOO FIE))
(B FIXP LOCAL))

-

EXTRAS may also include a comment in standard format, sc that
descriptive information may be given where a variable is bound:

[DLAMBDA ((A LISTP (USEDIN FOO FIE) (* This is
an important variable))
(B FIXP LOCAL))

268

LISP LIBRARY PACKAGES MANUAL

DECL

- As mentioned earlier, the value returned by a DLAMBDA can also

be declared, by means of the pseudo-variable RETURNS. The
RETURNS declaration is just like other DLAMBDA declarations,
except (1) in any SATISFIES predicate, the value of the function is
referred to by the distinguished name VALUE; and (2) it makes
nosense to declare the returnvalue to be LOCALor SPECIAL.

DPROG

Just as DLAMBDA resembles LAMBDA, DPROG is analogous to
PROG. As for an ordinary PROG, a variable binding may be
specified as an atom or a list including an initial value form.
However, a DPROG binding also allows TYPE and EXTRAS
information to appear following the initial value form. The
format for these augmented variable bindings is (NAME
INITIALVALUE TYPE .EXTRAS).

The only difference between a DPROG binding and a DLAMBDA
binding is that the second position is interpreted as the initial
value for the variable. Note that if the user wishes to supply a
type declaration for a variable, an initial value must be specified.
The same rules apply for the interpretation of the type
information for DPROGs as for DLAMBDAs, and the same set of
optional EXTRAs can be used. DPROGSs may also declare the type
of the value they return, by specifying the pseudo-variable
RETURNS.

Just as for a DLAMBDA, type tests in a DPROG are not asserted
until after all the variables have been bound, thus permitting
predicates to refer to other variables being bound by this
DPROG. If NIL appears as the initial value for a binding (i.e., the
atom NIL actually appears in the code, not simply an expression
that evaluates to NIL) the initial type test will be suppressed, but
subsequent type tests, e.g., following a SETQ, will still be
performed.

A common construct in Lisp is to bind and initialize a PROG
variable to the value of a complicated expression in order to
avoid recomputing it, and then to use this value in initializing
other PROG variables, e.g.

[PROG ((A EXPRESSION))
(RETURN (PROG ((B... (A...))
(Cj-- (A)))

The ugliness of such constructions in conventional Lisp often
tempts the programmer to loosen the scoping relationships of
the variables by binding them all at a single level and using
SETQ's in the body of the PROG to establish the initial values for
variables that depend on the initial values of other variables,

eg.,

LISP LIBRARY PACKAGES MANUAL

269

EXTENSIONS TO LISP

[PROG ((A EXPRESSION) B C)

(SETQ B (...A...))

(SETQ C (...A...)

-]
In the Decl package environment, this procedure undermines the
protection offered by the type mechanism by encouraging the
use of uninitialized variables. Therefore, the DPROG offers a
syntactic form to encourage more virtuous initialization of its
variables. A DPROG variable list may be segmented by
occurrences of the special atom THEN, which causes the binding
of its variables in stages, so that the bindings made in earlier
stages can be used in later ones, e.g.,

[DPROG ((A (LENGTH FOO) FIXP LOCAL)
THEN (B (SQRT A) FLOATP)
THEN (C (CONS A B) LISTP))

-]

Each stage is carried out as a conventional set of DPROG bindings
(i.e., simultaneously, followed by the appropriate type testing).
This layering of the bindings permits one to gradually descend
into a inner scope, binding the local names in a very structured
and clean fashion, with initial values type-checked as soon as
possible.

Declarations in Iterative Statements

The CLISP iterative statement provides a very useful facility for
specifying a variety of PROGs that follow certain widely used
formats. The Decl package allows declarations to be made for
the scope of an iterative statement via the DECLARE CLISP (I.S.
operator). DECLARE can appear as an operator anywhere in an
iterative statement, followed by a list of declarations, for
example:

(for J from 1 to 10 declare (J FIXP) do. . .

