1
0
mirror of synced 2026-01-26 04:11:05 +00:00

Uploaded_1_25_2020

This commit is contained in:
MicroCoreLabs
2020-01-25 11:42:25 -08:00
parent 50099361f5
commit e4bde7a1f9
17 changed files with 3354 additions and 2405 deletions

View File

@@ -1,37 +1,69 @@
#
# Microcode for the MCL86
#
# ------------------------------------------------------------------------
#
# Copyright (C) 2019 by Ted Fried info@MicroCoreLabs.com
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted, provided
# that the above copyright notice appear in all copies and that both that
# copyright notice and this permission notice appear in supporting documentation.
# This software is provided "as is" without express or implied warranty.
#
# ------------------------------------------------------------------------
#
//
//
// File Name : Microcode_MCL86.txt
// Used on : MCL86
// Author : Ted Fried, MicroCore Labs
// Creation : 1/25/2020
// Code Type : Microcode
//
// Description:
// ============
//
// Microcode for the MCL86
//
//------------------------------------------------------------------------
//
// Modification History:
// =====================
//
// Revision 1.0 1/25/2020
// Initial revision
//
//
//------------------------------------------------------------------------
//
// Copyright (c) 2020 Ted Fried
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//------------------------------------------------------------------------
// Microcode and microsequencer notes:
