
FILE UTILITIES

FILE CACH E

lntroduction
The Fi le Cache package implements an automatic, ful ly
transparent f i le-caching mechanism. Fi les from remote servers
are automatical ly copied to a specif ied cache directory when
they are f i rst opened, and al l future accessing of these f i les wi l l
use the cached version. This al lows random access to f i les even i f
the f i les are stored on a server that does not implement random
access. Creat ing a remote f i le is also done local ly, and when the
completed f i le is c losed i t is (eventual ly) wri t ten out to the
remote host.

The f i le cacher can also speed up many common interact ions
with Lisp, especial ly i f you access f i les on heavi ly loaded f i le
servers. Edit ing funct ions are quicker (once the source f i le is
cached, loading the source for a funct ion does not need to go
out to the server), and TEdit response is improved.

The f i le cacher also attempts to deal intel l igent ly with f i le servers
that are not responding. l f a server is down, you can st i l l use
cached files from that server.

Before using the f i le cacher package, you should read this
document caref ul ly. l t contains a number of important warnings
that can save you much gr ief .

Note: The f i le cacher changes the operat ion of al l f i le operat ions
from al l packages in Lisp. In some cases, the f i le cachers'act ions
are not transparent, and inappropriate recovery methods may
lead to loss of work. Before using the f i le cacher package, please
read this document careful ly. Before attempting to use the
scavenger or recover from a crash, please review the relevant
sections.

How Does it Work?
The system uses the funct ion \GETDEVICEFROMNAME to
determine what device to use to perform l /O operat ions for a
given f i le. The cacher provides a modif ied version of this
funct ion that returns a special ized cache device when
appropriate.

154 LISP LIBRARY PACKAGES MANUAL

FILE CACHE

The import of this is that the cacher is transparent. Once you
start i t running, you shouldn' t need to do anything special .

Where Are Fi les Cached?

The locat ion of the f i le cache is determined by a "cache pref ix."
When the f i le cacher is started up, i t looks for the f i le
{DSK}FCache.Pointer; 1. l f th is f i le is found, a single expression is
read from the file and is used to set the cache prefix. lf there is
no such f i le, the user is prompted for the cache pref ix in a special
prompt window. The response will be written out to the
appropriate f i le so that later systems wi l l f ind this pointer. The
defaul t value depends on the machine type: on an 1108 or
1 185/85 workstat ion, the default is {DSK)<LispFi les>Cache>,
on 1132s the default is {DSK1}. Sett ing the cache pref ix to NIL
disables the cache.

I t is possible to use TCORE) as the cache pref ix. This results in fast
access t ime to f i les at the cost of expanding your vir tual memory
size and slowing down your system due to increased swapping.
l f you wi l l be making repeated access to certain f i les, have gobs
of relat ively unused physical memory, and don't mind losing
your cache across di f ferent sysouts, you may want to use {CORE}
as your cache prefix.

The cached copy of a remote f i le is given the same name and
extension as the or iginal f i le. For example, i f the cache pref ix is
{DSK} < LispFi les > Cache>, the f i le
{Phylum}<Lanning)Lisp>lni t .DCOM wi l l be cached to the f i le
{DSK}<LispFi les>Cache>lni t .DCOM. Characters in the f i le
name that are not legal in f i le names for the local disk are
replaced by $'s.

Maintaining the File Cache Across Sysouts
The directory of the cache is marntained in a number of special
f i les on the cache. The f i le FCache.List ing in the cache contains a
complete descr ipt ion of those f i les in the cache that are copies of
files from a remote host. This file is updated before each logout
so that other sysouts can determine the cache contents. Whi le a
system is running, a log f i le (FCache.Log;1 on the cache pref ix), is
cont inual ly updated with the changes io the cache. In the event
of a system fai lure, this f i le contains enough information to
reconstruct the state of the cache, including descript tons of f i les
that need to be dumped to a remote host- Start ing the cacher in
a new sysout wi l l automatical ly load the FCache.List ing;1 and
FCache.Log;1 f i les, thereby restor ing the state of the cache. Dir ty
f i les, of course, wi l l st i l l need to be wri t ten out.