Note that DECLARE declarations do not create bindings, but
merely provide declarations for existing bindings. For this
reason, an initial value cannot be specified and the form of the
declaration is the same as that of DLAMBDASs, namely create
(NAME TYPE . EXTRAS).

Note that variables bound outside of the scope of the iterative
statement, i.e., a variable used freely in the I.S., can also be
declared using this construction. Such a declaration will only be
in effect for the sc~oe of the iterative statement.

270

LISP LIBRARY PACKAGES MANUAL

DECL

Declaring a Variable for a Restricted Lexical Scope

The Decl package also permits declaring the type of a variable
over some restricted portion of its existence. For example,
suppose the variable X is either a fixed or floating number, and a
program branches to treat the two cases separately. On one
path X is known to be fixed, whereas on the other it is known to
be floating. The Decl package DPROGN construct can be used in
such cases to state the type of the variable along each path.
DPROGN is exactly like PROGN, except that the second element
of the form is interpreted as a list of DLAMBDA format
declarations. These declarations are added to any existing
declarations in the containing scope, and the composite
declaration (created using the ALLOF type expression), is
considered to hold throughout the lexical scope created by the
DPROGN. Thus, our example becomes:

(if (FIXP X)
then (DPROGN ((X FIXP))...else (DPROGN ((X
FLOATP)) ...))

Like DPROG and DLAMBDA, the value of a DPROGN may also be
declared, using the pseudo-variable RETURNS.

DPROGN may be used not only to restrict the declarations of
local variables, but also to declare variables that are being used
freely. For example, if the variable A is used freely inside a
function but is known to be FIXP, this fact could be noted by
enclosing the body of the function in (DPROGN ((A FIXP FREE))
BODY). Instead of FREE, the more specific construction
(BOUNDIN FUNCTION1 FUNCTION 2. . .) can be used. This not
only states that the variable is used freely but also gives the

names of the functions that might have provided this binding.?

Since the DPROGN form introduces another level of
parenthesization, which results in the enclosed forms being
prettyprinted indented, the Decl package also permits such
declarations to be attached to their enclosing DLAMBDA or
DPROG scopes by placing a DEC expression, e.g., (DECL (A FIXP
(BOUNDIN FUM)), before the first executable form in that scope.
Like DPROGN's, DECLdeclarations use DLAMBDA format.

Declaring the Values of Expressions

The Decl package allows the value of an arbitrary form to be
declared with the Decl construct THE. A THE expression is of the
form (THE TYPE . FORMS), e.g., (THE FIXP (FOO X)). FORMS are
evaluated in order, and the value of the /ast one is checked to see
if it satisfies TYPE, a type name or type expression. If so, its value
is returned, otherwise a declaration fault occurs.

LISP LIBRARY PACKAGES MANUAL

271

EXTENSIONS TO LISP

Assertions

The Decl package also allows for checking that an arbitrary
predicate holds at a particular point in a program's execution,
e.g., a condition that must hold at function entry but not
throughout its execution. Such predicates can be checked using
an expression of the form (ASSERT FORMT FORM?2), in which
each FORM1 is either a list (which wili be evaluated) or a variable
(whose declaration will be checked). Unless all elements of the
ASSERT form are satisfied, a declaration fault will take place.

ASSERTing a variable provides a convenient way of verifying that
the value of the variable has not been improperly changed by a
lower function. Although a similar effect could be achieved for
predicates by explicit checks of the form (OR PREDICATE
(SHOULDNT)), ASSERT also provides the ability both to check
that a variable's declaration is currently satisfied and to remove
its checks at compile time without source code modification (see
COMPILEIGNOREDECL).

Using Type Expressions as Predicates

The Decl package extends the Record package TYPE? construct
so that it accepts decltypes, as well as record names, e.g., (TYPE?
(FIXP (SATISFIES (ILESSP VALUE 0))) EXPR). Thus, a TYPE?
expression is exactly the same as a THE expression except that,
rather than causing a declaration fault, TYPE? is a predicate that
determines whether or not the value satisfies the given type.