//
#
# // Consolidated system signals
# assign system_signals[15]
# assign system_signals[14]
# assign system_signals[13] = eu_add_carry8;
# assign system_signals[12] = clock_cycle_counter_zero;
# assign system_signals[11] = eu_add_overflow16;
# assign system_signals[13] = eu_add_carry8;
# assign system_signals[12] = clock_cycle_counter_zero;
# assign system_signals[11] = eu_add_overflow16;
# assign system_signals[10]
# assign system_signals[9] = eu_add_overflow8;
# assign system_signals[8] = eu_flag_t_asserted;
# assign system_signals[7] = ~pfq_empty;
# assign system_signals[6] = biu_done_caught;
# assign system_signals[5] = test_n_int;
# assign system_signals[4] = eu_add_aux_carry;
# assign system_signals[3] = nmi_caught;
# assign system_signals[2] = eu_parity;
# assign system_signals[1] = int_asserted;
# assign system_signals[0] = eu_add_carry16;
# assign system_signals[9] = eu_add_overflow8;
# assign system_signals[8] = eu_flag_t_asserted;
# assign system_signals[7] = ~pfq_empty;
# assign system_signals[6] = biu_done_caught;
# assign system_signals[5] = test_n_int;
# assign system_signals[4] = eu_add_aux_carry;
# assign system_signals[3] = nmi_caught;
# assign system_signals[2] = eu_parity;
# assign system_signals[1] = int_asserted;
# assign system_signals[0] = eu_add_carry16;
#
#
# assign eu_prefix_repnz = eu_flags[15];
@@ -46,9 +78,9 @@
# assign eu_flag_z = eu_flags[6];
# assign eu_tf_debounce = eu_flags[5];
# assign eu_flag_a = eu_flags[4];
# assign eu_flag_temp = eu_flags[3];
# assign eu_flag_temp = eu_flags[3];
# assign eu_flag_p = eu_flags[2];
# assign eu_flag_temp = eu_flags[1];
# assign eu_flag_temp = eu_flags[1];
# assign eu_flag_c = eu_flags[0];
#
#
@@ -58,7 +90,7 @@
# // eu_biu_strobe[1:0] are available for only one clock cycle and cause BIU to take immediate action.
# // eu_biu_req stays asserted until the BIU is available to service the request.
# //
# = eu_biu_command[15];
# = eu_biu_command[15];
# eu_segment_override = eu_biu_command[14];
# eu_biu_strobe[1:0] = eu_biu_command[13:12]; // 01=opcode fetch 10=clock load 11=load biu register(eu_biu_req_code has the register#)
# eu_biu_segment[1:0] = eu_biu_command[11:10];
@@ -66,29 +98,29 @@
# eu_biu_req_code = eu_biu_command[8:4];
# eu_qs_out[1:0] = eu_biu_command[3:2]; // Updated for every opcode fetch strobe using biu_strobe and Jump request using eu_biu_rq
# eu_segment_override_value[1:0] = eu_biu_command[1:0];
#
#
#
# EU Registers
# --------------
#
# Destination Operand0 Operand1
# Destination Operand0 Operand1
# -----------------------------------------------------------------------------------------------
# 0 AX 0 AX 0 ES
# 1 BX 1 BX 1 SS
# 2 CX 2 CX 2 CS
# 3 DX 3 DX 3 DS
# 4 SP 4 SP 4 { 8'h00 , pfq_top_byte }
# 5 BP 5 BP 5 EA_RM from BIU
# 6 SI 6 SI 6 EA_REG from BIU
# 7 DI 7 DI 7 BIU Return Data
# 8 Flags 8 Flags 8 Prefetch Queue Address (Current IP)
# 9 r0 9 r0 9 r0
# A r1 A r1 A r1
# B r2 B r2 B r2
# C r3 C r3 C r3
# D BIU Command D BIU Command D ALU Last Result
# E Dummy Reg E System Signals E System Signals
# F BIU Dataout F 16'h0000 F Opcode Immediate[15:0]
# 0 AX 0 AX 0 ES
# 1 BX 1 BX 1 SS
# 2 CX 2 CX 2 CS
# 3 DX 3 DX 3 DS
# 4 SP 4 SP 4 { 8'h00 , pfq_top_byte }
# 5 BP 5 BP 5 EA_RM from BIU
# 6 SI 6 SI 6 EA_REG from BIU
# 7 DI 7 DI 7 BIU Return Data
# 8 Flags 8 Flags 8 Prefetch Queue Address (Current IP)
# 9 r0 9 r0 9 r0
# A r1 A r1 A r1
# B r2 B r2 B r2
# C r3 C r3 C r3
# D BIU Command D BIU Command D ALU Last Result
# E Dummy Reg E System Signals E System Signals
# F BIU Dataout F 16'h0000 F Opcode Immediate[15:0]
#
#
# EU Opcodes
@@ -97,19 +129,19 @@
