Writing Software Tests

What File to Load; Conventions

Load the file { Eris} <Lispcore>Internal>Library>Do-Test.DFasl.

All the symbols mentioned in this document are in both the IL: and XCL-TEST: packages, unless otherwise stated.
Y ou should also read the How-To sheet on writing AR Test Cases.

Main Testing Entry Points

(DEFTEST name&options forms) [Definer]

This is the definer for tests, alowing them to be saved on file-managed files. The test succeeds if the final form
returns a non-NIL result. If name&options isn't a list, then it's just the name which can be a symbol or string;
symbols are preferred for DEFTEST tests. If you specify options, the CAR of name& options is the name. If you
specify :COMPILED in name& options, the test will run only when it has been compiled. Since thistest is stored as
structure rather than as plain text, any symbols will be package-qualified appropriately. If a test fails or an error
occurs during evaluation, amessage is printed to *ERROR-OUTPUT *.

Unless you have DFNFLG set to PROP, the act of defining a test also causes it to be run (so you'll see if your test
failsright away).

Examples:
(DEFTEST AR1000 ; For AR test cases, the test name should be ARar#.
(=3 (+12))) ; Real simple test of +
(DEFTEST (+-OPT :COMPILED) ; A testofthe compiler, only makes sense to run compiled.
(=3 (+111))) ; Checking that +'s optimizer does the right thing.
(DEFTEST (MS-TEST :INTERPRETED) ; A test of Masterscope, only makes sense interpreted.

(TEST-DEFUN FN (X) (FOO X))
(\. IS FOO CALLED BY FN))

(DEFTESTGROUP name&options forms) [Definer]

This is the definer for groups of tests, allowing them to be saved on file-managed files. For associating a group of
tests. For instance, a group of tests may all require the same setup and cleanup. If there are any options (see below)
then the CAR of name& options is the name and the CDR is a keyword/value list. All forms must be DEFTEST or
DO-TEST forms.

Unless you have DFNFLG set to PROP, the act of defining atest group also causesit to be run (so you'll seeif your
testsfail right away).

:before alows for asetup form for agroup of tests.
:after allows aform to be run after the tests without affecting results.
The normal form of a DEFTESTGROUP using all itsfeaturesis:

(DEFTESTGROUP
(UNWIND-OPCODE-TESTS
:BEFORE (progn (before-form-1) (before-form-2)...)
:AFTER (progn (after-form-1) (after-form-2))
)
(DEFTEST "first test")
(DEFTEST "second test")

Functions You’ll Find Useful When Building Tests

(EXPECT-ERRORS (error-types) forms) [Macro]

Error-typesisalist of errors that may occur while executing the forms. If one of the listed errors occurs, EXPECT -
ERRORS returns (values t error-that-occurred), otherwise NIL. If all you want to do is make sure that an error is
signalled somewhere in the test, you can specify an error-types of T. Normal use of thisform is:

(DEFTEST ERROR-CHECK
(EXPECT-ERRORS (T)
(THIS-FORM ‘SHOULD ’‘ERROR)))

(DEFTEST (+-DETECTS-NILS :INTERPRETED)
(EXPECT-ERRORS (XCL:TYPE-MISMATCH)
(+ 3 NIL)))

(TEST-SETQ Variable Value)
(TEST-DEFUN name (arglist) forms)
(TEST-DEFMACRO name (arglist) forms) [Macros]

These work like SETQ, DEFUN, and DEFMACRO, except that if they are executed within a DEFTEST or
DEFTESTGROUP, their effects are manually undone (old values are saved and then restored) upon leaving the
test. Usethese in : BEFORE forms that a whole group of DEFTESTS want to see. DON'T use TEST-SETQ on
locally-bound variables or in loops.

Commands and Functions for Running Tests

run Test-name [EXEC Command]
Once Test-name has been defined using DEFTEST or DEFTESTGROUP, you can run the test with the run
command.

