_FILE UTILITIES

FILE CACHE

Introduction

The File Cache package implements an automatic, fully
transparent file-caching mechanism. Files from remote servers
are automatically copied to a specified cache directory when
they are first opened, and all future accessing of these files will
use the cached version. This allows random access to files even if
the files are stored on a server that does not implement random
access. Creating a remote file is also done locally, and when the
completed file is closed it is (eventually) written out to the
remote host.

The file cacher can also speed up many common interactions
with Lisp, especially if you access files on heavily loaded file
servers. Editing functions are quicker (once the source file is
cached, loading the source for a function does not need to go
out to the server), and TEdit response is improved.

The file cacher also attempts to deal intelligently with file servers
that are not responding. If a server is down, you can still use
cached files from that server.

Before using the file cacher package, you should read this
document carefully. It contains a number of important warnings
that can save you much grief.

Note: The file cacher changes the operation of all file operations
from all packages in Lisp. In some cases, the file cachers' actions
are not transparent, and inappropriate recovery methods may
lead to loss of work. Before using the file cacher package, please
read this document carefully. Before attempting to use the
scavenger or recover from a crash, please review the relevant
sections.

How Does it Work?

The system uses the function \GETDEVICEFROMNAME to
determine what device to use to perform /O operations for a
given file. The cacher provides a modified version of this
function that returns a specialized cache device when
appropriate.

154

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

The import of this is that the cacher is transparent. Once you
start it running, you shouldn't need to do anything special.

Where Are Files Cached?

The location of the file cache is determined by a “cache prefix."
When the file cacher is started up, it looks for the file
{DSK}FCache.Pointer; 1. If this file is found, a single expression is
read from the file and is used to set the cache prefix. If there is
no such file, the user is prompted for the cache prefix in a special
prompt window. The response will be written out to the
appropriate file so that later systems will find this pointer. The

- default value depends on the machine type: on an 1108 or

1185/86 workstation, the default is {DSK}<LispFiles>Cache>,
on 1132s the default is {DSK1}. Setting the cache prefix to NIL
disables the cache.

Itis possible to use {CORE} as the cache prefix. This resultsin fast
access time to files at the cost of expanding your virtual memory
size and slowing down your system due to increased swapping.
If you will be making repeated access to certain files, have gobs
of relatively unused physical memory, and don't mind losing
your cache across different sysouts, you may want to use {CORE}
as your cache prefix.

The cached copy of a remote file is given the same name and
extension as the original file. For example, if the cache prefix is
{DSK}< LispFiles>Cache>, the file
{Phylum}<Lanning>Lisp>Init.DCOM will be cached to the file
{DSK}<LispFiles>Cache>Init.DCOM. Characters in the file
name that are not legal in file names for the local disk are
replaced by $'s.

Maintaining the File Cache Across Sysouts

The directory of the cache is maintained in a number of special
files on the cache. The file FCache.Listing in the cache contains a
complete description of those files in the cache that are copies of
files from a remote host. This file is updated before each logout
so that other sysouts can determine the cache contents. While a
system is running, a log file (FCache.Log; 1 on the cache prefix), is
continually updated with the changes to the cache. In the event
of a system failure, this file contains enough information to
reconstruct the state of the cache, including descriptions of files
that need to be dumped to a remote host. Starting the cacherin
a new sysout will automatically load the FCache.Listing;1 and
FCache.Log; 1 files, thereby restoring the state of the cache. Dirty
files, of course, will still need to be written out.

LISP LIBRARY PACKAGES MANUAL

155



FILE UTILITIES

Restoring the cache can take a while, especially if there is a large
number of files. To let you know what it is doing, the cacher will
print a """ in the prompt window for each entry that it has
successfully restored. If a cache entry is bad (say the local file has
been deleted behind the cacher's back), the cacher will print a
2."" This printing is controlled by the SILENT cache property
described below.

Starting and Stopping the File Cacher

When the file cacher is loaded, it notes the latest cache prefix
(from the file {DSK}FCache.pointer;1) and restores the cache
listing from that prefix. File caching then needs to be enabled
for each file server. This can be accomplished in either of two
ways.