Enforcement

The Decl package is a “soft" typing system—that is, the data
objects themselves are not inherently typed. Consequently,
declarations can only be enforced within the lexical scope in
which the declaration takes place, and then only in certain
contexts. In general, changes to a variable's value such as those
resulting from side effects to embedded structure (e.g., RPLACA,
SETN, etc.) or free variable references from outside the scope of
the declaration cannot be, and therefore are not, enforced.

Declarations are enforced, i.e.,, checked, in three different
situations: when a declared variable is bound to some value or
rebound with SETQ or SETQQ, when a declared expression is
evaluated, and when an ASSERT expression is evaluated. In a
binding context, the type check takes place after the binding,
including any user-defined behavior specified by the type's
binding function. Any failure of the declarations causes a break

272

LISP LIBRARY PACKAGES MANUAL

DECL

to-occur and an informative--message to be printed. In that
break, the name to which the declaration is attached (or VALUE
if no name is available) will be bound to the offending value.
Thus, in the FACT T example above, N would be bound to T~ The
problem can be repaired either by returning an acceptable value
from the break via the RETURN command, or by assigning an
acceptable value to the offending name and returning from the
break via an OK or GO command. The unsatisfied declaration
will be reasserted when the computation is continued, so an

unacceptable value will be detected.3

The automatic enforcement of type declarations is a very flexible
and powerful aid to program development. It does, however,
exact a considerable run-time cost because of all the checking
involved. Factors of two to ten in running speed are not
uncommon, especially where low-level, frequently used
functions employ type declarations. As a result, it is usually
desirable to remove the declaration enforcement code when the
system is believed to be bug-free and performance becomes
more central. This can be done with the variable
COMPILEIGNOREDECL.

COMPILEIGNOREDECL [Variable]

Setting the value of the variable COMPILEIGNOREDECL to T
(initially NIL) instructs the compiler not to insert declaration
enforcement tests in the compiled code. More selective removal
can be achieved by setting COMPILEIGNOREDECL to a list of
function names. Any function whose name is found on this listis
compiled without declaration enforcement.

IGNOREDECL. VAL (File Com]

Declaration enforcement may be suppressed selectively by a file
using the IGNOREDECL file package command. If this appearsin
a file's file commands, it redefines the value of
COMPILEIGNOREDECL to VAL for the compilation of this file
only.

Note: The period in the IGNOREDECL file package command is
significant. Toset COMPILEIGNOREDECLto T, use (IGNOREDECL
.T),not (IGNOREDECLT).

Decltypes

A Decl package type, or decltype, specifies a subset of data values
to which values of this type are restricte¢ For example, a
“positive number'' type might be defined to include only those
values that are numbers and greater than zero. A type may also
specify how certain operations, such as assignment or binding
(see BINDFN), are to be performed on variables declared to be of
this type.

LISP LIBRARY PACKAGES MANUAL

273

EXTENSIONS TO LISP

. The inclusion relations among the sets of values that satisfy the

different types define a natural partial ordering on types, bound
by the universal type ANY (which all values satisfy) and the
empty type NONE (which no value satisfies). Each type has one
or more supertypes (each type has at least ANY as a supertype)
and one or more subtypes (each type has at least NONE as a
subtype). This structure is important to the user of Decl as it
provides the framework in which new types are defined.
Typically, much of the definition of a new type is defaulted,
rather than specified explicitly. The definition will be completed
by inheriting attributes which are shared by all its immediate
supertypes.

An initial set of decltypes that defines the Interlisp built-in data
types and a few other commonly used types is provided.
Thereafter, new decltypes are created in terms of existing ones
using the type expressions described below. For conciseness,
such new types can be associated with literal atoms using the
function DECLTYPE.

Predefined Types

Some commonly used types, such as the Interlisp built-in data
types, are already defined when the Decl package is loaded.
These types, indented to show subtype-supertype relations, are:?

