
DEDIT
Many important objects such as function definitions, property
lists, and variable values are represented as list st:.uctures. There
are two list structure editors (SEdit in the system, and DEdit in the
l ibrary, for backward compatibi l i ty) to al low users to modify l ist
structures rapidly and conveniently.

The list structure editor is most often used to edit function
def ini t ions. Edit ing funct ion def ini t ions in memory is a faci l i ty
not offered by many Lisp systems, where typically the user edits
external text f i les containing funct ion def ini t ions, then loads
them into the environment. In Lisp, funct ion def ini t ions are
edited in the environment, and wri t ten to an external f i le using
the f i le manager (see /RM), which provides tools for managing
the contents of a file.

History
Early implementat ions of Inter l isp using pr imit ive terminals
offered a teletype-oriented editor, which included a large set of
cryptic commands for printing different parts of a list structure,
searching a l ist , replacing elements, etc. The l ibrary includes an
extended, display-oriented version of the teletype list structure
editor, cal led DEdit .

The teletype editor is stil l available (see lRMl, as it offers a facility
for doing complex modif icat ions of program structure under
program control . DEdit also provides faci l i t ies for using the
teletype editor commands from within DEdit .

DEdit

DEdit is a structure or iented, modeless, display based editor for
objects represented as list structures, such as functions, property
lists, data values, etc.

DEdit incorporates the interfaces of the teletype-oriented
Interlisp editor, so the two can be used interchangeably. In
addition, the full power of the teletype editor, and indeed the
ful l Inter l isp system is easi ly accessible from within DEdit .

DEdit is structure-oriented rather than character-oriented, to
facilitate selecting and operating on pieces of structure as
objects in their own right, rather than as collections of
characters. However, for the occasional situation when
character-oriented editing is appropriate, DEdit provides access
to the text edi t ing faci l i t ies. DEdit is modeless, in that al l
commands operate on previously selected arguments, rather
than causing the behavior of the interface to change during
argument specif i cat ion.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 47

DEDIT

Requirements
DEDITPP

Installation
Load DEDIT.LCOM from the l ibrary.

Loading DEdit makes i t the default

lf another Lisp structure editor is
want to make DEdit the default ,
loading DEdit .

Lisp structure editor.

already the default and you
cal l (EDITMODE 'DEDIT) after

User Interface
DEdit is normally cal led using one of the DEdit functions. See
also "Advanced Features" below.

DEdit Window
When DEdit is cal led for the f irst t ime, i t prompts for an edit
window which is preserved and reused for later DEdits, and it
pretty-printsthe expression to be edited therein.
Note: The DEdit pretty printer ignores user

PRETTYPRINTMACROS because they do not provide
enough structural information during print ing to enable
selection.

The expression being edited can be scrolled by using the
standard scroll bar on the left edge of the window. DEdit adds a
command menu, which remains active throughout the edit, on
the right edge of the edit window. lf you type anything, an edit
buffer window is posit ioned below the edit window. This is
i l lustrated in the f igure below, which shows the definit ion of a
function called FACT. While DEdit is running, i t yields control so
that background activit ies, such as mouse commands in other
windows, continue to be performed.

48 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

LAlile'tl* f :{ I (+ nrjs " ;r-Dr,t-Es .t E:'14'
{ i f iLEEEP :{ r l

then 1
else iTI l lEE l i

ltiij_ I___i_s_u_u__liil 1 I l

,rl.fte r
Eef ' l re
Erel*tE

Feplace
5r/fltf,n

{ }
i] ':'r-ttUtr,:lu
f ln ' l

5'rva.p
Fepr int

E':lit
ErlitCurt'rr

Ereak
Eval
tr ..'itI

i F*LlT iq!rrEEEi,EE_I,,I Li

Selecting Obiects and Lists
Select ion in a DEdit window is as fol lows:

The left button selects the object being directly pointed at.

The middle button selects the containing l ist .

The right button extends the current selection to the lowest
common ancestor of that selection and the current
posit ion.

The only things that may be pointed at are atomic objects
(symbols, numbers, etc) and parentheses, which are considered
to represent the list they delimit. White space cannot be selected
or edited.

When a select ion is made, i t is pushed on a select ion stack, which
wi l l be the source of operands for DEdit commands. As each new
selection pushes down the selections made before it, this stack
can grow arbitrarily deep, so only the top two selections on the
stack are highl ighted on the screen. This highl ight ing is done by
underscoring the topmost (most recent) selection with a solid
black l ine and the second topmost select ion with a dashed l ine.
The patterns used were chosen so that their overlappings would
be both vis ible and dist inct, s ince select ing a subpart of another
select ion is quite common.