Some file devices are created when you first reference them.
These devices are created by a “‘generic” device that knows how
to create the appropriate device. For example, the LEAF device is
responsible for creating the file devices for Phylum and other
PARC “interim file servers,” and the NSFILING device creates
devices for Phylex:PARC:Xerox and other NS hosts. The file
cacher provides a way to create a cache device for these file
devices.

(FCACHE.GENERIC.START deviceType) [Function]

Enables caching for any device of type deviceType. When a new
file device of type deviceType is first referenced, caching will be
enabled for that device by a call to FCACHE.START (but see the
cache property BADDEVICES described below).
FCACHE.GENERIC.START is UNDQable. The ‘standard'’ device
types are LEAF and NSFILING.

(FCACHE.GENERIC.STOP deviceType) [Function]

Undoes the effect of a call to (FCACHE.GENERIC.START
deviceType). FCACHE.GENERIC.STOP does not turn off caching
for devices that were automatically FCACHE.STARTed.

FCACHE.GENERIC.DEVICE.TYPES [Global Variable]

When the cacher is first loaded, the function
FCACHE.GENERIC.START is mapped over the value of
FCACHE.GENERIC.DEVICE.TYPES.

FCACHE.GENERIC.DEVICE.TYPES is defined by an INITVARS
exy 'ession in the file, so you can override the default value
before loading the file cacher. The default value is (LEAF
NSFILING). This effectively turns on caching for all LEAF and NS
hosts.

Some devices are part of the system, so FCACHE.GENERIC.START
cannot be used to start caching on them. Instead, the following

156

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

function can be used to enable caching on a device-by-device
basis.

(FCACHE.START hostName) [Function]

Turns on caching for the specified host device. The host does not
have to be “up" to turn on caching. FCACHE.START is
UNDOQOable. As a side effect, FCACHE.START will remove
hostName from the cache property BADDEVICES defined below.
FCACHE.START returns NIL if caching could not be turned on for
the device, otherwise it returns something non-NIL. NOTE: The
file cacher does not support caching from UNIX hosts, so
FCACHE.START of a UNIX host will do nothing.

(FCACHE.STOP hostName) [Function]

Turns off caching for the specified host device. FCACHE.STOP is
UNDOable. As aside effect, FCACHE.STOP will add hostName to
the cache property BADDEVICES defined below.

(FCACHE.VANQUISH) [Function]

Removes the cacher from the system, destroying all evidence that
it ever existed (well, almost all).

Cacher Tuning

The functioning of the cache is influenced by a number of
properties. These property values can be accessed by the
following two functions.

(FCACHE.GETPROP name) [Function]

Returns the current value of the cache property name.
FCACHE.GETPROP has the appropriate SETFN property, so
CHANGETRAN expressions like (push (FCACHE.GETPROP
'BADDEVICES) 'ERIS) will work.

(FCACHE.PUTPROP name value) [Function]
Sets the value of the cache property name to value.
PREFIX [Cache Property]

The PREFIX property determines where files are cached.
Changing this property will dump all dirty files, update the
FCache.Listing and FCache.Log files, update the FCache.Pointer
file, set up the new prefix as the cache, and load its
FCache.Listing and FCache.Log files. Setting the prefix to NIL will
completely disable the file cacher. It is initially set when the
package is loaded, and is updated automatically (using the file
{DSK}FCache.Pointer) after each logout.

ENTRIES (Cache Property]

The number of files currently cached. This property is read-only.

LISP LIBRARY PACKAGES MANUAL

157



FILE UTILITIES

SIZE [Cache Property]

The SIZE property is the current number of disk pages used by the
cache. This property is read-only.

FASTDIR [Cache Property]

Directory enumeration is complicated by the cache: files that are
present in the cache but are not yet dumped to the server should
be included in the directory. Thisis accomplished by merging the
list of matching cached files with the directory list from the
remote server. Generating this list of matching local files can be
rather slow, especially if you have many files in the cache. The
FASTDIR cache property lets you get around this problem. If
FASTDIR is NIL then the directory merging is done, otherwise the
merging is disabled. Disabling the merging of cache file listings
and remote directory listings can result in a significant speedup
(depending on the number of files in your cache), but can
produce directory listings that miss some files (those files that
have not yet been written to the server). Initial value is NIL. Note
that FASTDIR has no effect on INFILEP or OUTFILEP.