# ----------------
# Bits[31:28] : 0x1
# Bits[27:24] : CALL 1=Store next IP address
# Bits[22:20] : Jump Source:
# 0x0=Immediate[12:0]
# 0x1={immediate[4:0]&pfq_top_byte}
# 0x2={immediate[4:0]&pfq_top_byte[7:6]&pfq_top_byte[2:0]&000}
# 0x3=Return to CALL stored IP address
# 0x4={immediate[8:0], eu_biu_dataout[3:0] , 1'b0 } // For register fetch
# 0x5={immediate[7:0], eu_biu_dataout[3:0] , 2'b00 } // For register writeback
# 0x6={eu_opcode_immediate[12:3], eu_biu_dataout[5:3]} // For opcode group decoding
# Bits[22:20] : Jump Source:
# 0x0=Immediate[12:0]
# 0x1={immediate[4:0]&pfq_top_byte}
# 0x2={immediate[4:0]&pfq_top_byte[7:6]&pfq_top_byte[2:0]&000}
# 0x3=Return to CALL stored IP address
# 0x4={immediate[8:0], eu_biu_dataout[3:0] , 1'b0 } // For register fetch
# 0x5={immediate[7:0], eu_biu_dataout[3:0] , 2'b00 } // For register writeback
# 0x6={eu_opcode_immediate[12:3], eu_biu_dataout[5:3]} // For opcode group decoding
#
# Bits[19:16] : Jump Condition:
# 0x0=Unconditional
# 0x1=Last_ALU_Result!=0
# 0x2=Last_ALU_Result==0
# Bits[19:16] : Jump Condition:
# 0x0=Unconditional
# 0x1=Last_ALU_Result!=0
# 0x2=Last_ALU_Result==0
# Bits[12:0] : Immediate[12:0]
#
# 0x2 - ADD
@@ -141,14 +173,14 @@
# (eu_biu_req_code == h14 ===> Memory Word Write - To Stack Segment
# (eu_biu_req_code == h16 ===> Interrupt ACK Cycle
# (eu_biu_req_code == h18 ===> HALT State
# (eu_biu_req_code == h19 ===> Jump Instruction
# (eu_biu_req_code == h19 ===> Jump Instruction
# (eu_biu_req_code == h1A ===> IO Word Read
# (eu_biu_req_code == h1C ===> IO Word Write
# (eu_biu_req_code == h1C ===> IO Word Write
# RESET State
#
#
#
#
#
#
#
# Stop CPU
p 00 00000 00010 0001

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
//
// File Name : mcl86_eu_core.v
// Used on :
// Author : MicroCore Labs
// Author : Ted Fried, MicroCore Labs
// Creation : 10/8/2015
// Code Type : Synthesizable
//
@@ -21,46 +21,68 @@
//
//
//------------------------------------------------------------------------
//
// Copyright (c) 2020 Ted Fried
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//------------------------------------------------------------------------
module mcl86_eu_core
(
input CORE_CLK_INT, // Core Clock
input RESET_INT, // Pipelined 8088 RESET pin
input TEST_N_INT, // Pipelined 8088 TEST_n pin
input CORE_CLK_INT, // Core Clock
input RESET_INT, // Pipelined 8088 RESET pin
input TEST_N_INT, // Pipelined 8088 TEST_n pin
output [15:0] EU_BIU_COMMAND, // EU to BIU Signals
output [15:0] EU_BIU_DATAOUT,
output [15:0] EU_REGISTER_R3,
output EU_PREFIX_LOCK,
output EU_FLAG_I,
input BIU_DONE, // BIU to EU Signals
input BIU_CLK_COUNTER_ZERO,
input BIU_NMI_CAUGHT,
output BIU_NMI_DEBOUNCE,
input BIU_INTR,
output [15:0] EU_BIU_COMMAND, // EU to BIU Signals
output [15:0] EU_BIU_DATAOUT,
output [15:0] EU_REGISTER_R3,
output EU_PREFIX_LOCK,
output EU_FLAG_I,
input BIU_DONE, // BIU to EU Signals
input BIU_CLK_COUNTER_ZERO,
input BIU_NMI_CAUGHT,
output BIU_NMI_DEBOUNCE,
input BIU_INTR,
input [7:0] PFQ_TOP_BYTE,
input PFQ_EMPTY,
input[15:0] PFQ_ADDR_OUT,
input [7:0] PFQ_TOP_BYTE,
input PFQ_EMPTY,
input[15:0] PFQ_ADDR_OUT,
input [15:0] BIU_REGISTER_ES,
input [15:0] BIU_REGISTER_SS,
input [15:0] BIU_REGISTER_CS,
input [15:0] BIU_REGISTER_DS,
input [15:0] BIU_REGISTER_RM,
input [15:0] BIU_REGISTER_REG,
input [15:0] BIU_RETURN_DATA
input [15:0] BIU_REGISTER_ES,
input [15:0] BIU_REGISTER_SS,
input [15:0] BIU_REGISTER_CS,
input [15:0] BIU_REGISTER_DS,
input [15:0] BIU_REGISTER_RM,
input [15:0] BIU_REGISTER_REG,
input [15:0] BIU_RETURN_DATA
);
//------------------------------------------------------------------------
// Internal Signals