For example, in the next f igure, the last select ion is the l ist (FACT
(5UB1 X)), and the previous select ion isthe single symbol SUBl:

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 49

DEDIT

{LAl ' lB0A i l i i {+ nr j=, , r -E,r t -EE 1E:, : r4 ' ,1
i i f f LE$EF r{ r J

then 1
else {TINErl : : {

irslfl_:lu81_:qLI] I j

Because you can invoke DEdit recursively, there may be several
DEdit windows active on the screen at once. This is often useful
when transferring material from one object to another (as when
real locat ing funct ional i ty within a set of programs). Select ions
may be made in any act ive DEdit window, in any order. When
there is more than one DEdit window, the edit command menu
(and the type-in buffer) will attach itself to the most recently
opened (or current) DEdit window.

Characters to DEdit
Characters may be typed at the keyboard at any t ime. This wi l l
create a type-in buffer window which wi l l posi t ion i tsel f under
the current DEdit window and do a LISpXREAD (which must be
terminated by a right parenthesis or a return) from the
keyboard. During the read, any character edit ing subsystem
(such as TTYIN) that is loaded can be used to do character level
edit ing on the type-in. When the read is complete, the type-in
wi l l become the current select ion (top of stack) and be avai lable
as an operand for the next command. Once the read is complete,
objects displayed in the type-in buffer can be selected from,
scrol led, or even edited, just l ike those in the main window.
You can also enter edit ing commands direct ly into the type-in
buffer. Typing control-Z will interpret the rest of the line as a
teletype editor command that will be interpreted when the line
is closed. Likewise, control-S OLD NEW will substitute ,VEWfor
OLD, and control-F Xwill find the next occurrence of X-

Often, significant pieces of what you wish to type can be found
in an active DEdit window. To aid in transferring the keystrokes
that these objects represent into the type-in buffer, DEdit
supports copy-selection. Whenever a selection is made in the
DEdit window with either shift key or the COpy key down, the
selection made is not pushed on the selection stack, but is
instead unread into the keyboard input (and hence shows up in
the type-in buffer). A characterist ical ly different highlighting is
used to indicate when copy selection (as opposed to normal
selection) is taking place.
Note: Copy-selection remains active even when DEdit is not.

Thus you can unread part icularly choice pieces of text
from DEdit windows into an Exec window.

s0 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Entering DEdit CommanCq

A DEdit command is invoked by select ing an i tem from the DEdit
command menu. This can be done ei ther direct ly, using the lef t
mouse button in the usual way, or by select ing a subcommand.
Subcommands are less frequent ly used commands than those on
the main edit command menu and are grouped together in
submenus under the main menu to which they are most closely
related.

For example, the teletype editor def ines six commands for
adding and removing parentheses (def ined in terms of
transformations on the underly ing l ist structure). Of these six
commands, only two (insert ing and removing parentheses as a
pair) are commonly used, so DEdit provides the other four as
subcommands of the common two.

The subcommands of a command are accessed by select ing the
command from the commands menu with the middle button.
This wi l l br ing up a menu of the subcommand opt ions from
which a choice can be made. Subcommands are f lagged in the
l ist below with the name of the top level command of which they
are options.

l f you have a large DEdit window, or several DEdit windows
act ive at once, the edit command window may be far away from
the area of the screen in which you are operat ing. To solve this
problem, the DEdit command menu is in an attached window.
Whenever the tab key is pressed, the command window wi l l
move over to the current cursor position and stay there as long as
either the tab key remains down or the cursor is in the command
window. Thus, you can pul l the command window over, s l ide
the cursor into it and then release the tab key (or not) while you
make a command select ion in the normal way. This el iminates a
great deal of mouse movement.

Whenever a change is made, the pretty-printer reprints until the
print ing stabl izes. As the standard pretty pr int algor i thm is used,
and as i t leaves no information behind on how i t makes i ts
choices, this is a somewhat heurist ic process. The REPRINT
command can be used to tidy the result up if it is not, in fact,
" pretty. "

DEclat Functions

(RESETDEDIT)

The functions used to start an editor are documented in the
"Edit lnterface" section of the lisp Release Notes.