SILENT [Cache Property]

Normally, the cache writes informative messages to the prompt
window whenever files are being loaded into the cache or
dumped from the cache to a remote host (and a few other
situations). If the SILENT property is non-NIL, this reporting is not
done. The default valueis NIL, i.e., print out the messages.

Dealing With Unresponsive Hosts

The file cacher tries to deal in an intelligent way with hosts that
are not responding.

UNSAFE [Cache Property]

If the File Cacher believes a remote host is not available
(according to a heuristic algorithim), it uses the UNSAFE property
to determine how to proceed. If the value is NIL, the cacher just
keeps going (probably generating some sort of error). If the
value is ASK, you will be asked if you want to trust the cache. If
the value is NOTIFY, the cacher will automatically trust the cache,
but will notify you of its action in the main prompt window. If
the value is T, the cacher will also trust the cache, but will give no
indication of this. The default value of the UNSAFE property is
ASK.

"Trust" is dependent on what you are trying to do with the host.
If you are generating a directory listing or performing an INFILEP
or QUTFILEP, “trust’’ means to use only those matching files that
have been cached. If you are attempting to verify that a given
cache entry is a valid copy of a remote file, it means to believe
thatitis.

158

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

Making Room in the Cache

The local file cache consumes a finite resource, space on the local
disk. When there is insufficient room on the disk for a new cache
file, old cache files must be deleted to make room. Files are
selected for deletion based on a modified Least Recently Used
(LRU) algorithm. These modifications are described below.

MAXSIZE [Cache Property]

The MAXSIZE property is the maximum number of disk pages to
be used by the cache. When this limit is reached, old cache files
are deleted to make room for new files, even if there is room left
on the disk. Note that the file cacher also checks DISKFREEPAGES
to determine if there is enough room for a file (on those devices
where DISKFREEPAGES makes sense).

Setting MAXSIZE to a very large number will cause the cache to
consume as much space as available in the area defined by the
cache prefix. This may be the desired functionality when an
entire partition or logical volume is devoted to the cache.
MAXSIZE is intended for situations where the cache is a local disk
volume or partition which is shared with other file uses.

The value of the MAXSIZE cache property is an attribute of the
cache prefix, so itis saved on the FCache.Listing file and restored
when the cache is restored. The default value is 10,000.

KEEPVERSIONS [Cache Property]

When you add a new version of a file to the cache, older versions
of the file become less valuable, and can be deleted from the
cache. KEEPVERSIONS specifies the number of old versions of a
file that should be kept in the cache. If KEEPVERSIONS is zero or
NIL, all old versions are kept. Otherwise, versions that are
KEEPVERSIONS older than the new file are deleted. The default
value of KEEPVERSIONS is two.

Actually, old versions are not deleted right away. Instead, they
are moved to the tail end of the cache list. This will cause the old
files to be removed from the cache as soon as the cacher needs
the space.

Some users think that they know better than the cacher what
files should be deleted from the cache. The following function is
documented to provide a hook for the strong of will. It can be
advised or redefined as you like.

(\FCACHE.MAKEROQOM.DELETEABLE? fileName) [Function]

Is used to determine if a file ~an be deleted from the cache to
make room for a new file. \FCACHE.MAKEROOM.DELETEABLE?
always returns T.

LISP LIBRARY PACKAGES MANUAL

159



FILE UTILITIES

Forcing Direct Access to Remote Files

There are a number of ways that you can bypass the cache.
DON'TCACHE [OPENFILE Parameter]

If the atom DON'TCACHE is present in the PARAMETERS
argument to OPENFILE (e.g., if the atom DON'TCACHE is in the
PARAMETERS list, or if the list contains the list (DON'TCACHE T)),
the file will not be opened on the cache. In the Koto and later
releases of Interlisp, the COPYFILE function uses this to prevent
caching files when you are copying them.

BADDEVICES [Cache Property]

Provides a way to prevent the cacher from being automatically
started for specific hosts. BADDEVICES is a list of device names
that will not be FCACHE.STARTed automatically. See
FCACHE.GLOBAL.START and FCACHE.STOP above.