LISP LIBRARY PACKAGES MANUAL 155

FILE UTILITIES

Restor ing the cache can take a whi le, especial ly i f there is a large
number of f i les. To let you know what i t is doing, the cacher wi l l
pr int a " ." in the prompt window for each entry that i t has
successfully restored. lf a cache entry is bad (say the local file has
been deleted behind the cacher 's back), the cacher wi l l pr int a
"7." This pr int ing is control led by the SILENT cache property
described below.

Startin$-and Stopping the File Cacher
When the f i le cacher is loaded, i t notes the latest cache pref ix
(from the f i le {DsK}FCache-pointer; l) and restores the cache
l ist ing from that pref ix. Fi le caching then needs to be enabled
for each f i le server. This can be accomplished in ei ther of two
ways.

Some file devices are created when you first reference them.
These devices are created by a "generic" device that knows how
to create the appropriate device. For example, the LEAF device is
responsible for creat ing the f i le devices for Phylum and other
PARC "inter im f i le servers," and the NSFILING device creates
devices for Phylex:PARC:Xerox and other N5 hosts- The f i le
cacher provides a way to create a cache device for these file
devices.
(FCACH E.G EN ERIC.START deviceTypel lFunctionl
Enabf es caching for any device of type deviceType. When a new
fi le device of type deviceType is f i rst referenced, caching wi l l be
enabled for that device by a cal l to FCACHE.START (but see the
cache property BADDEVICES described below).
FCACHE"GENERIC"START is UNDOable" rhe "standard" device
types are LEAF and NSFILING.

(FCACHE.G EN E RIC.STOP deviceTy pel IFunct ion]

Undoes the effect of a cal l to (FCACHE.GENERIC.START
deviceType). FCACHE.GENERIC.STOP does not turn off caching
for devices that were automatical ly FCACHE.STARTed.

FCACH E.G E N E RIC. DEVICE.TYPES lGlobal Var iablel

When the cacher is f i rst loaded, the funct ion
FC.ACHE.GENERIC.START is mapped over the value of
FCACH E. G E N ERIC. DEVICE.TYPES.

FCACHE.GENERIC.DEVICE.TYPES is def ined by an INITVARS
exp'e<sion in the f i le, so you can overr ide the default value
before loading the f i le cacher. The default value is (LEAF
NSFILING). fhis effect ively turns on caching for al l LE,AF and NS
hosts.

Some devices are part of the system, so FCACHE.GENERIC.START
cannot be used to start caching on them. Instead, the fol lowing

155 LISP LIBRARY PACKAGES MANUAL

FILE CACHE

funct ion can be used to enable caching on a device-by-device
basis.
(FCACH E.START hostfl/ame) IFunct ion]
Turns on caching for the specif ied host device. The host does nor
have to be "up" to turn on caching. FCACHE.START is
UNDOable. As a side effect, FCACHE.START wi l l remove
hostName from the cache property BADDEVICES defined below.
FCACHE.START returns NIL i f caching could not be turned on for
the device, otherwise i t returns something non-NlL. NOTE: The
f i le cacher does not support caching from UNIX hosts, so
FCACHE.START of a UNIX host wi l l do nothing.
(FCACHE.STOP hostName) IFunctionl
Turns off caching for the specified host device. FC,ACHE.STOp is
UNDOable. As a side effect, FCACHE.STOP will add hostNarne to
the cache property BADDEVTCES def ined below.
(FCACHE.VANQUtSH) IFunct ion j

Removes the cacher from the system, destroying al l evidence that
i t ever existed (wel l , almost al l) .

Cacher Tuning

The funct ioning of the cache is inf luenced by a number of
properties. These property values can be accessed by the
fol lowi ng two functions.
(FC.ACH E.G ETPRO P na m e\ IFunct ion]
Returns the current value of the cache property name.
FCACHE.GETPROP has the appropriate SETFN properry, so
CHANGETRAN expressions l ike (push (FCACHE.GETPROp
'BADDEVICES)'ERIS) wi l l work.
(FCACH E. PUTPROP nam e va I ue)

Sets the value of the cache prope r|y name lo value.
PREFIX [Cache Property]
The PREFIX property determines where f i les are cached.
Changing this property wi l l dump al l dir ty f i les, update the
FCache.List ing and FCache.Log f i les, update the FCache.pointer
f i le, set up the new pref ix as the cache, and load t ts
FCache.List ing and FCache.Log f i les. Sett ing the pref ix to NtL wi l l
completely disable the f i le cacher. t t is in i t ia l ly set when the
package is loaded, and is updated automatical ly (using the f i le
{DSK}FCache.Pointer) af ter each logout.
ENTRI ES lCache Property]
fhe number of f i les current ly cached. This property is read-only.