ANY
ATOM LST
ARRAYP STRINGP FUNCTION STACKP
LITATOM ALIST HARRAYP
NIL LISTP READTABLEP
NUMBERP
FIXP
LARGEP
SMALLP
FLOATP
NONE

Note that the definition of LST causes NIL to have multiple
supertypes, i.e., LITATOM and LST, reflecting the duality of NIL
as an atom and a (degenerate) list.

In addition, declarations made using the Record package also
define types that are attached as subtypes to an appropriate
existing type (e.g., @ TYPERECORD declaration defines a subtype
of LISTP, a DATATYPE declaration a subtype of ANY, etc.) and
may be used directly in declaration contexts.

274

LISP LIBRARY PACKAGES MANUAL

DECL

Type Expressions

Type expressions provide convenient ways for defining new
types in terms of modifications to, or compositions of one or
more existing types.

(MIEMQ VALUET. . .VALUE N) [Type Expression]

Specifies a type whose values can be any one of the fixed set of
elements VALUE 1. . VALUE N. For example, the status of a
device might be represented by a datum restricted to the values
BUSY and FREE. Such a “device status'' type could be defined via
(MEMQ BUSY FREE). The new type will be a subtype of the
narrowest type that all of the alternatives satisfy (e.g., the
“device status” type would be a subtype of LITATOM). The
membership test uses EQ if this supertype is a LITATOM; EQUAL
otherwise. Thus, lists, floating point numbers, etc., can be
included in the set of alternatives.

(ONEOFTYPE 1...TYPEN) [Type Expression]

Specifies a type that is the union of two or more other types. For
example, the notion of a possibly degenerate list is something
that is either LISTP or NIL. Such a type can be (and the built-in
type LST in fact is) defined simply as (ONEOF NIL LISTP). A union
data type becomes a supertype of all of the alternative types
specified in the ONEOF expression, and a subtype of their lowest
common supertype. The type properties of a union type are
taken from its alternative types if they all agree, otherwise from
the supertype.

(ALLOFTYPE1...TYPEN)) [Type Expression]

Specifies a type that is the intersection of two or more other
types. For example, a variable may be required to satisfy both
FIXP and also some type that is defined as (NUMBERP (SATISFIES
PREDICATE)). The latter type will admit numbers that are not
FIXP, i.e., floating point numbers; the former does not include
PREDICATE. Both restrictions can be obtained by using the type
(ALLOF (NUMBERP (SATISFIES PREDICATE)) FIXP).5

(OF AGGREGATE OF ELEMENT) [Type Expression]

Specifies DECLaggregate, a type that is an aggregate of values of
some other type (e.g., list of numbers, array of strings, etc.).
AGGREGATE must be a type that provides an EVERYFN property.
The EVERYFN is used to apply an arbitrary function to each of
the elements of a datum of the aggregate type, and check
whether the result is non-NIL for each element. ELEMENT may
be any type expression. For example, the type "list of either
strings or atoms'' can be defined as (LISTP OF (ONEOF STRINGP
ATOM)). The type test for the new type will consist of applying
the type test for ELEMENT to each element of the aggregate type
using the EVERYFN property. The new type will be a subtype of
its aggregate type.6

LISP LIBRARY PACKAGES MANUAL

275

EXTENSIONS TO LiSP

(SATISFIES TYPE (SATISFIES FORM 1.. .FORM N)) [Type Expression]

Specifies a type whose values are a subset of the values of an
existing type. The type test for the new type will first check that
the base type is satisfied, i.e., that the object is a member of
TYPE, and then evaluate FORM 1. . .FORM N. If each form
returns a non-NIL value, the type is satisfied.