MAXFILEPAGES [Cache Property]

The MAXFILEPAGES property gives the maximum size (in pages)
of a file that should be cached. Files larger then this are not
cached. A value of NIL means there is no upper limit on the size
of cached files. The default value is 400. Like the MAXSIZE cache
property, the MAXFILEPAGES cache property is stored along with
the cache listing, so its value is remembered across sysouts. It
should be noticed that it is possible for files to grow larger than
the MAXFILEPAGES limit as you write to them.

USECACHE [Cache Property]

The USECACHE property specifies what I/O operations will use
the cache. Possible values are T, Read, Write, and NIL. A value of
T means that the cache will be used for both input and output
operations; Read means that the cache will be used for input
only; Write means the cache will be used for output only, and
NIL means the cache will not be used at all.

(ADD.FILE.TO.CACHE? fullName) [Function]

Is used to determine if a file should be cached. If fullName
matches any of the file specs on the global list
DON'T.CACHE.FILES, ADD.FILE.TO.CACHE? returns NIL, otherwise
T. File specs on the list DON'T.CACHE.FILES can contain the
standard wild card characters. The host name and version
number fields default to ""*"'; the others default to the empty
string "'"". This function is separated out so you can advise or
redefine it for specialized applications.

DON'T.CACHE.FILES [Global Variable]

A list of file specs, used by ADD.FILE.TO.CACHE? above. The
default valueis NIL.

(WITHOUT.FCACHE form1 ... formN) [Macro]

Evaluates the (unevaluated) forms in a context where caching is
disabled. For example, (WITHOUT.FCACHE (TCOMPL 'Foo)) will

160

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

compile the file Foo without going through the cache. Note:
WITHOUT.FCACHE operates by changing the cache property
USECACHE. This is a global property, so if WITHOUT.FCACHE is
being run in one process, all processes are running with caching
disabled.

Private Files and the Cache

Private files present a problem to the cacher. Typically, the local
disk on an 1108 is a public area, so files left there by the cacher
are accessible to the public. The cacher attempts to get around
this problem by deleting private files from the cache before each
logout.

(FCACHE.PRIVATE.FILE? fullName) [Function]

Is used to determine if a file should be deleted from the cache
when you log out. This is an attempt to solve the problem of
having “private" files copied to a public machine.
FCACHE.PRIVATE.FILE? uses the global variable PRIVATE.FILES
described below. Files that match any file spec on PRIVATE.FILES
will be deleted automatically when you log out. This function is
separated out so that you can redefine it if you want. Note that
if you exit a sysout by some other method (e.g., a crash), the
private files will not be deleted.

PRIVATE.FILES [Global Variable]

A list of file specs, used to determine what files should not be left
on the local disk when you log out. The default valueis NIL. You
may want to set it to (*.MAIL), or the value of (LIST (PACK*
LOGINHOST/DIR ""*')).

Caching Files for Qutput

Files that are cached when opened for output present a number
of small problem:s.

® When should dirty files be written out to the host?

Turning off the cacher, changing the cache prefix, or logging out
causes all (non-open) dirty files to be dumped out to their
appropriate servers. Dirty files are also written out at irregular
intervals by the following background process. The file cacher
uses the term dump to mean write out a dirty file to the file
server.

DUMP-FCACHE [Process]

A background process that wakes up every now and then and
looks for dirty files. Dirty files that have been left idle for long

LISP LIBRARY PACKAGES MANUAL

161



FILE UTILITIES

enough are dumped to the appropriate hosts. Note that only
files that are not open can be written out.

DUMPSLEEP [Cache Property]

The number of seconds that the DUMP-FCACHE process (see
above) waits before it checks for new dirty files. The default
value is 10 seconds.

DUMPIDLE [Cache Property]

When the DUMP-FCACHE process wakes up, it checks each dirty
file to see how long it has been since it was last closed. If this
time is greater than DUMPIDLE seconds, the file will be dumped.
Note that dirty files that are still open are not dumped. The
default value is 20 seconds.

® Should file locking be implemented, and if so, how?