IFunct ion]

LISP LIBRARY PACKAGES MANUAL l)l

FILE UTILITIES

srzE [Cache Property]

The SIZE property is the current number of disk pages used by the
cache. This property is read-only.

FASTDIR [Cache Property]

Directory enumerat ion is compl icated by the cache: f i les that are
present in the cache but are not yet dumped to the server should
be included in the directory. This is accomplished by merging the
l ist of matching cached f i les with the directory l ist f rom the
remote server. Generat ing this l ist of matching local f i les can be
rather slow, especial ly i f you have many f i les in the cache. The
FASTDIR cache property lets you get around this problem. l f
FASTDIR is NIL then the directory merging is done, otherwise the
merging is disabled. Disabl ing the merging of cache f i le l ist ings
and remote directory l ist ings can result in a signi f icant speedup
(depending on the number of f i les in your cache), but can
produce directory l ist ings that miss some f i les (those f i les that
have not yet been wri t ten to the server). Ini t ia l value is NIL- Note
that FASTDIR has no effect on INFILEP or OUTFILEP.

SILENT [Cache Property]

Normal ly, the cache wri tes informative messages to the prompt
window whenever f i les are being loaded into the cache or
dumped from the cache to a remote host (and a few other
si tuat ions). l f the SILENT property is non-NlL, this report ing is not
done. The default value is NlL, i .e. , pr int out the messages.

Deal ing With Unresponsive Hosts
The f i le cacher tr ies to deal in an intel l igent way with hosts that
are not respondi ng.

UNSAFE [Cache Propertyi

l f the Fi le Cacher bel ieves a remote host is not avai lable
(according to a heurist ic algor i thim), i t uses the UNSAFE property
to determine how to proceed. l f the value is NlL, the cacher just
keeps going (probably generat ing some sort of error). l f the
value is ASK, you wi l l be asked i f you want to trust the cache. l f
the value is NOTIFY, the cacher wi l l automatical ly trust the cache,
but wi l l not i fy you of i ts act ion in the main prompt window. l f
the value is T, the cacher wi l l a lso trust the cache, but wi l l g ive no
indicat ion of this. The default value of the UNSAFE property is
ASK.

"Trust" is dependent on what you are try ing to do with the host.
l f you are generat ing a directory l ist ing or performing an INFILEP
or OUTF|LEP, " trust" means to use only those matching f i les that
have been cached. l f you are attempting to ver i fy that a given
cache entry is a val id copy of a remote f i le, i t means to bel ieve
that i t is.

r58 LISP LIBRARY PACKAGES MANUAL

FILE CACHE

Making Room in e Cache

The local f i le cache consumes a f in i te resource, space on the local
disk. When there is insuff ic ient room on the disk for a new cache
f i le, old cache f i les must be deleted to make room. Fi les are
selected for delet ion based on a modif ied Least Recent ly Used
(LRU) algori thm. These modif icat ions are descr ibed below.
MAXSIZE ICache Property]
The MAXSIZE property is the maximum number of disk pages to
be used by the cache. When this l imit is reached, old cache f i les
are deleted to make room for new f i les, even i f there is room left
on the disk. Note that the f i le cacher also checks DTSKFREEPAGES
to determine i f there is enough room for a f i le (on those devices
where DISKFREEPAGES makes sense).

Sett ing MAXSIZE to a very large number wi l l cause the cache to
consume as much space as avai lable in the area def ined by the
cache pref ix. This may be the desired funct ional i ty when an
ent ire part i t ion or logical volume is devoted to the cache.
MAXSIZE is intended for s i tuat ions where the cache is a local disk
volume or part i t ion which is shared with other f i le uses.
The value of the MAXSIZE cache property is an attr ibute of the
cache pref ix, so i t is saved on the FCache.List ing f i le and restored
when the cache is restored " The default value is 1 0,000.
KEEPVERSIONS [Cache Property]
When you add a new version of a f i le to the cache, older versions
of the f i le become less valuable, and can be deleted from the
cache. KEEPVERSIONS specif ies the number of old versions of a
f i le that should be kept in the cache. l f KEEPVERSTONS is zero or
NlL, al l o ld versions are kept. Otherwise, versions that are
KEEPVERSIONS older than the new f i le are deleted. The default
value of KEEPVERSIONS is two.
Actual ly, old versions are not deleted r ight away. Instead, they
are moved to the tai l end of the cache l ist . This wi l l cause the old
f i les to be removed from the cache as soon as the cacher needs
the space.