The value that is being tested may be referred to in FORM 1. . .
FORM N by either (a) the variable name if the type expression
appears in a binding context such as DLAMBDA or DPROG, (b)
the distinguished atom ELT for a SATISFIES clause on the
elements of an aggregate type, or (c) the distinguished atom
VALUE, when the type expression is used in a context where no
name is available (e.g., a RETURNS declaration). For example,
one might declare the program variable A to be a negative
integer via (FIXP (SATISFIES (MINUSP A))) or declare the value of a
DLAMBDA to be of type ((ONEOF FIXP FLOATP) (SATISFIES
(GREATERP VALUE 25))).

Note that more than one SATISFIES clause may appear in a single
type expression attached to different alternatives in a ONEOF
type expression, or attached to both the elements and the
overall structure of an aggregate. For example,

[LISTP OF [FIXP (SATISFIES (ILEQ ELT (CAR VALUE]
(SATISFIES (ILESSP (LENGTH VALUE) 7]

specifies a list of less than seven integers each of which is no
greater than the first element of the list.

(SHARED TYPE) [Type Expression]

Specifies DECLshared, a subtype of TYPE, with default binding
behavior, i.e., the binding function (see BINDFN), if any, will be
suppressed.” For example, if the type FLOATP were redefined so
that DLAMBDA and DPROG bindings of variables that were
declared to be FLOATP copied their initial values (e.g., to allow
SETNs to be free of side effects), then variables declared (SHARED
FLOATP) would be initialized in the normal fashion, without
copying theirinitial values.

Named Types

Although type expressions can be used in any declaration
context, it is often desirable to save the definition of a new type
ifitis tobe used frequently, or if a more complex specification of
its behavior is to be given than is convenient i. an expression.
The ability to define a named type is provided by the function
DECLTYPE.

276

LISP LIBRARY PACKAGES MANUAL

DECL

(DECLTYPE TYPENAME TYPE PROP1 VALT1
PROPN VALN) [Function]

NLambda, nospread function. TYPENAME is a literal atom, TYPE
is either the name of an existing type or a type expression, and
PROP 1, VAL 1...PROP N,VAL N is a specification (in property list
format) of other attributes of the type. DECLTYPE derives a type
from TYPE, associates it with TYPENAME, and then defines any
properties specified with the values given.

The following properties are interpreted by the Decl package.8
Each of these properties can have as its value either a function
name ora LAMBDA expression.

TESTFN [Property]

will be used by the Decl package to test whether a given value
satisfies this type. The type is considered satisfied if FN applied to
the item is non-NIL. For example, one might define the type
INTEGER with TESTFN FIXP.9

EVERYFN [Property]

EVERYFN specifies a mapping function that can apply a
functional argument to each “element’ of an instance of this
type, and which will return NIL unless the result of every such
application was non-NIL. FN must be a function of two
arguments: the aggregate and the function to be applied. For
example, the EVERYFN for the built-in type LISTP is EVERY. The
Decl package uses the EVERYFN property of the aggregate type
to construct a type test for aggregate type expressions. In fact, it
is the presence of an EVERYFN property that allows a type to be
used as an aggregate type.10

BINDFN (Property]

BINDFN is used to compute from the initial value supplied for a
DLAMBDA or DPROG variable of this type, the value to which the
variable will actually be initialized. FN must be a function of one
argument that will be applied to the initial value, and which
should produce another value which is to be used to make the
binding.!! For example, a BINDFN could be used to bind
variables of some type so that new bindings are copies of the
initial value. Thus, if FLOATP were given the BINDFN FPLUS, any
variable declared FLOATP would be initialized with a new
floating box, rather than sharing with that of the original initial
value.12

SETFN [Property]

is used for performing a SETQ or SETQQ of variables of this
type. FN is a function of two arguments, the name of the
variable and its new value. A SETFN is typically used to avoid the
allocation of storage for intermediate results. Note that the
SETFN is not the mechanism for the enforcement of type
compatibility, which is checked after the assignment has taken
place. Also note that not all functions that can change values are
affected: in particular, SET and SETN are not.

