DEDIT
e B L e e e e S e |

Many important objects such as function definitions, property
lists, and variable values are represented as list structures. There
are two list structure editors (SEdit in the system, and DEdit in the
library, for backward compatibility) to allow users to modify list
structures rapidly and conveniently.

Description

History

The list structure editor is most often used to edit function
definitions. Editing function definitions in memory is a facility
not offered by many Lisp systems, where typically the user edits
external text files containing function definitions, then loads
them into the environment. In Lisp, function definitions are
edited in the environment, and written to an external file using
the file manager (see /RM), which provides tools for managing
the contents of a file.

DEdit

Early implementations of Interlisp using primitive terminals
offered a teletype-oriented editor, which included a large set of
cryptic commands for printing different parts of a list structure,
searching a list, replacing elements, etc. The library includes an
extended, display-oriented version of the teletype list structure
editor, called DEdit.

The teletype editor is still available (see IRM), as it offers a facility
for doing complex modifications of program structure under
program control. DEdit also provides facilities for using the
teletype editor commands from within DEdit.

DEdit is a structure oriented, modeless, display based editor for
objects represented as list structures, such as functions, property
lists, data values, etc.

DEdit incorporates the interfaces of the teletype-oriented
Interlisp editor, so the two can be used interchangeably. In
addition, the full power of the teletype editor, and indeed the
full Interlisp system is easily accessible from within DEdit.

DEdit is structure-oriented rather than character-oriented, to
facilitate selecting and operating on pieces of structure as
objects in their own right, rather than as collections of
characters. However, for the occasional situation when
character-oriented editing is appropriate, DEdit provides access
to the text editing facilities. DEdit is modeless, in that all
commands operate on previously selected arguments, rather
than causing the behavior of the interface to change during
argument specification.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 47

DEDIT

Requirements

DEDITPP

Installation

Load DEDIT.LCOM from the library.
Loading DEdit makes it the default Lisp structure editor.

If another Lisp structure editor is already the default and you
want to make DEdit the default, call (EDITMODE 'DEDIT) after
loading DEdit.

User Interface

DEdit Window

DEdit is normally called using one of the DEdit functions. See
also "Advanced Features" below.

When DEdit is called for the first time, it prompts for an edit
window which is preserved and reused for later DEdits, and it
pretty-prints the expression to be edited therein.

Note: The DEdit pretty printer ignores user
PRETTYPRINTMACROS because they do not provide
enough structural information during printing to enable
selection.

The expression being edited can be scrolled by using the
standard scroll bar on the left edge of the window. DEdit adds a
command menu, which remains active throughout the edit, on
the right edge of the edit window. If you type anything, an edit
buffer window is positioned below the edit window. This is
illustrated in the figure below, which shows the definition of a
function called FACT. While DEdit is running, it yields control so
that background activities, such as mouse commands in other
windows, continue to be performed.

48

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Selecting Objects and Lists

DEdit of function FACT EditOps
[LAMBOS (1) Ckomjs v T-0et-35 1s0a sl Sfter
iif (LE w2l Eefore

then 1 N
else (TIMEZ

L
(ot
o
Fird
Swap
Feprint
Edit
EditCarm
Ereak

(FAcT (OIFFEREMCE ¥ 1710

Selection in a DEdit window is as follows:
The left button selects the object being directly pointed at.
The middle button selects the containing list.

The right button extends the current selection to the lowest
common ancestor of that selection and the current
position.

The only things that may be pointed at are atomic objects
(symbols, numbers, etc) and parentheses, which are considered
to represent the list they delimit. White space cannot be selected
or edited.

When a selection is made, it is pushed on a selection stack, which
will be the source of operands for DEdit commands. As each new
selection pushes down the selections made before it, this stack
can grow arbitrarily deep, so only the top two selections on the
stack are highlighted on the screen. This highlighting is done by
underscoring the topmost (most recent) selection with a solid
black line and the second topmost selection with a dashed line.
The patterns used were chosen so that their overlappings would
be both visible and distinct, since selecting a subpart of another
selection is quite common.