Some users think that they know better than the cacher what
f i les should be deleted from the cache. The fol lowing funct ion is
documented to provide a hook for the strong of wi l l . l t can be
advised or redef ined as you l ike.
(\FCACH E.MAKEROOM. DELETEAB LE? fil eNa m e) IFunct ion]
ls used to determine i f a f i le -an be deleted from the cache to
make room for a new f i le. \FC,AcHE-MAKEROOM.DELETEABLE?
always returns T.

LISP LIBRARY PACKAGES MANUAL 159

FILE UTILITIES

Forcing Direct Access to Remote Fies
There are a number of ways that you can bypass the cache.

DON'TCACHE IOPENFILE Parameterl

l f the atom DON'TCACHE is present in the PARAMETERS
argument to OPENFILE (e.g., i f the atom DON'TCACHE is in the
PARAMETERS l ist , or i f the l ist contains the l ist (DON'TCACHE T)),
the f i le wi l l not be opened on the cache. In the Koto and later
releases of Inter l isp, the COPYFILE funct ion uses this to prevent
caching f i les when you are copying them.

BADDEVICES [Cache Property]

Provides a way to prevent the cacher from being automatical ly
started for specif ic hosts. BADDEVICES is a l ist of device names
that wi l l not be FCACHE.STARTed automatical ly. See
FCACH E.G LOBAL.START and FGACH E.STOP above-

MAXFILEPAGES [Cache Property]

The MAXFILEPAGES property gives the maximum size (in pages)
of a f i le that should be cached" Fi les larger then this are not
cached. A value of NIL means there is no upper l imi t on the s ize
of cached f i les. The default value is 400. Like the MAXSIZE cache
property, the MAXFILEPAGES cache property is stored along with
the cache l ist ing, so i ts value is remembered across sysouts. l t
should be not iced that i t is possible for f i les to grow larger than
the MAXFILEPAGES l imit as you wri te to them.

USECACHE [Cache Propercy]

The USECACHE property specif ies what l /O operat ions wi l l use
the cache. Possible values are T, Read, Wri te, and NlL. A value of
T means that the cache wi l l be used for both input and output
operat ions; Read means that the cache wi l l be used for input
only; Wri te means the cache wi l l be used for output only, and
NIL means the cache wi l l not be used at al l .

(ADD. Fl LE.TO. CACH E? ful I Na me) lFunct ionl
ls used to determine i f a f i le should be cached. l f fu l lName
matches any of the f i le specs on the global l ist
DON'T.CACH E. Fl LES, ADD. Fl LE.TO.CACH E? returns N I L, otherwise
T. Fi le specs on the l ist DON'T.CACHE.FILES can contain the
standard wild card characters. The host name and version
number f ie lds default to """ ; the others default to the empty
str ing "". This funct ion is separated out so you can advise or
redef ine i t for special ized appl icat ions.

DON'T.CACHE.FILES lGlobalVar iablel

A l ist of f i le specs, used by ADD.FILE.TO.CACHE? above. The
defaul t value is NlL"

(WITHOUT.FCACHE forml . . . formNl lMacrol
Evaluates the (unevaluated) forms in a context where caching is
disabled. For example, (WITHOUT.FC,ACHE (TCOMPL 'Foo)) wi l l

tou LISP LIBRARY PACKAGES MANUAL

FILE CACHE

compile the f i le Foo without going through the cache. Note:
WITHOUT.FCACHE operates by changing the cache property
USECACHE. This is a global property, so i f WITHOUT"FCACHE is
being run in one process, al l processes are running with caching
disabled.