@@ -140,13 +162,13 @@ wire [31:0] eu_rom_data;
//
// EU Microcode RAM. 4Kx32 DPRAM
//
//------------------------------------------------------------------------
//------------------------------------------------------------------------
eu_rom EU_4Kx32 (
eu_rom EU_4Kx32 (
.clka (CORE_CLK_INT),
.addra (eu_rom_address[11:0]),
.douta (eu_rom_data)
.clka (CORE_CLK_INT),
.addra (eu_rom_address[11:0]),
.douta (eu_rom_data)
);
@@ -158,23 +180,23 @@ eu_rom EU_4Kx32 (
//
//------------------------------------------------------------------------
assign EU_BIU_COMMAND = eu_biu_command;
assign EU_BIU_DATAOUT = eu_biu_dataout;
assign EU_REGISTER_R3 = eu_register_r3;
assign EU_FLAG_I = intr_enable_delayed;
assign EU_PREFIX_LOCK = eu_prefix_lock;
assign EU_BIU_COMMAND = eu_biu_command;
assign EU_BIU_DATAOUT = eu_biu_dataout;
assign EU_REGISTER_R3 = eu_register_r3;
assign EU_FLAG_I = intr_enable_delayed;
assign EU_PREFIX_LOCK = eu_prefix_lock;
// EU ROM opcode decoder
assign eu_opcode_type = eu_rom_data[30:28];
assign eu_opcode_dst_sel = eu_rom_data[27:24];
assign eu_opcode_op0_sel = eu_rom_data[23:20];
assign eu_opcode_op1_sel = eu_rom_data[19:16];
assign eu_opcode_type = eu_rom_data[30:28];
assign eu_opcode_dst_sel = eu_rom_data[27:24];
assign eu_opcode_op0_sel = eu_rom_data[23:20];
assign eu_opcode_op1_sel = eu_rom_data[19:16];
assign eu_opcode_immediate = eu_rom_data[15:0];
assign eu_opcode_jump_call = eu_rom_data[24];
assign eu_opcode_jump_src = eu_rom_data[22:20];
assign eu_opcode_jump_cond = eu_rom_data[19:16];
assign eu_opcode_jump_call = eu_rom_data[24];
assign eu_opcode_jump_src = eu_rom_data[22:20];
assign eu_opcode_jump_cond = eu_rom_data[19:16];
@@ -195,7 +217,7 @@ assign eu_operand0 = (eu_opcode_op0_sel==4'h0) ? eu_register_ax :
(eu_opcode_op0_sel==4'hE) ? system_signals :
16'h0 ;
assign eu_operand1 = (eu_opcode_op1_sel==4'h0) ? BIU_REGISTER_ES :
(eu_opcode_op1_sel==4'h1) ? BIU_REGISTER_SS :
(eu_opcode_op1_sel==4'h2) ? BIU_REGISTER_CS :
@@ -219,42 +241,42 @@ assign eu_operand1 = (eu_opcode_op1_sel==4'h0) ? BIU_REGISTER_ES :
assign eu_jump_boolean = (eu_opcode_jump_cond==4'h0) ? 1'b1 : // unconditional jump
(eu_opcode_jump_cond==4'h1 && eu_alu_last_result!=16'h0) ? 1'b1 :
(eu_opcode_jump_cond==4'h2 && eu_alu_last_result==16'h0) ? 1'b1 :
1'b0 ;
1'b0 ;
// Consolidated system signals
assign system_signals[13] = eu_add_carry8;
assign system_signals[12] = BIU_CLK_COUNTER_ZERO;
assign system_signals[11] = eu_add_overflow16;
assign system_signals[9] = eu_add_overflow8;
assign system_signals[8] = eu_tr_latched;
assign system_signals[7] = ~PFQ_EMPTY;
assign system_signals[6] = biu_done_caught;
assign system_signals[5] = TEST_N_INT;
assign system_signals[4] = eu_add_aux_carry;
assign system_signals[3] = BIU_NMI_CAUGHT;
assign system_signals[2] = eu_parity;
assign system_signals[1] = intr_asserted;
assign system_signals[0] = eu_add_carry;
assign system_signals[13] = eu_add_carry8;
assign system_signals[12] = BIU_CLK_COUNTER_ZERO;
assign system_signals[11] = eu_add_overflow16;
assign system_signals[9] = eu_add_overflow8;
assign system_signals[8] = eu_tr_latched;
assign system_signals[7] = ~PFQ_EMPTY;
assign system_signals[6] = biu_done_caught;
assign system_signals[5] = TEST_N_INT;
assign system_signals[4] = eu_add_aux_carry;
assign system_signals[3] = BIU_NMI_CAUGHT;
assign system_signals[2] = eu_parity;
assign system_signals[1] = intr_asserted;
assign system_signals[0] = eu_add_carry;
assign eu_prefix_repnz = eu_flags[15];
assign eu_prefix_rep = eu_flags[14];
assign eu_prefix_lock = eu_flags[13];
assign BIU_NMI_DEBOUNCE = eu_flags[12];
assign eu_flag_o = eu_flags[11];