When a file is opened for output on a server (without the cacher
being involved), the file cannot be opened by another user. This
prevents the user from attempting to read an incomplete or
incorrect file. Unfortunately, this functionality cannot be
provided when the cache is used. Instead, when a file is dumped
the file cacher makes sure that there have been no changes to
that file on the host. If there have (for example, if someone else
has created a file with the same version number that did not exist
when you first created your cached file), the cacher generates a
break with an appropriate error message. Generally, you should
do a "RETURN 'fileName," where fileName is where the file
should be written out to. RETURNing NIL means to use the
original file name. See the section on file cache errors below.

e \What happensto open files at LOGOUT?

The cacher does not know what to do if you try to log out when
there are dirty files in the cache that are open. It punts,
generating a break. Open files that are not dirty are handled
properly. Again, see the section on file cache errors below.

e What happens if your machine crashes before the completed
file isdumped to the remote host?

If your machine crashes for any reason (say a power failure), dirty
files will not be written out to remote hosts, and the
FCache.Listing file will not be dumped. The FCache.Log files
provide enough information to reconstruct the state of your
cache. You should start up a new system running the file cache
package. This will load the FCache.Log file. The cacher will then
dump the dirty files automatically.

® What should be done if the local device runs out of space
while attempting to write a cache | file?

The cacher catches this error and tries to delete old files from the
cache to make room. If it succeeds, everything continues as it
was and you should not notice that anything has happened.

e What happens if there is not enough room on the server for
the new file?

162

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

When the file is created on the cache, no check is made on the
server to determine if there is room. Thus, you can (temporarily)
exceed your allocated file space. When the cacher gets around
to dumping the file, though, you will get the "‘standard"' error.
See the section on file cache errors below.

Cache Access From Code

In addition to the cache properties given above, there are a
number of semipublic functions provided for access to the cache.

(CACHE.FILE fileName) [Function]

Will load the file into the cache. Returns the full file name if the
file was successfully loaded into the cache, otherwise NIL.

(FCACHE.DUMP.ALL) [Function]
Writes out all dirty files that are not currently open.
(FCACHE.CACHELIST) [Function]

Returns a list of files that are currently cached. This may include
files from hosts where the cache is not currently enabled.

(FCACHE.DIRTY? fileName) [Function]

Returns T if the file fileName is currently cached and needs to be
dumped, otherwise returns NIL.

CACHEDIRTY [File Property]

(GETFILEINFO fileName 'CACHEDIRTY) returns the same value as
(FCACHE.DIRTY? fileName).

CACHEFILE [File Property]

(GETFILEINFO fileName 'CACHEFILE) will return the name of the
local cache file for fileName. If fileName is not cached, the value
is NIL.

(FCACHE.DUMP.FILE fileName) [Function]
Writes out the file fileName to the appropriate host if fileName is
dirty.

(FCACHE.DUMP onlylfChanged) [Function]
Updates the FCache.Listing file and clears the FCache.Log file
after writing out all dirty files. The FCache.Listing file will be
rewritten if there has been any change to the cache list, or if the

argument onlylfChanged is NIL. There is a BackgroundMenu
item DumpCache that does an (FCACHE.DUMP).

LISP LIBRARY PACKAGES MANUAL

163



FILE UTILITIES

Cache Scavenging

In case the cacher loses track of files in the cache, you can use the
following scavenger function.

(FCACHE.SCAVENGE options) [Function]

Returns a list of all files that match the cache prefix, but are not
known to the cacher. FCACHE.SCAVENGE attempts to make sure
that the internal state of the cacher is correct. The argument
options is a single option or a list of options to the scavenger.
Possible options are described below. Note that the scavenger
temporarily turns off caching.

SILENT [Scavenger Option]

If the SILENT option is not present, the scavenger will print out
messages to the default window to let you know what it is
doing.

EXISTS [Scavenger Option]

Each cache entry is checked to make sure that the local file exists.
If it does not, the cache entry is deleted. This option is useful if
you have deleted cached files directly from the local disk.

VERIFY [Scavenger Option]

Each cache entry is checked to make sure that it is a valid cache
for its remote file. Ifitis not, the entry is deleted. This may entail
a rather long delay as there is a lot of communication with
remote servers.