Private Fies and the cac
Private files present a problem to the cacher. Typically, the local
disk on an 1108 is a publ ic area, so f i les lef t there by the cacher
are accessible to the publ ic. The cacher attempts to get around
this problem by delet ing pr ivate f i les from the cache before eacn
logout.
(FCACH E.PRIVATE. Fl LE? ful I Name) IFunct ion]
ls used to determine i f a f i le should be deleted from the cache
when you log out. This is an attempt to solve the problem of
having "pr ivate" f i les copied to a publ ic machine.
FOACHE.PRIVATE.FILE? uses the global var iable PR|VATE.F|LES
described below. Fi les that match any f i le spec on PR|VATE.FtLES
wil l be deleted automatical ly when you log out. This funct ion is
separated out so that you can redefine it if you want. Note that
i f you exi t a sysout by some other method (e.g., a crash), the
private f i les wi l l not be deleted.
PRIVATE.FILES [Global Var iable]
A l ist of f i le specs, used to determine what f i les should not be lef t
on the local disk when you log out. The default value is NlL. you
may want to set i t to (*.MA|L), or the value of (LIST (PACK*
LOGINHOST/DIR "*")) .

Caching Fi les or Output
Fi les that are cached when opened for output present a number
of smal l problems.

r When should dir ty f i les be wri t ten out to the host?
Turning off the cacher, changing the cache pref ix, or logging out
causes al l (non-open) dir ty f i les to be dumped out to their
appropriate servers. Dir ty f i les are also wri t ten out at i r regular
intervals by the fol lowing background process. The f i le cacher
uses the term dump to mean wri te out a dir ty f i le to the f i le
server.

DUMP.FCACHE IProcessJ
A background process that wakes up every now and then and
looks for dir ty f i les. Dir ty f i lesthat have been lef t id le for long

LISP LIBRARY PACKAGES MANUAL tol

FILE UTILITIES

enough are dumped to the appropriate hosts" Note that only
files that are not open can be written out-

DUMPSLEEP lCache ProPertY]

The number of seconds that the DUMP-FCACHE process (see
above) waits before it checks for new dirty files" The default
value is 10 seconds.

DUMPIDLE ICache Property]

When the DUMP-FCACHE process wakes up, i t checks each dir ty
f i le to see how long i t has been since i t was last c losed. l f th is
t ime is greater than DUMPIDLE seconds, the f i le wi l l be dumped.
Note that dir ty f i les that are st i l l open are not dumped. The
default value is 20 seconds.

r Should f i le locking be implemented, and i f so, how?

When a f i le is opened for output on a server (without the cacher
being involved), the f i le cannot be opened by another user- This
prevents the user from attempting to read an incomplete or
incorrect f i le" Unfortunately, this funct ional i ty cannot be
provided when the cache is used. Instead, when a f i le is dumped
the f i le cacher makes sure that there have been no changes to
that f i le on the host. l f there have (for example, i f someone else
has created a f i le with the same version number that did not exist
when you f i rst created your cached f i le), the cacher generates a
break with an appropriate error message. General ly, you should
do a "RETURN ' t t i leNarne," where f i leName is where the f i le
should be wri t ten out to" RETURNing NIL means to use the
original f i le name. See the sect ion on f i le cache errors below.

r What happens to open f i les at LOGOUT?

The cacher does not know what to do i f you try to log out when
there are dir ty f i les in the cache that are open. l t punts,
generat ing a break. Open f i les that are not dir ty are handled
properly. Again, see the sect ion on f i le cache errors below-

o What happens i f your machine crashes before the completed
f i le is dumped to the remote host?

l f your machine crashes for any reason (say a power fai lure), dir ty
f i les wi l l not be wri t ten out to remote hosts, and the
FCache.List ing f i le wi l l not be dumped. The FCache.Log f i les
provide enough information to reconstruct the state of your
cache. You should start up a new system running the f i le cache
package. This wi l l load the FCache.Log f i le. The cacher wi l l then
dump the dir ty f i les automatical ly.

o What should be done i f the local device runs out of space
whi le attempting to wri te a cache J f i le?

The cacher catches this error and tr ies to delete old f i les from the
cache to make room. l f i t succeeds, everything cont inues as i t
was and you should not not ice that anything has happened.

o What happens i f there is not enough room on the server for
the new f i le?

162 LISP LIBRARY PACKAGES MANUAL

FILE CACHE

When the f i le is created on the cache, no check is made on the
server to determine i f there is room. Thus, you can (temporari ly)
exceed your allocated file space- When the cacher gets around
to dumping the f i le, though, you wi l l get the "standard" error.
See the section on file cache errors below.