assign eu_flag_d = eu_flags[10];
assign eu_flag_i = eu_flags[9];
assign eu_flag_t = eu_flags[8];
assign eu_flag_s = eu_flags[7];
assign eu_flag_z = eu_flags[6];
assign eu_tf_debounce = eu_flags[5];
assign eu_flag_a = eu_flags[4];
assign eu_nmi_pending = eu_flags[3];
assign eu_flag_p = eu_flags[2];
assign eu_flag_temp = eu_flags[1];
assign eu_flag_c = eu_flags[0];
assign eu_prefix_repnz = eu_flags[15];
assign eu_prefix_rep = eu_flags[14];
assign eu_prefix_lock = eu_flags[13];
assign BIU_NMI_DEBOUNCE = eu_flags[12];
assign eu_flag_o = eu_flags[11];
assign eu_flag_d = eu_flags[10];
assign eu_flag_i = eu_flags[9];
assign eu_flag_t = eu_flags[8];
assign eu_flag_s = eu_flags[7];
assign eu_flag_z = eu_flags[6];
assign eu_tf_debounce = eu_flags[5];
assign eu_flag_a = eu_flags[4];
assign eu_nmi_pending = eu_flags[3];
assign eu_flag_p = eu_flags[2];
assign eu_flag_temp = eu_flags[1];
assign eu_flag_c = eu_flags[0];
@@ -262,12 +284,12 @@ assign eu_flag_c = eu_flags[0];
// ------------------------------------------
// eu_alu0 = NOP
// eu_alu1 = JUMP
assign eu_alu2 = adder_out; // ADD
assign eu_alu3 = { eu_operand0[7:0] , eu_operand0[15:8] }; // BYTESWAP
assign eu_alu4 = eu_operand0 & eu_operand1; // AND
assign eu_alu5 = eu_operand0 | eu_operand1; // OR
assign eu_alu6 = eu_operand0 ^ eu_operand1; // XOR
assign eu_alu7 = { 1'b0 , eu_operand0[15:1] }; // SHR
assign eu_alu2 = adder_out; // ADD
assign eu_alu3 = { eu_operand0[7:0] , eu_operand0[15:8] }; // BYTESWAP
assign eu_alu4 = eu_operand0 & eu_operand1; // AND
assign eu_alu5 = eu_operand0 | eu_operand1; // OR
assign eu_alu6 = eu_operand0 ^ eu_operand1; // XOR
assign eu_alu7 = { 1'b0 , eu_operand0[15:1] }; // SHR
@@ -281,7 +303,7 @@ assign eu_alu_out = (eu_opcode_type==3'h2) ? eu_alu2 :
(eu_opcode_type==3'h7) ? eu_alu7 :
20'hEEEEE;
@@ -291,8 +313,8 @@ genvar i;
generate
for (i=0; i < 16; i=i+1)
begin : GEN_ADDER
assign adder_out[i] = eu_operand0[i] ^ eu_operand1[i] ^ carry[i];
assign carry[i+1] = (eu_operand0[i] & eu_operand1[i]) | (eu_operand0[i] & carry[i]) | (eu_operand1[i] & carry[i]);
assign adder_out[i] = eu_operand0[i] ^ eu_operand1[i] ^ carry[i];
assign carry[i+1] = (eu_operand0[i] & eu_operand1[i]) | (eu_operand0[i] & carry[i]) | (eu_operand1[i] & carry[i]);
end
endgenerate
@@ -304,9 +326,9 @@ assign eu_biu_req = eu_biu_command[9];
assign intr_asserted = BIU_INTR & intr_enable_delayed;
assign new_instruction = (eu_rom_address[12:8]==5'h01) ? 1'b1 : 1'b0;
assign new_instruction = (eu_rom_address[12:8]==5'h01) ? 1'b1 : 1'b0;
//------------------------------------------------------------------------------------------
//
// EU Microsequencer
@@ -348,117 +370,117 @@ begin : EU_MICROSEQUENCER
eu_stall_pipeline <= 'h0;
eu_rom_address <= 13'h0020;
eu_calling_address <= 'h0;
intr_enable_delayed <= 1'b0;
intr_enable_delayed <= 1'b0;
end
else
begin
// Delay the INTR enable flag until after the next instruction begins.
// No delay when it is disabled.
if (eu_flag_i==1'b0)
begin
intr_enable_delayed <= 1'b0;
end
// No delay when it is disabled.
if (eu_flag_i==1'b0)
begin
intr_enable_delayed <= 1'b0;
end
else
if (new_instruction==1'b1)
begin
intr_enable_delayed <= eu_flag_i;
end
if (new_instruction==1'b1)
begin
intr_enable_delayed <= eu_flag_i;
end
// Latch the TF flag on its rising edge.
eu_flag_t_d <= eu_flag_t;
if (eu_flag_t_d==1'b0 && eu_flag_t==1'b1)
begin
eu_tr_latched <= 1'b1;
eu_flag_t_d <= eu_flag_t;
if (eu_flag_t_d==1'b0 && eu_flag_t==1'b1)
begin
eu_tr_latched <= 1'b1;
end
else if (eu_tf_debounce==1'b1)
begin
eu_tr_latched <= 1'b0;
else if (eu_tf_debounce==1'b1)
begin
eu_tr_latched <= 1'b0;
end
// Latch the done bit from the biu.