For example, in the next figure, the last selection is the list (FACT
(SUB1 X)), and the previous selection is the single symbol SUB1:

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 49

DEDIT

Typing Characters to DEdit

DEdit of funct

FLAMBDA (3

(if (LE: w2
then 1
else (TIMEZ ¥
(FACT CSUBL #3000

Because you can invoke DEdit recursively, there may be several
DEdit windows active on the screen at once. This is often useful
when transferring material from one object to another (as when
reallocating functionality within a set of programs). Selections
may be made in any active DEdit window, in any order. When
there is more than one DEdit window, the edit command menu
(and the type-in buffer) will attach itself to the most recently
opened (or current) DEdit window.

Copy-Selection

Characters may be typed at the keyboard at any time. This will
create a type-in buffer window which will position itself under
the current DEdit window and do a LISPXREAD (which must be
terminated by a right parenthesis or a return) from the
keyboard. During the read, any character editing subsystem
(such as TTYIN) that is loaded can be used to do character level
editing on the type-in. When the read is complete, the type-in
will become the current selection (top of stack) and be available
as an operand for the next command. Once the read is complete,
objects displayed in the type-in buffer can be selected from,
scrolled, or even edited, just like those in the main window.

You can also enter editing commands directly into the type-in
buffer. Typing control-Z will interpret the rest of the line as a
teletype editor command that will be interpreted when the line
is closed. Likewise, control-S OLD NEW will substitute NEW for
OLD, and control-F X will find the next occurrence of X.

Often, significant pieces of what you wish to type can be found
in an active DEdit window. To aid in transferring the keystrokes
that these objects represent into the type-in buffer, DEdit
supports copy-selection. Whenever a selection is made in the
DEdit window with either shift key or the COPY key down, the
selection made is not pushed on the selection stack, but is
instead unread into the keyboard input (and hence shows up in
the type-in buffer). A characteristically different highlighting is
used to indicate when copy selection (as opposed to normal
selection) is taking place.

Note: Copy-selection remains active even when DEdit is not.
Thus you can unread particularly choice pieces of text
from DEdit windows into an Exec window.

50

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Entering DEdit Commands

A DEdit command is invoked by selecting an item from the DEdit
command menu. This can be done either directly, using the left
mouse button in the usual way, or by selecting a subcommand.
Subcommands are less frequently used commands than those on
the main edit command menu and are grouped together in
submenus under the main menu to which they are most closely
related.

For example, the teletype editor defines six commands for
adding and removing parentheses (defined in terms of
transformations on the underlying list structure). Of these six
commands, only two (inserting and removing parentheses as a
pair) are commonly used, so DEdit provides the other four as
subcommands of the common two.

The subcommands of a command are accessed by selecting the
command from the commands menu with the middle button.
This will bring up a menu of the subcommand options from
which a choice can be made. Subcommands are flagged in the
list below with the name of the top level command of which they
are options.

If you have a large DEdit window, or several DEdit windows
active at once, the edit command window may be far away from
the area of the screen in which you are operating. To solve this
problem, the DEdit command menu is in an attached window.
Whenever the tab key is pressed, the command window will
move over to the current cursor position and stay there as long as
either the tab key remains down or the cursor is in the command
window. Thus, you can pull the command window over, slide
the cursor into it and then release the tab key (or not) while you
make a command selection in the normal way. This eliminates a
great deal of mouse movement.

Whenever a change is made, the pretty-printer reprints until the
printing stablizes. Asthe standard pretty print algorithm is used,
and as it leaves no information behind on how it makes its
choices, this is a somewhat heuristic process. The REPRINT
command can be used to tidy the result up if it is not, in fact,
"pretty."

DEdit Functions

The functions used to start an editor are documented in the
"Edit Interface"” section of the Lisp Release Notes.

(RESETDEDIT) [Function]

Completely reinitializes DEdit. Closes all DEdit windows, so that
you must specify the window the next time DEdit is envoked.
RESETDEDIT is also used to make DEdit recognize the new values
of variables such as DEDITTYPEINCOMS (see "DEdit Parameters,”
below), when you change them.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 51

DEDIT

DEdit Commands

All commands take their operands from the selection stack, and
may push a result back on the stack. In general, the rule is to
select target selections first and source selections second. Thus, a
REPLACE command is done by selecting the thing to be replaced,
selecting (or typing) the new material, and then selecting the
REPLACE command in the command menu.