IFunct ion]
Completely reini t ia l izes DEdit . Closes al l DEdit windows, so that
you must specify the window the next time DEdit is envoked.
RESETDEDIT is also used to make DEdit recognize the new values
of var iables such as DEDITTYPEINCOMS (see "DEdit Parameters,"
below), when you change them.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 51

DEDIT

DEdit Commands

AFTER

BEFORE

DELETE

REPLACE

SWITCH

0
(tN

0 OUT

(our

) our

)tN

All commands take their operands from the selection stack, and
may push a result back on the stack. In general, the rule is to
select target selections first and source selections second. Thus, a
REPLACE command is done by selecting the thing to be replaced,
selecting (or typing) the new material, and then selecting the
REPL,ACE command in the command menu.

Using IOP to denote the topmost (most recent) element of the
stack and wXf the second element, the DEdit commands are:

lnserts a copy of IOP after NXT.
lDEdit Commandl

lDEdit Commandl
lnserts a copy of TOP before NXL

lDEdit Commandl
Deletes TOP from the structure being edited. (A copy ofl TOP
remains on the stack and will appear, selected, in the edit buffer.

lDEdit Commandl
Replaces NXfwith a copy of TOP obtained by substituting a copy
of NXT wherever the value of the atom EDITEMBEDTOKEN
(initially, the & character) appearsin TOP. This provides a facility
l ike the MBD edit command in Lisp; see EXTRACT, EMBED and
IDIOMS below.

lDEdit Commandl
Exchanges IOP and NXf in the structure being edited.

lDEdit Commandl

lDEdit Commandl
Subcommands of 0. Inserts (before IOP (like the Lt ED|T
command; see "Commands That Edit Parentheses," below).

lDEdit Commandl
Subcommand of 0. Inserts) after IOP (like the Rt ED|T
command; see "Commands That Edit Parentheses," below)-

lDEdit Commandl
Removes parentheses from IOP.

lDEdit Commandl
Subcommand of 0 OUT. Removes (from before IOP (like the LO
EDIT command; see "Commands That Edit Parentheses," below).

lDEdit Commandl
5ubcommand of 0 OUT. Removes) from after IOp (like the RO
EDIT command; see "Commands That Edit parentheses," below).

lDEdit Commandl
Undoes last command.

52

UNDO

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

!UNDO

?UNDO
&UNDO

FIND

SWAP

CENTER

CLEAR

COPY

POP

REPRINT

EDIT

lDEdit Commandl

Subcommand of UNDO. Undoes al l changes since the start of
this cal l on DEdit . This command can be undone.

lDEdit Commandl
lDEdit Commandl

Subcommands of UNDO that al low select ive undoing of other
than the last command. Both of these commands br ing up a
menu of al l the commands issued during this cal l on DEdit .
When you select an i tem from this menu, the corresponding
command (and i f &UNDO, al l commands since that point) wi l l be
undone.

lDEdit Commandl

Sefects, in place of TOP, the first place after IOP that matches
NXL Uses the edit subystem's search rout ine, so supports the ful l
wi ldcarding convent ions of EDIT.

lDEdit CommSndl

Exchanges IOP and A/Xf on the stack, i.e. the stack is changed,
the structure being edited isn' t .

SWAP and i ts subcommands affect the stack and the select ions,
rather than the structure being edited.

lDEdit Commandl

Scrol ls unt i l IOP is vis ible in i ts window.

lDEdit Commandl

Discards al l select ions (i .e. , c lears the

lDEdit Commandl

Subcommand of SWAP. Puts a copy of IOP into the edit buffer
and makes it the new IOP.

lDEdit commandl

Subcommand of SWAP. Pops IOP off the selection stack.

lDEdit Commandl

Reprints IOP.

lDEdit Commandl

Runs DEdit on the def ini t ion of the atom IOP (or CAR of l ist
IOP). Uses TYPESOF to determine what definitions exist for IOP
and, i f there is more than one, asks you, via a menu, which one to
use. l f TOP is def ined and is a non-l ist , cal ls INSPECT on that
value. Edit also has a var iety of subcommands which al low
choice of edi tor (DEdit , TTYEdit , etc.) and whether to invoke that
editor on the def ini t ion of TOP orthe form i tsel f .

Note: DEdit caches each subordinate edit window in the
window from which i t was entered for as long as the
higher window is act ive. Thus, mult ip le DEdit commands

Subcommand of SWAP.

Subcommand of SWAP.
stack).