// Debounce it when the request is released.
// Debounce it when the request is released.
biu_done_d1 <= BIU_DONE;
biu_done_d2 <= biu_done_d1;
eu_biu_req_d1 <= eu_biu_req;
if (biu_done_d2==1'b0 && biu_done_d1==1'b1)
biu_done_caught <= 1'b1;
else if (eu_biu_req_d1==1'b1 && eu_biu_req==1'b0)
biu_done_caught <= 1'b0;
biu_done_d2 <= biu_done_d1;
eu_biu_req_d1 <= eu_biu_req;
if (biu_done_d2==1'b0 && biu_done_d1==1'b1)
biu_done_caught <= 1'b1;
else if (eu_biu_req_d1==1'b1 && eu_biu_req==1'b0)
biu_done_caught <= 1'b0;
// Generate and store flags for addition
if (eu_stall_pipeline==1'b0 && eu_opcode_type==3'h2)
begin
eu_add_carry <= carry[16];
eu_add_carry8 <= carry[8];
eu_add_aux_carry <= carry[4];
eu_add_overflow16 <= carry[16] ^ carry[15];
eu_add_overflow8 <= carry[8] ^ carry[7];
// Generate and store flags for addition
if (eu_stall_pipeline==1'b0 && eu_opcode_type==3'h2)
begin
eu_add_carry <= carry[16];
eu_add_carry8 <= carry[8];
eu_add_aux_carry <= carry[4];
eu_add_overflow16 <= carry[16] ^ carry[15];
eu_add_overflow8 <= carry[8] ^ carry[7];
end
// Register writeback
// Register writeback
if (eu_stall_pipeline==1'b0 && eu_opcode_type!=3'h0 && eu_opcode_type!=3'h1)
begin
eu_alu_last_result <= eu_alu_out[15:0];
case (eu_opcode_dst_sel) // synthesis parallel_case
4'h0 : eu_register_ax <= eu_alu_out[15:0];
4'h1 : eu_register_bx <= eu_alu_out[15:0];
4'h2 : eu_register_cx <= eu_alu_out[15:0];
4'h3 : eu_register_dx <= eu_alu_out[15:0];
4'h4 : eu_register_sp <= eu_alu_out[15:0];
4'h5 : eu_register_bp <= eu_alu_out[15:0];
4'h6 : eu_register_si <= eu_alu_out[15:0];
4'h7 : eu_register_di <= eu_alu_out[15:0];
4'h8 : eu_flags <= eu_alu_out[15:0];
4'h9 : eu_register_r0 <= eu_alu_out[15:0];
4'hA : eu_register_r1 <= eu_alu_out[15:0];
4'hB : eu_register_r2 <= eu_alu_out[15:0];
4'hC : eu_register_r3 <= eu_alu_out[15:0];
4'hD : eu_biu_command <= eu_alu_out[15:0];
//4'hE : ;
4'hF : eu_biu_dataout <= eu_alu_out[15:0];
default : ;
endcase
begin
eu_alu_last_result <= eu_alu_out[15:0];
case (eu_opcode_dst_sel) // synthesis parallel_case
4'h0 : eu_register_ax <= eu_alu_out[15:0];
4'h1 : eu_register_bx <= eu_alu_out[15:0];
4'h2 : eu_register_cx <= eu_alu_out[15:0];
4'h3 : eu_register_dx <= eu_alu_out[15:0];
4'h4 : eu_register_sp <= eu_alu_out[15:0];
4'h5 : eu_register_bp <= eu_alu_out[15:0];
4'h6 : eu_register_si <= eu_alu_out[15:0];
4'h7 : eu_register_di <= eu_alu_out[15:0];
4'h8 : eu_flags <= eu_alu_out[15:0];
4'h9 : eu_register_r0 <= eu_alu_out[15:0];
4'hA : eu_register_r1 <= eu_alu_out[15:0];
4'hB : eu_register_r2 <= eu_alu_out[15:0];
4'hC : eu_register_r3 <= eu_alu_out[15:0];
4'hD : eu_biu_command <= eu_alu_out[15:0];
//4'hE : ;
4'hF : eu_biu_dataout <= eu_alu_out[15:0];
default : ;
endcase
end
// JUMP Opcode
if (eu_stall_pipeline==1'b0 && eu_opcode_type==3'h1 && eu_jump_boolean==1'b1)
begin
eu_stall_pipeline <= 1'b1;