* LISP LIBRARY PACKAGES MANUAL

277

EXTENSIONS TO LISP

Manipulating Named Types

DECLTYPES is a file package type. Thus all of the operations
relating to file package types, e.g., GETDEF, PUTDEF, EDITDEF,
DELDEF, SHOWDEF, etc., can be performed on decltypes.'3

The file package command, DECLTYPES , is provided to dump
named decltypes symbolically. They will be written as a series of
DECLTYPE forms that will specify only those fields that differ
from the corresponding field of their supertype(s). If the type
depends on any unnamed types, those types will be dumped (as
a compound type expression), continuing up the supertype chain
until a named type is found. Care should be exercised to ensure
that enough of the named type context is dumped to allow the
type definition to remain meaningful.

The functions GETDECLTYPEPROP and SETDECLTYPEPROP,
defined analogously to the property list functions for atoms,
allow the manipulation of the properties of named types.
Setting a property to NIL with SETDECLTYPEPROP removes it
from the type.

Relations Between Types

The notion of equivalence of two types is not well defined
However, type equivalence is rarely of interest. What is of
interest is type inclusion, i.e., whether one type is a supertype or
subtype of another. The predicate COVERS can be used to
determine whether the values of one type include those of
another.

(COVERS HILO) [Function]

COVERS is T if HI can be found on some (possibly empty)
supertype chain of LO; else NIL. Thus, (COVERS 'FIXP (DECLOF
4))= T, even though the DECLTYPE of four is SMALLP, not FIXP.
The extremal cases are the obvious identities:

(COVERS 'ANY ANYTYPE) = (COVERS ANYTYPE 'NONE) =
(COVERS X) for any type X = T.

COVERS allows declaration-based transformations of a form that
depend on elements of the form being of a certain type to
express their applicability conditions in terms of the weakest
type to which they apply, without explicit concern for other
types that may be subtypes of it. For example, if a particular
transfoim ation is to be applied whenever an element is of type
NUMBERP, the program that applies that transformation does
not have to check whether the element is of type SMALLP,
LARGEP, FIXP, FLOATP, etc.,, but can simply ask whether
NUMBERP COVERS the type of that element.

278

LISP LIBRARY PACKAGES MANUAL

DECL

The elementary relations among the types, out of which
arbitrary traversals of the type space can be constructed, are
made available via:

(SUBTYPE TYPE) [Function]
Returns the list of types that are immediate subtypes of TYPE.
(SUPERTYPES TYPE) [Function]

Returns the list of types that are immediate supertypes of TYPE.

The Declaration Data Base

One of the primary uses of type declarations is to provide
information that other systems can use to interpret or optimize
code. For example, one might choose to write all arithmetic
operations in terms of general functions like PLUS and TIMES and
then use variable declarations to substitute more efficient,
special-purpose code at compile time based on the types of the
operands. To this end, a data base of declarations is made
available by the Decl package to support these operations.

(DECLOF FORM) [Function]

Returns the type of FORM in the current declaration context. If
FORM is an atom, DECLOF will look up that atom directly in its
data base of current declarations. Otherwise, DECLOF will look
on the property list of (CAR FORM) for a DECLOF property, as
described below. If there is no DECLOF property, DECLOF will
check if (CAR FORM) is one of a large set of functions of known
result type (e.g., the arithmetic functions). Failing that, if (CAR
FORM) has a MACRO property, DECLOF will apply itself to the
result of expanding (with EXPANDMACRQ), the macro
definition. Finally, if FORM is a Lisp program element that
DECLOF “understands’ (e.g., a COND, PROG, SELECTQ, etc.),
DECLOF applies itself recursively to the part(s) of the contained
form which will be returned as value.14

DECLOF [Property]

Allows the specification of the type of the values returned by a
particular function. The value of the DECLOF property can be
either a type, i.e., a type name or a type expression, or a list of
the form (FUNCTION FN), where FN is a function object. FN will
be applied (by DECLOF) to the form whose CAR has this DECLOF
property on its property list. The value of this function
application will then be considered to be the type of the form.