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT s3

DEDIT

EDITCOM

BREAK

EVAL

EXIT

OK
STOP

do not incur the cost of repeatedly allocating a new
window.

lDEdit Commandl

Allows you to run arbitrary EDIT commands on the structure
being DEdited (there are far too many of these for them al l to
appear on the main menu). TOP should be an EDIT command,
which wi l l be appl ied to NXf as the current edi t expression. On
return to DEdit , the (possibly changed) current EDIT expression
will be selected as the new IOP. Thus, selecting some expression,
typing (R FOO BAZ), and select ing EDITCOM wil l cause FOO to be
replaced with BAZ in the expression selected.
In addit ion, a var iety of common EDIT commands are avai lable as
subcommands of EDITCOM. Current ly, these include ? =, GETD,
CL, DW, REPACK, CAP, LOWER, and RAISE.

Does a BREAKIN AROUND the current
BREAKIN funct ion in IRM).

lDEdit Commandl
expression IOP. (See

lDEdit Commandl
Evaluates IOP, whose value is pushed onto the stack in place of
TOP, and which will therefore appear, selected, in the edit
buffer.

lDEdit Commandl
Exits from DEdit (equivalent to Edit OK; see "Commands For
Leaving The Editor," below).

lDEdit Commandl

lDEdit Commandl
Subcommands of EXIT. OK exits without an error; STOp exits
with an error. Equivalent to the EDIT commands with the same
names.

There are several global variables that can be used to affect
var ious aspects of DEdit 's operat ion.

EDITEMBEDTOKEN

DEDITLINGER

lVariablel
Init ial ly &. Used in both DEdit and the teletype editor to indicate
the special atom used as the embed token.

lVariablel
Ini t ia l ly T. The default behavior of the topmost DEdit window is
to remain act ive on the screen when exi ted. This is occasional ly
inconvenient for programs that cal l DEdit direct ly, so i t can be
made to close automatical ly when exi ted by sett ing this var iable
to NlL.

54 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

DEDITTYPEINCOMS lVariablel
Def ines the control characters recognized as commands during
DEdit type-in. The elements of this l ist are of the form (LEITER
COMMANDNAME FN), where

LETTER is the alphabetic character corresponding to the control
character desired (e.9., A for control-A),

COMMANDNAME is a symbol used both as a prompt and internal
tag,

FN is a function applied to the expressions typed as arguments to
the command.

See the current value of DEDITTYPEINCOMS for examples.
DEDITTYPEINCOMS is only accessed when DEdit is in i t ia l ized, so
DEdit should be reini t ia l ized with RESETDEDIT (see "Cal l ing
DEdit ," above) i f i t is changed.

DT.EDITMACROS lVariablel
)ef ines the behavior of the EDIT command when invoked on a
form that is not a l ist or symbol, thus tel l ing DEdit how to edit
instances of certain datatypes. DT.EDITMACROS is an association
list keyed by datatype name; entries are of the form

(DATATY PE M AK ESO U RCE F N I NSTALLE DITF N).

When told to edit an object of type DATATYPE, DEdit calls
MAKESOURCEFN with the object as its argument.

:"^T.l#ktrn:ll;:'ffJ.t.'lT::il::111i;'1,.-"f iT'Till
n the lat ter case, DEdit is then invoked recursively on the l ist ;

when that edit is finished, DEdit calls INSTALLEDIIFN with two
arguments, the or iginal object and the edited l ist . l f
INSTALLEDIIFN causes an error, the recursive DEdit is invoked
again, and the process repeats until the you either exit the lower
editor with STOP, or exit with an expression that ,ruSIAILEDITFN
accepts.

For example, suppose the you have a datatype declared by
(DATATYPE FOO (NAME AGE SEX)). To make sure that instances
of FOO can be edited, an entry (FOO DESTRUCTUREFOO
INSTALLFOO) is added to DT.EDITMACROS, where the functions
are def ined by

(DESTRUCTUREFoO (oBJECT)
(LIST (fetch NAME of 0BJECT)

(fetch AGE of OBJECT)
(fetch SEX of oBJEcT)))

(TNSTALLFOo (oBJECT CoNTENTS)
(i f (EQLENGTH CONTENTS 3)

then (replace NAME of OBJECT with (CAR CONTENTS))
(replace AGE of OBJECT with (CADR CONTENTS))
(replace SEX of OBJECT with (CADDR CONTENTS))

else (ERROR "Wrong number of f ie lds for F0O" CONTENTS)))

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 55

DEDIT

User Interface - Advanced Features

Mult iple DEdit Commands
It is occasional ly useful to be able to give several commands at
once - ei ther because you think of them as a unit or because the
intervening re-pretty-printing is distracting. The stack
architecture of DEdit makes such mult iple commands easy to
construct. You just push whatever arguments are required for
the complete sui te of commands you have in mind. Mult ip le
commands are specif ied by holding down the CONTROL key
during command select ion. As long as the control key is down,
commands selected will not be executed, but merely saved on a
l ist . Final ly, when a command is selected without the control key
down, the command sequence is terminated with that command
being the last one in the sequence.
You would rarely construct long sequences of commands in this
fashion, because the feedback of being able to inspect the
intermediate results is usual ly worthwhi le. Typical ly, just two or
three step idioms are composed in this fashion.