Using TOP to denote the topmost (most recent) element of the
stack and NXT the second element, the DEdit commands are:

AFTER [DEdit Command]
Inserts a copy of TOP after NXT.

BEFORE [DEdit Command]
Inserts a copy of TOP before NXT.

DELETE [DEdit Command]

Deletes TOP from the structure being edited. (A copy of) TOP
remains on the stack and will appear, selected, in the edit buffer.

REPLACE [DEdit Command]

Replaces NXT with a copy of TOP obtained by substituting a copy
of NXT wherever the value of the atom EDITEMBEDTOKEN
(initially, the & character) appears in TOP. This provides a facility
like the MBD edit command in Lisp; see EXTRACT, EMBED and

IDIOMS below.
SWITCH [DEdit Command]
Exchanges TOP and NXT in the structure being edited.
0 [DEdit Command]
(IN [DEdit Command]

Subcommands of (). Inserts (before TOP (like the LI EDIT
command; see "Commands That Edit Parentheses," below).

)IN [DEdit Command]

Subcommand of (). Inserts) after TOP (like the Rl EDIT
command; see "Commands That Edit Parentheses," below).

() OuT [DEdit Command]
Removes parentheses from TOP.
(out [DEdit Command]

Subcommand of () OUT. Removes (from before TOP (like the LO
EDIT command; see "Commands That Edit Parentheses," below).

) OUT [DEdit Command]

Subcommand of () OUT. Removes) from after TOP (like the RO
EDIT command; see "Commands That Edit Parentheses," below).

UNDO [DEdit Command]

Undoes last command.

52 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

IUNDO

?UNDO
&UNDO

FIND

SWAP

CENTER

CLEAR

CcoPY

POP

REPRINT

EDIT

[DEdit Command]

Subcommand of UNDO. Undoes all changes since the start of
this call on DEdit. This command can be undone.

[DEdit Command]
[DEdit Command]

Subcommands of UNDO that allow selective undoing of other
than the last command. Both of these commands bring up a
menu of all the commands issued during this call on DEdit.
When you select an item from this menu, the corresponding
command (and if &UNDO, all commands since that point) will be
undone.

[DEdit Command]

Selects, in place of TOP, the first place after TOP that matches
NXT. Uses the edit subystem's search routine, so supports the full
wildcarding conventions of EDIT.

[DEdit Command]

Exchanges TOP and NXT on the stack, i.e. the stack is changed,
the structure being edited isn't.

SWAP and its subcommands affect the stack and the selections,
rather than the structure being edited.

[DEdit Command]
Subcommand of SWAP. Scrolls until TOPis visible in its window.
[DEdit Command]

Subcommand of SWAP. Discards all selections (i.e., clears the
stack).

[DEdit Command]

Subcommand of SWAP. Puts a copy of TOP into the edit buffer
and makes it the new TOP.

[DEdit Command]
Subcommand of SWAP. Pops TOP off the selection stack.

[DEdit Command]
Reprints TOP.

[DEdit Command]

Runs DEdit on the definition of the atom TOP (or CAR of list
TOP). Uses TYPESOF to determine what definitions exist for TOP
and, if there is more than one, asks you, via a menu, which one to
use. If TOP is defined and is a non-list, calls INSPECT on that
value. Edit also has a variety of subcommands which allow
choice of editor (DEdit, TTYEdit, etc.) and whether to invoke that
editor on the definition of TOP or the form itself.

Note: DEdit caches each subordinate edit window in the
window from which it was entered for as long as the
higher window is active. Thus, multiple DEdit commands

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 53

DEDIT

EDITCOM

BREAK

EVAL

EXIT

oK
STOP

do not incur the cost of repeatedly allocating a new
window.