(DO-TEST-FILE filename)

Reads and executes a file of tests. All forms in the file are read before any are executed. The file should be clear
text (clearput in TEdit) and terminate with a STOP. The format for test namesis

Chap#] -sec#] -subsec#]] -comment. TEST
(DO-ALL-TESTS &Kkey (results *test-batch-results*)
(patterns *test-file-pattern¥)

(sysout-typenil)
(resumenil))

CallsDO-TEST-FILE on each file that matches patterns, which is alist of directory patterns, and prints the results
to anew version of afile named results. If resultsis T, results are printed to the window where DO-ALL-TESTS is
running. The header of the results file is a message of the date and time the tests are being run and the
MAKESYSDATE of the sysout; if sysout-type is supplied, aline for it goes out too. If resume is non-NIL, DO-ALL-
TESTS attempts to resume an interrupted test sequence, appending the results onto the latest version of results.

TEST-MODE [Variable]

Default is : batch, which means to report test failures and errors on * ERROR-OUTPUT* (which is usualy afile),
and continue. Other values possible are: : interactive which means to print a message before running each
test, print another message for test failures, and produce a break window on errors. :batch-verbose which
means to generate all the messages of : interactive and do not break on errors.

TEST-BATCH-RESULTS [Variable]

Defaults to "{ eris} <lispcore>cml>test>test-results”

TEST-FILE-PATTERN [Variablg]
Defaultsto ("{ eris} <lispcore>cml>test>* .test;" "{ eris} <lispcore>cml>test>* .x") which runs all the internal tests.

TEST-COMPILE [Variable]

If this switch is non-nil, DO-TEST compilesits forms before testing them. DO-ALL-TESTS will print amessage in
its header if this switch ison.

ALL-FILES-REMAINING [Variable]

While DO-ALL-TESTS is running, this variable contains a list of al the files remaining to be processed; files are
removed from it AFTER they are read and executed. To restart a test run that somehow crashes the test driver, first
clean up whatever blew up the run (if necessary, dump *ALL-FILES-REMAINING* to a file and get a new
sysout), then do

(DO-ALL-TESTS :RESUME T [:RESULTS "wherever"]).

Internal Functions

(DO-TEST name&options forms) [Macro]

Thisisthe obsolete, plain-test-file testing macro; it is still around so that old tests work (and because DEFTEST uses
it). A test succeeds if the final form returns a non-nil result. If name&options isn't a list, then it's just the name
which can be an atom or string; strings are preferred. If you specify options, the CAR of name& options is the name.
If you specify :COMPILED in name&options, the test will run only when it has been compiled. Forms are
presumed to be read with the Common Lisp reader in package XCL-TEST, which uses LISP and XCL. If atest fails
or an error occurs during evaluation, amessage is printed to * ERROR-OQUTPUT *.

(DO-TEST-GROUP name&options forms) [Macro]

This is the obsolete, plain-test-file testing macro; it is ill around so that old tests work (and because
DEFTESTGROUP usesit). For associating a group of tests. For instance, a group of tests may all require the same
setup and cleanup. If there are any options (see below) then the CAR of name& options is the name and the CDR isa
keyword/value list. All forms must be DO-TEST forms.

:before alows for asetup form for agroup of tests.

:after allows aform to be run after the tests without affecting results.

The normal form of aDO-TEST-GROUP using all itsfeaturesis:
(DO-TEST-GROUP
("a test group"
:BEFORE (progn (before-form-1) (before-form-2)...)
:AFTER (progn (after-form-1) (after-form-2))
)
(DO-TEST "first test")
(DO-TEST "second test")
)

(CL-READFILE filename)

Reads al forms in filename and returns a list of them. This function is used by DO-TEST-FILE to read test files;
test writers who want to see if their files are syntactically valid should first see if CL.-READFILE will read them,
then seeif DO-TEST-FILE will execute them.

(MUNG-TEST-FILES filepattern &key (compiler ' compile-file)
(startinglist NIL))

Compiles test files so they can be run by just loading them. Compiles all files matching filepattern (which isfed to
directory) using compiler and writes them out to the directory they came from with an extension appropriate to
compiler. If you want to explicitly specify thelist of files to compile, hand alist of pathnamesto startinglist. Prints
an error message for files that fail to compile. You have to use this function (instead of just compiling the test files)
because it prefaces the test files with (in-package "XCL-TEST") and (setg *test-file-namex*
"NAME-OF-FILE") so the compiler will read them properly and the files will know their names for error
reporting purposes. NOTE: tests that fail should not be compiled; the resulting compiled code may not be a valid
test.