As an example of how declarations can be used to automatically
generate more efficient code, consider an arithmetic package
Declarations of numeric variables could be used to guide code
generation to avoid the inefficiencies of Interlisp's handling of
arithmetic values. Not only could the generic arithmetic
functions be automatically specialized, as suggested above, but

LISP LIBRARY PACKAGES MANUAL

279

EXTENSIONS TO LISP

by redefining the BINDFN and the SETFN properties for the types
FLOATP and LARGEP to reuse storage in the appropriate contexts
(i.e., when the new value can be determined to be of the
appropriate type), tremendous economies could be realized by
not allocating storage to intermediate results that must later be
reclaimed by the garbage collector. The Decl package has been
used as the basis for several such code optimizing systems.

Declarations and Masterscope

The Decl package notifies MASTERSCOPE about type
declarations and defines a new MASTERSCOPE relation, TYPE,
which depends on declarations. Thus, the user can ask questions
such as “"WHO USES MUMBLE AS A TYPE?," " DOES FOO USE
FIXPASATYPE?, ' and soon.

End Notes

1. USEDIN is mainly for documentation purposes, since there is
noway forsuch a restriction to be enforced.

2. Like USEDIN declarations, FREE and BOUNDIN declarations
cannot be checked, and are for documentation purposes
only.

3. With this exception, assignments to variables from within the
break are not considered to be in the scope of the
declarations that were in effect when the break took place
and so are not checked.

4. LST is defined as either LISTP or NIL. i.e., a list or NIL. The
name LST is used because the name LIST is treated specially
by CLISP. A LIST is defined as either NIL or a list of elements
each of which is of type LISTP.

5. When a value is tested, the component type tests are applied
from left toright.

6. The built-in aggregate types are ARRAP, LISTP, LST, and
STRINGP (and their subtypes).

7. As no predefined type has a binding function, this is of no
concern until the user defines or red~fines a type to have a
binding function.

8. Actually, any property can be attached to a type, and will be
available for use by user functions via the function
GETDECLTYPEPROP.

9. Typically, the TESTFN for a type is derived from its type
expression, rather than specified explicitly. The ability to

280

LISP LIBRARY PACKAGES MANUAL

DECL

10.

11.

12.

13.

14.

specify the TESTFN is provided for those cases where a
predicate is available that is much more efficient than that
which would be derived from the type expression. For
example, the type SMALLP is defined to have the function
SMALLP as its TESTFN, rather than (LAMBDA(DATUM)
(AND(NUMBERP DATUM)(FIXP DATUM) (SMALLP DATUM)))
as would be derived from the subtype structure.

Note that a type's EVERYFN is not used in type tests for that
type, but only in type tests for types defined by OF
expressions that used this type as the aggregate type. For
example, EVERY is not used in defining whether some value
satisfies the type LISTP. The Decl package never applies the
EVERYFN of a type to a value without first verifying that the
value satisfies that type.

For a PPROG binding, FN will be applied to no arguments if
the initial valueis lexically NIL.

The BINDFN, if any, associated with a type may be suppressed
in a declaration context by creating a subtype with the
type-expressing operator SHARED.

Deleting a named type could possibly invalidate other type
definitions that have the named type as a subtype or
supertype. Consequently, the deleted type is simply
unnamed and left in the type space aslong as it is needed.

"The current declaration context" is defined by the
environment at the time that DECLOF is called.
Code-reading systems, such as the compiler and the
interpreter, keep track of the lexical scope within which they
are currently operating, in particular, which declarations are
in effect. Note that (currently) DECLOF does not have access
to any global data base of declarations. For example,
DECLOF does not have information available about the types
of arguments of, or the value returned by, a particular
function, unless it is currently “inside' that function.
However, the DECLOF property can be used to inform
DECLOF of the type of the value returned by a particular
function.

LISP LIBRARY PACKAGES MANUAL

281