[DEdit Command]

Allows you to run arbitrary EDIT commands on the structure
being DEdited (there are far too many of these for them all to
appear on the main menu). TOP should be an EDIT command,
which will be applied to NXT as the current edit expression. On
return to DEdit, the (possibly changed) current EDIT expression
will be selected as the new TOP. Thus, selecting some expression,
typing (R FOO BAZ), and selecting EDITCOM will cause FOO to be
replaced with BAZ in the expression selected.

In addition, a variety of common EDIT commands are available as
subcommands of EDITCOM. Currently, these include ?=, GETD,
CL, DW, REPACK, CAP, LOWER, and RAISE.

[DEdit Command]

Does a BREAKIN AROUND the current expression TOP. (See
BREAKIN function in IRM).

[DEdit Command]

Evaluates TOP, whose value is pushed onto the stack in place of
TOP, and which will therefore appear, selected, in the edit
buffer.

[DEdit Command]

Exits from DEdit (equivalent to Edit OK; see "Commands For
Leaving The Editor," below).

[DEdit Command]
[DEdit Command]

Subcommands of EXIT. OK exits without an error; STOP exits
with an error. Equivalent to the EDIT commands with the same
names.

DEdit Parameters

There are several global variables that can be used to affect
various aspects of DEdit's operation.

EDITEMBEDTOKEN [Variable]

Initially & Used in both DEdit and the teletype editor to indicate
the special atom used as the embed token.

DEDITLINGER [Variable]

Initially T. The default behavior of the topmost DEdit window is
to remain active on the screen when exited. This is occasionally
inconvenient for programs that call DEdit directly, so it can be
made to close automatically when exited by setting this variable
to NIL.

54

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

DEDITTYPEINCOMS [Variable]

Defines the control characters recognized as commands during
DEdit type-in. The elements of this list are of the form (LETTER
COMMANDNAME FN), where

LETTER is the alphabetic character corresponding to the control
character desired (e.g., A for control-A),

COMMANDNAMIE is a symbol used both as a prompt and internal
tag,

FN is a function applied to the expressions typed as arguments to
the command.

See the current value of DEDITTYPEINCOMS for examples.
DEDITTYPEINCOMS is only accessed when DEdit is initialized, so
DEdit should be reinitialized with RESETDEDIT (see "Calling
DEdit," above) if itis changed.

DT.EDITMACROS [Variable]

Defines the behavior of the EDIT command when invoked on a
form that is not a list or symbol, thus telling DEdit how to edit
instances of certain datatypes. DT.EDITMACRQOS is an association
list keyed by datatype name; entries are of the form

(DATATYPE MAKESOURCEFN INSTALLEDITFN).

When told to edit an object of type DATATYPE, DEdit calls
MAKESOURCEFN with the object as its argument.

MAKESOURCEFN can either do the editing itself, in which case it
returns NIL, or else it destructures the object into an editable list
and returns that list.

In the latter case, DEdit is then invoked recursively on the list;
when that edit is finished, DEdit calls INSTALLEDITFN with two
arguments, the original object and the edited Ilist. If
INSTALLEDITFN causes an error, the recursive DEdit is invoked
again, and the process repeats until the you either exit the lower
editor with STOP, or exit with an expression that INSTALLEDITFN
accepts.

For example, suppose the you have a datatype declared by
(DATATYPE FOO (NAME AGE SEX)). To make sure that instances
of FOO can be edited, an entry (FOO DESTRUCTUREFOO
INSTALLFOO) is added to DT.EDITMACROS, where the functions
are defined by

(DESTRUCTUREFOO (OBJECT)
(LIST (fetch NAME of OBJECT)
(fetch AGE of OBJECT)
(fetch SEX of OBJECT)))
(INSTALLFOO (OBJECT CONTENTS)
(if (EQLENGTH CONTENTS 3)
then (replace NAME of OBJECT with (CAR CONTENTS))
(replace AGE of OBJECT with (CADR CONTENTS))
(replace SEX of OBJECT with (CADDR CONTENTS))
else (ERROR "Wrong number of fields for FOO" CONTENTS)))

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 55

DEDIT

User Interface — Advanced Features

Multiple DEdit Commands

DEdit Idioms

It is occasionally useful to be able to give several commands at
once — either because you think of them as a unit or because the
intervening re-pretty-printing is distracting. The stack
architecture of DEdit makes such multiple commands easy to
construct. You just push whatever arguments are required for
the complete suite of commands you have in mind. Multiple
commands are specified by holding down the CONTROL key
during command selection. As long as the control key is down,
commands selected will not be executed, but merely saved on a
list. Finally, when a command is selected without the control key
down, the command sequence is terminated with that command
being the last one in the sequence.