// For subroutine CALLs, store next opcode address
if (eu_opcode_jump_call==1'b1)
begin
eu_calling_address[51:0] <= {eu_calling_address[38:0] , eu_rom_address[12:0] }; // 4 deep calling addresses
end
// JUMP Opcode
if (eu_stall_pipeline==1'b0 && eu_opcode_type==3'h1 && eu_jump_boolean==1'b1)
begin
eu_stall_pipeline <= 1'b1;
// For subroutine CALLs, store next opcode address
if (eu_opcode_jump_call==1'b1)
begin
eu_calling_address[51:0] <= {eu_calling_address[38:0] , eu_rom_address[12:0] }; // 4 deep calling addresses
end
case (eu_opcode_jump_src) // synthesis parallel_case
3'h0 : eu_rom_address <= eu_opcode_immediate[12:0];
3'h1 : eu_rom_address <= { 4'b0 , 1'b1 , PFQ_TOP_BYTE }; // If only used for primary opcode jump, maybe make fixed prepend rather than immediate value prepend?
3'h2 : eu_rom_address <= { eu_opcode_immediate[4:0], PFQ_TOP_BYTE[7:6] , PFQ_TOP_BYTE[2:0] , 3'b000 }; // Rearranged mod_reg_rm byte - imm,MOD,RM,000
3'h3 : begin
eu_rom_address <= eu_calling_address[12:0];
eu_calling_address[38:0] <= eu_calling_address[51:13];
end
3'h4 : eu_rom_address <= { eu_opcode_immediate[7:0], eu_biu_dataout[3:0] , 1'b0 }; // Jump table for EA register fetch decoding. Jump Addresses decoded from biu_dataout.
3'h5 : eu_rom_address <= { eu_opcode_immediate[6:0], eu_biu_dataout[3:0] , 2'b00 }; // Jump table for EA register writeback decoding. Jump Addresses decoded from biu_dataout.
3'h6 : eu_rom_address <= { eu_opcode_immediate[12:3], eu_biu_dataout[5:3] }; // Jump table for instructions that share same opcode and decode using the REG field.
default : ;
endcase
end
case (eu_opcode_jump_src) // synthesis parallel_case
3'h0 : eu_rom_address <= eu_opcode_immediate[12:0];
3'h1 : eu_rom_address <= { 4'b0 , 1'b1 , PFQ_TOP_BYTE }; // If only used for primary opcode jump, maybe make fixed prepend rather than immediate value prepend?
3'h2 : eu_rom_address <= { eu_opcode_immediate[4:0], PFQ_TOP_BYTE[7:6] , PFQ_TOP_BYTE[2:0] , 3'b000 }; // Rearranged mod_reg_rm byte - imm,MOD,RM,000
3'h3 : begin
eu_rom_address <= eu_calling_address[12:0];
eu_calling_address[38:0] <= eu_calling_address[51:13];
end
3'h4 : eu_rom_address <= { eu_opcode_immediate[7:0], eu_biu_dataout[3:0] , 1'b0 }; // Jump table for EA register fetch decoding. Jump Addresses decoded from biu_dataout.
3'h5 : eu_rom_address <= { eu_opcode_immediate[6:0], eu_biu_dataout[3:0] , 2'b00 }; // Jump table for EA register writeback decoding. Jump Addresses decoded from biu_dataout.
3'h6 : eu_rom_address <= { eu_opcode_immediate[12:3], eu_biu_dataout[5:3] }; // Jump table for instructions that share same opcode and decode using the REG field.
default : ;
endcase
end
else
begin
eu_stall_pipeline <= 1'b0; // Debounce the pipeline stall
eu_rom_address <= eu_rom_address + 1'b1;
eu_stall_pipeline <= 1'b0; // Debounce the pipeline stall
eu_rom_address <= eu_rom_address + 1'b1;
end
end