Cache Access From Code
In addit ion to the cache propert ies given above, there are a
number of semipubl ic funct ions provided for access to the cache.
(CACHE.FILE fileName) IFunct ion]
Wil l load the f i le into the cache. Returns the ful l f i le name i f tne
file was successfully loaded into the cache, otherwise NlL.
(FCACHE.DUMP.ALL)

Writes out al l d ir ty f i les that are not current ly open.
(FCACHE.CACHELTST)

Returns a l ist of f i les that are current ly cached. This may include
f i les from hosts where the cache is not current ly enabled.
(FCACH E. Dl RTY ? file/Vame) IFunct ion]
Returns T if the file fileName is currently cached and needs to be
dumped, otherwise returns NlL.

CACHEDIRTY [Fi te property]

(GETFILEINFO f i leName'CACHEDTRTY) returns the same value as
(FCACH E. Dl RTY ? fileName).

CACHEFILE IFi le Property]
(GETFILEINFQ f i leName'CACHEFTLE) wi l l return the name of tne
f ocal cache f i le for f i leName. l f f i leName is not cached. the value
is NlL.
(FCACH E. DU M P. Fl LE fil e Na m e) IFunct ion j

Writes out the 'fi le fileName to the appropriate host if fiteNameis
dirty.
(FCACH E. DU MP onlytfCha ngedl IFunct ion]
Updates the FCache.List ing f i le and clears the FCache.Log f i le
after wri t ing out al l d ir ty f i les. fhe FCache,List ing f i le wi l l be
rewri t ten i f there has been any change to the cache l ist , or i f the
argument onlyl fChanged ,s NlL. There is a BackgroundMenu
item DumpCache that does an (FCACHE.DUMP).

IFunct ion j

IFunct ionl

LISP LIBRARY PACKAGES MANUAL 163

FILE UTILITIES

Cache Scavenging
In case the cacher losestrack of f i les in the cache, you can usethe
followi ng scavenger function.
(FCACH E.SCAVE NG E optio nsl IFunct ion]
Returns a list of all fi les that match the cache prefix, but are not
known to the cacher. FCACHE.SCAVENGE attempts to make sure
that the internal state of the cacher is correct. The argument
options is a single option or a list of options to the scavenger.
Possible options are described below. Note that the scavenger
temporari ly turns off caching.

SILENT [Scavenger Option]

l f the SILENT opt ion is not present, the scavenger wi l l pr int out
messages to the default window to let you know what i t is
doing.

EXISTS [Scavenger Option]

Each cache entry is checked to make sure that the local file exists.
l f i t does not, the cache entry is deleted. This opt ion is useful i f
you have deleted cached files directly from the local disk.

VERIFY [Scavenger Option]

Each cache entry is checked to make sure that i t is a val id cache
for its remote file. lf it is not, the entry is deleted. This may entail
a rather long delay as there is a lot of communicat ion with
remote servers.

REPAIR [Scavenger Option]

For each file that would otherwise be returned by
FCACHE.SCAVENGE, tr ies to f ind the remote f i le that i t is a copy
of. l f a f i le is found, the corresponding entry is added to the
cache l ist . The result of FGACHE.SCAVENGE wi l l not include anv
f i les that have been "repaired."

Finding a remote f i le that is a copy of the local f i le is a very
heurist ic process. The fol lowing rules guide the search for a
matching f i le:

. l f the f i le is a L|SP source f i le, the f i rst expression on the f i le is a
FILECREATED expression that contains a reference to the file
name. Note: this reference may not point to the correct file,
because the or iginal f i le may have been copied someplace else.
r Simi lar ly, i f the extension is DCOM, then the f i le is checked to
see i f i t is a compi led source f i le. Again, a FILECREATED
eiirression in the beginning of the f i le contains a reference to
the or iginal f i le. Actual ly, the reference is tothe source f i le, but
this is used to get the directory and base f i le name to look for.
. l f the f i le is a font f i le, then the appropriate director ies are
searched for a matching file.
r l f a l l e lse fai ls, the director ies on DIRECTORIES are searched for
a matching f i le.