You would rarely construct long sequences of commands in this
fashion, because the feedback of being able to inspect the
intermediate results is usually worthwhile. Typically, just two or
three step idioms are composed in this fashion.

As with any interactive system, there are certain common idioms
on which experienced users depend heavily. In the case of DEdit,
many of these idioms concern easy ways to achieve the effects of
specific commands from the Edit system, with which many users
are already familiar. The DEdit idioms described below are the
result of the experience of the early users of the system and are
by no means exhaustive. In addition to those that each user will
develop to fit his own particular style, there are many more to be
discovered and you are encouraged to share your discoveries.

Because of the novel argument specification technique (postfix;
target first) many of the DEdit idioms are very simple, but
opaque until you have absorbed the "target-source-command"
way of looking at the world. Thus, you select where type-in is to
go before touching the keyboard. After typing, the target will
be selected second and the type-in selected on top, so that an
AFTER, BEFORE or REPLACE will have the desired effect. If the
order is switched, the command will try to change the type-in
(which may or may not succeed), or will require tiresome
swapping or reselection. Although this discipline seems strange
at first, it comes easily with practice.

Segment selection and manipulation are handled in DEdit by
first making them into a sublist, so they can be handled in the
usual way. Thus, if you want to remove the three elements
between A and E in the list (A B C D E), you select B, then D
(either order), then make them into a sublist with the ()
command. This will leave the sublist (B C D) selected, so a
subsequent DELETE will remove it. This can be issued as a single
“(); DELETE" command using multiple command selection as
described above, in which case the intermediate state of (A(BC
D) E) will not show on the screen.

56

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Inserting a segment proceeds in a similar fashion. Once the
location of the insertion is selected, the segment to be inserted is
typed as a list (if it is a list of atoms, they can be typed without
parentheses and the READ will make them into a list, as you
would expect). Then, the command sequence "AFTER (or
BEFORE or REPLACE); () OUT" (given either as a multiple
command or as two separate commands) will insert the type-in
and splice it in by removing its parentheses.

Moving an expression to another place in the structure being
edited is easily accomplished by a DELETE followed by an INSERT.
Select the location where the moved expression is to go to; select
the expression to be moved; then give the command sequence
“DELETE; AFTER (or BEFORE or REPLACE)". The expression will
first be deleted into the edit buffer where it will remain selected.
The subsequent insertion will insert it back into the structure at
the selected location.

Embedding and extracting are done with the REPLACE
command. Extraction is simply a special case of replacing
something with a subpiece of itself:

Select the thing to be replaced.
Select the subpart that is to replace it.
REPLACE.

Embedding also uses Replace, in conjunction with the embed
token (the value of EDITEMBEDTOKEN, initially the single
character atom &). Thus, to embed some expression in a PROG,

Select the expression.
Type: (PROG VARSLST &)
REPLACE.

SWITCH can also be used to generate a whole variety of complex
moves and embeds.

For example, switching an expression with type-in not only
replaces that expression with the type-in, but provides a copy of
the expression in the buffer, from where it can be edited or
moved to somewhere else.

Finally, you can exploit the stack structure on selections to queue
multiple arguments for a sequence of commands. Thus, to
replace several expressions by one common replacement, select
each of the expressions to be replaced (any number), then the
replacing expression. Now hit the REPLACE command as many
times as there are replacements to be done. Each REPLACE will
pop one selection off the stack, leaving the most recently
replaced expression selected. As the latter is now a copy of the
original source, the next REPLACE will have the desired effect,
and so on.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 57

DEDIT

Limitations

DEdit is not error-protected. If you select the up-arrow to close a
break window which resulted from using the EVAL command,
the DEdit window is also closed.

58 LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