REPAIR [Scavenger Option]

For each file that would otherwise be returned by
FCACHE.SCAVENGE, tries to find the remote file that it is a copy
of. If a file is found, the corresponding entry is added to the
cache list. The result of FCACHE.SCAVENGE will not include any
files that have been “repaired."

Finding a remote file that is a copy of the local file is a very
heuristic process. The following rules guide the search for a
matching file:

o |f the fileis a LISP source file, the first expression on the file is a
FILECREATED expression that contains a reference to the file
name. Note: this reference may not point to the correct file,
because the original file may have been copied someplace else.

® Similarly, if the extension is DCOM, then the file is checked to
see if it is a compiled source file. Again, a FILECREATED
expression in the beginning of the file contains a reference to
the original file. Actually, the reference is to the source file, but
this is used to get the directory and base file name to look for.

e |f the file is a font file, then the appropriate directories are
searched for a matching file.

® If all else fails, the directories on DIRECTORIES are searched for
a matching file.

164

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

FCACHE.SCAVENGE.IGNORE [Global Variable]

A list that associates (yes, in ASSOC format) machine types with
file names that should not be included in the result of
(FCACHE.SCAVENGE). The file names include name, extension,
and version fields, but do not include host or directory name
fields. This variable is provided for users who cache other files
(sysouts, for example) on the cache directory. Files matching an
entry on FCACHE.SCAVENGE.IGNORE will not be repaired.

Cache Inspection

The DUMP-FCACHE process provides a nice way of interactively
inspecting the cache. Selecting the DUMP-FCACHE process in the
PSW and bugging the Info menu item will bring up an inspect
window, viewing the current cache properties. You can use this
inspect window to set the cache properties.

The cache property inspect window can also be accessed by a
subitem of the DumpCache item from the Background Menu.

You can inspect the list of cache entries by a menu option in the
title of cache property inspect window. This new inspect
window can be used to selectively dump cache entries or delete
unwanted files from the cache.

Hints

You can speed up access to fonts by the following trick: after the
cache starts and defines the cache prefix, do a (push
DISPLAYFONTDIRECTORIES (FCACHE.GETPROP (QUOTE
PREFIX))). Once this is done, any font that is already cached is
found directly, without having to perform any directory lookup
on the remote host. Font files that are not already cached are
not found on the local disk, so they will get cached and be found
quickly the next time.

There is an interesting side effect to this: since subsequent access
to a font file does not go through the cache, the entry for the
font file gradually falls to the bottom of the cache list, and when
the cacher needs to make space, it will delete the font files from
the cache. Thus, even though you don't go through the cache
verification mechanism, the font files can't be out of date for
very long.

However, there is a potential problem with this. If you push, say,
{DSK18} onto DISPLAYFONTDIRECTORIES and then make a
sysout and try to run the sysout on a machine with only five

LISP LIBRARY PACKAGES MANUAL



FILE UTILITIES

partitions (or on an 1108), it will die a terrible death when it first
looks for a font. Beware.

Known Deficiencies

The local disk may not understand certain file properties (like
CREATEDBY) that the remote host does. Attempts to perform a
SETFILEINFO on these properties on a dirty file in the cache may
not produce the results you would expect. Similarly,
GETFILEINFO on a file that has not yet been dumped may return
NIL even though the host supports the given file property.

With the file cache, it is possible to create a file whose file name
is not legal for that server (e.g, (OPENFILE
"{PHYLUM}<Lanning>Foo% bar 'OUTPUT) works). When the
cacher attempts to dump the file, however, an error occurs. See
the section on cacher errors below.

It is also possible to create files on directories where you do not
have write access. Only when the cacher attempts to dump the
file will an error occur.

The private file mechanism described above is not foolproof. If
you don't go through the standard log out procedure, the
private files will not be deleted from the local disk.

As was mentioned above, file locking is not implemented. This
can be rather confusing if you switch rapidly between machines.

The file cacher will not work with TCP servers. This is because TCP
does not support any file attributes, so the cacher has no way to
verify a cache file.

The file cacher will not work with UNIX hosts. This is because of
vast amounts of confusion caused by mixed-case file names and
UNIX's lack of file version numbers.