154 LISP LIBRARY PACKAGES M,ANUAL

FILE CACHE

FCACH E.SCAVE NG E. IG NO R E lGlobal Variablel
A list that associates (yes, in ASSOC format) machine types with
f i le names that should not be included in the result of
(FCACHE.SCAVENGE). The f i le names include name, extension,
and version f ie lds, but do not include host or directory name
fields. This var iable is provided for users who cache other f i les
(sysouts, for example) on the cache directory. Files matching an
entry on FCACHE.SCAVENGE.IGNORE wi l l not be repaired.

Cache lnspection

The DUMP-FCACHE process provides a nice way of interact ively
inspect ing the cache. Select ing the DUMP-FCACHE process in the
PSW and bugging the Info menu i tem wi l l br ing up an inspect
window, viewing the current cache propert ies. You can use this
inspect window to set the cache properties.

The cache property inspect window can also be accessed by a
subitem of the DumpCache i tem from the Background Menu.

You can inspect the l ist of cache entr ies by a menu opt ion in the
t i t le of cache property inspe(t window. This new inspect
window can be used to select ively dump cache entr ies or delete
unwanted files from the cache-

Hints
You can speed up access to fonts by the fol lowing tr ick: af ter the
cache starts and def ines the cache pref ix, do a (push
DISPLAYFONTDIRECTORIES (FC,ACHE.GETPROP (QUOTE
PREFIX))) . Once this is done, any font that is already cached is
found direct ly, without having to perform any directory lookup
on the remote host. Font f i les that are not already cached are
not found on the local disk, so they wi l l get cached and be found
quickly the next t ime.

There is an interest ing side effect to this: s ince subsequent access
to a font f i le does not go through the cache, the entry for the
font f i le gradual ly fal ls to the bottom of the cache l ist , and when
the cacher needs to make space, i t wi l l delete the font f i les from
the cache. Thus, even though you don't go through the crche
veri f icat ion mechanism, the font f i les can' t be out of date for
very long.

However, there is a potent ial problem with this. l f you push, say,
{DsK18} onto D|SPLAYFoNTD|RECTOR|ES and then make a
sysout and try to run the sysout on a machine with only f ive

LISP LIBRARY PACKAGES MANUAL tof

FILE UTILITIES

part i t ions (or on an 1 108), i t wi l l d ie a terr ible death when i t f i rst
looks for a font. Beware.

Known Deficiencies
The local disk may not understand certain f i le propert ies (l ike
CREATEDBY) that the remote host does. Attempts to perform a
SETFILEINFO on these propert ies on a dir ty f i le in the cache may
not produce the results you would expect. Simi lar ly,
GETFILEINFO on a f i le that has not yet been dumped may return
NIL even though the host supports the given f i le property.

With the f i le cache, i t is possible to create a f i le whose f i le name
is not legal for that server (e.9., (OPENFILE
'{PHYLUM}<Lanning>FooVo bar 'OUTPUT) works). When the
cacher attempts to dump the f i le, however, an error occurs. See
the section on cacher errors below.

I t is also possible to create f i les on director ies where you do not
have wri te access" Only when the cacher attempts to dump the
f i le wi l l an error occur.

The pr ivate f i le mechanism described above is not foolproof. l f
you don't go through the standard log out procedure, the
private f i les wi l l not be deleted from the local disk.

As was mentioned above, f i le locking is not implemented. This
can be rather confusing i f you switch rapidly between machines.

The f i le cacher wi l l not work with TCP servers. This is because TCP
does not support any file attributes, so the cacher has no way to
verify a cache file.

The f i le <acher wi l l not work with UNIX hosts. This is because of
vast amounts of confusion caused by mixed-case f i le names and
UNIX's lack of f i le version numbers.

Deal ing With Fi le Cache Errors
r l f you should try to log out and the cacher fai ls in an attempt
to wri te out a dir ty f i le, i t wi l l generate a break. This is most
commonly caused by the (cached) f i le already being open. You
have two opt ions: you ci I cont inue from the break, or you can
exit the break with an t l f you cont inue, the logout wi l l
proceed, but the f i le wi l l not be wri t ten out. This is safe in that
the cacher in the next system wi l l not ice that the f i le needs to be
wri t ten out. l t is potent ial ly confusing in that you may think that
you dumped a f i le out, but i t never real ly gotto the server. l t is
recommend that you close the f i le (i f that is what kept i t f rom
being wri t ten out), I out of the break, and try to log out again.