DEdit ld ioms

As with any interactive system, there are certain common idioms
on which experienced users depend heavi ly. In the case of DEdit ,
many of these idioms concern easy ways to achieve the effects of
specific commands from the Edit system, with which many users
are already famil iar. The DEdit id ioms described below are the
result of the experience of the early users of the system and are
by no means exhaust ive. In addit ion to those that each user wi l l
develop to fit his own particular style, there are many more to be
discovered and you are encouraged to share your discoveries.
Because of the novel argument specif icat ion technique (postf ix;
target f i rst) many of the DEdit id ioms are very simple, but
opaque until you have absorbed the "target-source-command"
way of looking at the world. Thus, you select where type-in is to
go before touching the keyboard. After typing, the target will
be selected second and the type-in selected on top, so that an
AFTER, BEFORE or REPLACE wi l l have the desired effect. t f the
order is switched, the command wi l l t ry to change the type-in
(which may or may not succeed), or wi l l require t i resome
swapping or reselect ion. Al though this discipl ine seems strange
at first, it comes easily with practice.

Segment select ion and manipulat ion are handled in DEdit by
f i rst making them into a subl ist , so they can be handled in the
usual way. Thus, if you want to remove the three elements
between A and E in the list (A B C D E), you select B, then D
(ei ther order), then make them into a subl ist with the 0
command. This wi l l leave the subl ist (B C D) selected, so a
subsequent DELETE wi l l remove i t . this can be issued as a single
"0; DELETE" command using mult iple command select ion as
described above, in which case the intermediate state of (A (B C
D) E) will not show on the screen.

56 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Insert ing a segment proceeds in a simi lar fashion. Once the
location of the insertion is selected, the segment to be inserted is
typed as a list (if it is a list of atoms, they can be typed without
parentheses and the READ wi l l make them into a l ist , as you
would expect). Then, the command sequence "AFTER (or
BEFORE or REPLACE); 0 OUf" (given ei ther as a mult iple
command or as two separate commands) wi l l insert the type-in
and spl ice i t in by removing i ts parentheses.

Moving an expression to another place in the structure being
edited is easi ly accomplished by a DELETE fol lowed by an INSERT.
Select the location where the moved expression is to go to; select
the expression to be moved; then give the command sequence
"DELETE; AFTER (or BEFORE or REPLACE)". The expression wi l l
f i rst be deleted into the edit buffer where i t wi l l remain selected.
The subsequent insert ion wi l l insert i t back into the structure at
the selected locat ion.

Embedding and extract ing are done with the REPLACE
command. Extract ion is simply a special case of replacing
something with a subpiece of i tsel f :

Select the thing to be replaced.
Select the subpart that is to replace i t .
REPLACE.

Embedding also uses Replace, in conjunct ion with the embed
token (the value of EDITEMBEDTOKEN, in i t ia l ly the s ingle
character atom &). Thus, to embed some expression in a PROG,

Select the expression.
Type: (PROG YARSLST&)
REPLACE.

SWITCH can also be used to generate a whole variety of complex
moves and embeds.

For example, switching an expression with type-in not only
replaces that expression with the type-in, but provides a copy of
the expression in the buffer, from where it can be edited or
moved to somewhere else.

Final ly, you can exploi t the stack structure on select ions to queue
mult iple arguments for a sequence of commands. Thus, to
replace several expressions by one common replacement, select
each of the expressions to be replaced (any number), then the
replacing expression. Now hit the REPLACE command as many
t imes as there are replacements to be done. Each REPLACE wi l l
pop one selection off the stack, leaving the most recently
replaced expression selected. As the latter is now a copy of the
original source, the next REPLACE will have the desired effect,
and so on.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 57

DEDIT

fimitations
DEdit is not error-protected. lf you select the up-arrow to close a
break window which resulted from using the EVAL command,
the DEdit window is also closed.

58 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