Dealing With File Cache Errors

e |f you should try to log out and the cacher fails in an attempt
to write out a dirty file, it will generate a break. This is most
commonly caused by the (cached) file already being open. You
have two options: you c¢i 0 continue from the break, or you can
exit the break with an 7. If you continue, the logout will
proceed, but the file will not be written out. This is safe in that
the cacher in the next system will notice that the file needs to be
written out. Itis potentially confusing in that you may think that
you dumped a file out, but it never really got to the server. Itis
recommend that you close the file (if that is what kept it from
being written out), T out of the break, and try to log out again.

166

LISP LIBRARY PACKAGES MANUAL



FILE CACHE

® When a file is being written to the cache, the file cacher does
not check to make sure that you can really write the remote file.
For example, the cacher does not check to see if there is room on
the server for the file, or if the file name contains any illegal
characters, or if you have write access to the host/directory.
Instead, the cacher will go into a break when it tries to dump the
file. A message will be printed into the break window telling
you how to recover from this error. From this break you can
clean up thessituation.

If the file name contained an illegal character, or if you don't
have access to the host/directory, you can RETURN the "correct"
name for the file. The file name you return need not be a
complete file name—missing fields in the name will be filled in
from the original file name. RETURNing NIL or exiting the break
with an OK will cause the cacher to try the original name again.

If instead the problem was lack of space on the server, you can
delete some files and continue from the break via OK or RETURN.

® When the cacher is going to dump a file back to a server, it
checks to make sure that no new file has appeared if there was
no original file on the server. Similarly, if there was an original
version of the file, the cacher checks to make sure that the file
has not changed since the cached version was created. If the
cacher detects a problem, it will go into a break, printing a
message telling you how you can recover.

If you think that the cacher is just confused, you can safely
RETURN NIL from these errors. If there is a real problem (say
between the time you created file Foo.baz;3 and the time the
cacher tried to dump it out, somebody else wrote a version of
Foo.baz;3), you should RETURN the new file name that you want
to write out.

® Sometimes when a file is being written out, it will break with a
message that the file is “open in conflicting ways." You can
safely T out of this error. If you find that it is happening a lot,
try increasing the value of the DUMPIDLE cache property. The
cacher attempts to detect this error, and should automatically try
again after ashort delay.

® There is an occasional situation where a BSP stream operation
breaks, calling (SHOULDNT). Maybe it shouldn't, but it does.
Anyway, | have found that if you revert to a suitable place up on
the stack and try again, things will work. There seems to be a
missing monitor lock or something. | dunno.

General Warnings

The cacher cannot dump files that are open. The implications of
this are sometimes profound. For example, when you do a Putin
TEdit, a new file is opened for output, written, closed, and then
opened for input. This prevents the file from being dumped.

LISP LIBRARY PACKAGES MANUAL

167



FILE UTILITIES

Further, shrinking the TEdit window to its icon does not close the
file. The moral of this is that files that you think are “safe"
(written out to the server) are sometimes not. If you often switch
between different machines, this can be a real problem. You are
warned.

When you log out, the cacher leaves a file, FCache.Listing, on the
local cache device that describes the current cache entries. This
file is automatically updated each time you do a LOGOUT. Do
not be tempted to alter this file. Similarly, do not alter the file
FCache.Log.

Not all remote-protocol devices are supported. The file cacher
does not work with UNIX hosts, or with TCP. (The TCP protocol
has no way of finding out the creation date of remote files in
order to see if they are in fact the same as local ones.)

There is currently no interlock between files that are accessed
through the cache, and those that are accessed directly, e.g., by
use of the DON'T.CACHE property in OPENFILEs. This means that
two separate processes might get conflicting versions of a file,
e.g., if one process is writing a new file with CopyFiles (which
uses the DON'T.CACHE property) and another is attempting to
write the file into the cache. The result will be that the cacher
will complain when it finally goes to write out the version that
was written locally.

Finally, a general warning. The file cacher can make your life
much easier, but it adds a level of complexity to the file system,
and, as it is a new package, it still has a few bugs. As any work
you do is likely to depend on the integrity of the file system,
failures in the cacher can have disastrous consequences. It is
important to carefully follow recovery procedures and proceed
cautiously (after reviewing this documentation) if it fails.

168

LISP LIBRARY PACKAGES MANUAL