166 LISP LIBRARY PACKAGES MANUAL

FILE CACHE

r When a f i le is being wri t ten to the cache, the f i le cacher does
not check to make sure that you can real ly wri te the remote f i le.
For example, the cacher does not check to see i f there is room on
the server for the f i le, or i f the f i le name contains any i l legal
characters, or if you have write access to the hosUdirectory.
Instead, the cacher wi l l go into a break when i t t r ies to dump the
f i le. A message wi l l be pr inted into the break window tel l ing
you how to recover from this error. From this break you <an
clean up the si tuat ion.

l f the f i le name contained an i l legal character, or i f you don,t
have access to the hosUdirectory, you can RETURN the "correct ' ,
name for the f i le. The f i le name you return need not be a
complete f i le name-missing f ie lds in the name wi l l be f i l led in
from the or iginal f i le name. RETURNing NtL or exi t ing the break
with an OK wi l l cause the cacher to try the or iginal name again.
l f instead the problem was lack of space on the server, you can
delete some f i les and cont inue from the break via OK or RETURN.
o When the cacher is going to dump a f i le back to a server, i t
checks to make sure that no new f i le has appeared i f there was
no or iginal f i le on the server. Simi lar ly, i f there was an or iginal
version of the f i le, the cacher checks to make sure that the f i le
has not changed since the cached version was created. l f the
cacher detects a problem, i t wi l l go into a break, pr int ing a
message telling you how you can recover.
l f you think that the cacher is just confused, you can safely
RETURN NIL from these errors. t f there is a real problem (say
between the t ime you created f i le Foo.baz;3 and the t ime tne
cacher tr ied to dump i t out, somebody else wrote a version of
Foo.baz;3), you should RETU RN the new f i le name that vou wanr
to write out.
. Sometimes when a f i le is being wri t ten out, i t wi l l break with a
message that the f i le is "open in conf l ict ing ways." you can
safely f out of this error. l f you f ind that i t is happening a lot ,
t ry increasing the value of the DUMptDLE cache property. The
cacher attempts to detect this error, and should automatical ly try
again after a short delay.
o There is an occasional s i tuat ion where a BSp stream operat ion
breaks, cal l ing (SHOULDNT). Maybe i t shouldn' t , but i t does.
Anyway, I have found that i f you revert to a sui table place up on
the stack and try again, things wi l l work. There seems to be a
missing monitor lock or something. I dunno.

General Warnings

The cacher cannot dump f i les that are open. The impl icat ions of
this are sometimes profound. For example, when you do a put in
TEdit , a new f i le is opened for output, wri t ten, c losed, and then
opened for input. This prevents the f i le from being dumped.

LISP LIBRARY PACKAGES MANUAL to/

FILE UTILITIES

Further, shr inking the TEdit window to i ts icon does not close the
f i le. The moral of this is that f i les that you think are "safe"
(written out to the server) are sometimes not. lf you often switch
between di f ferent machines, this can be a real problem. You are
warned.

When you log out, the cacher leaves a f i le, FCache.List ing, on the
local cache device that describes the current cache entries- This
f i le is automatical ly updated each t ime you do a LOGOUT. Da
not be tempted to alter this file. Similarly, do not alter the file
FCache.Log.

Not all remote-protocol devices are supported. The file cacher
does not work with UNIX hosts, or with TCP. (The TCP protocol
has no way of f inding out the creat ion date of remote f i les in
order to see if they are in fact the same as local ones.)

There is currently no interlock between files that are accessed
through the cache, and those that are accessed direct ly, e.9., by
use of the DON'T.CACHE property in OPENFILES. This means that
two separate processes might get conflicting versions of a file,
e.g., i f one process is wri t ing a new f i le with CopyFi les (which
uses the DON'T.CACHE property) and another is attempting to
wri te the f i le into the cache. The result wi l l be that the cacher
wi l l complain when i t f inal ly goes to wri te out the version that
was written locally.

Final ly, a general warning. The f i le cacher can make your l i fe
much easier, but i t adds a level of complexi ty to the f i le system,
and, as i t is a new package, i t st i l l has a few bugs. As any work
you do is l ikely to depend on the integri ty of the f i le system,
fai lures in the cacher can have disastrous consequences" l t is
important to carefully follow recovery procedures and proceed
caut iously (after reviewing this documentat ion) i f i t fa i ls.

r58 LISP LIBRARY PACKAGES MANUAL

