1
0
mirror of synced 2026-01-22 10:41:08 +00:00
2020-11-11 22:45:55 -08:00

924 lines
31 KiB
Verilog

//
//
// File Name : biu_min.v
// Used on : MCL86jr Board
// Author : Ted Fried, MicroCore Labs
// Creation : 10/8/2015
// Code Type : Synthesizable
//
// Description:
// ============
//
// Bus Interface Unit of the i8088 processor - Minimum Mode
//
//------------------------------------------------------------------------
//
// Modification History:
// =====================
//
// Revision 1.0 10/8/15
// Initial revision
//
//
//------------------------------------------------------------------------
//
// Copyright (c) 2020 Ted Fried
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//------------------------------------------------------------------------
module biu_min
(
input CORE_CLK_INT, // Core Clock
input CLK, // 8088 Pins
input RESET_INT,
input READY_IN,
input NMI,
input INTR,
output reg INTA_n,
output reg ALE,
output reg RD_n,
output reg WR_n,
output SSO_n,
output reg IOM,
output reg DTR,
output reg DEN,
output reg AD_OE,
output reg [19:0] AD_OUT,
input [7:0] AD_IN,
input [15:0] EU_BIU_COMMAND, // EU to BIU Signals
input [15:0] EU_BIU_DATAOUT,
input [15:0] EU_REGISTER_R3,
input EU_PREFIX_LOCK,
output BIU_DONE, // BIU to EU Signals
output BIU_CLK_COUNTER_ZERO,
output [1:0] BIU_SEGMENT,
output BIU_NMI_CAUGHT,
input BIU_NMI_DEBOUNCE,
output reg BIU_INTR,
output [7:0] PFQ_TOP_BYTE,
output PFQ_EMPTY,
output[15:0] PFQ_ADDR_OUT,
output [15:0] BIU_REGISTER_ES,
output [15:0] BIU_REGISTER_SS,
output [15:0] BIU_REGISTER_CS,
output [15:0] BIU_REGISTER_DS,
output [15:0] BIU_REGISTER_RM,
output [15:0] BIU_REGISTER_REG,
output [15:0] BIU_RETURN_DATA,
output reg [18:0] SRAM_A,
output reg SRAM_D_OE,
output reg [7:0] SRAM_D_OUT,
input [7:0] SRAM_D_IN,
output reg SRAM_OE_n,
output reg SRAM_WE_n
);
//------------------------------------------------------------------------
// Internal Signals
reg biu_done_int;
reg byte_num;
reg clk_d1;
reg clk_d2;
reg clk_d3;
reg clk_d4;
reg eu_biu_req_caught;
reg eu_biu_req_d1;
reg eu_prefix_lock_d1;
reg eu_prefix_lock_d2;
reg intr_d1;
reg intr_d2;
reg intr_d3;
reg nmi_caught;
reg nmi_d1;
reg nmi_d2;
reg nmi_d3;
reg nmi_d4;
reg nmi_d5;
reg pfq_write;
reg ready_d1;
reg ready_d2;
reg ready_d3;
reg word_cycle;
reg inta_n_int;
reg ale_int;
reg rd_n_int;
reg wr_n_int;
reg iom_int;
reg dtr_int;
reg den_int;
reg sram_select;
wire eu_biu_req;
wire eu_prefix_seg;
wire pfq_full;
wire pfq_empty;
wire clk_rising_edge;
wire clk_falling_edge;
reg [7:0] ad_in_int;
reg [19:0] addr_out_temp;
reg [7:0] biu_state;
reg [15:0] biu_register_cs;
reg [15:0] biu_register_es;
reg [15:0] biu_register_ss;
reg [15:0] biu_register_ds;
reg [15:0] biu_register_rm;
reg [15:0] biu_register_reg;
reg [15:0] biu_register_cs_d1;
reg [15:0] biu_register_es_d1;
reg [15:0] biu_register_ss_d1;
reg [15:0] biu_register_ds_d1;
reg [15:0] biu_register_rm_d1;
reg [15:0] biu_register_reg_d1;
reg [15:0] biu_register_cs_d2;
reg [15:0] biu_register_es_d2;
reg [15:0] biu_register_ss_d2;
reg [15:0] biu_register_ds_d2;
reg [15:0] biu_register_rm_d2;
reg [15:0] biu_register_reg_d2;
reg [15:0] biu_return_data_int;
reg [15:0] biu_return_data_int_d1;
reg [15:0] biu_return_data_int_d2;
reg [12:0] clock_cycle_counter;
reg [15:0] eu_register_r3_d;
reg [7:0] latched_data_in;
reg [15:0] pfq_addr_out;
reg [7:0] pfq_entry0;
reg [7:0] pfq_entry1;
reg [7:0] pfq_entry2;
reg [7:0] pfq_entry3;
reg [15:0] pfq_addr_in;
reg [7:0] pfq_top_byte_int_d1;
reg [15:0] pfq_addr_out_d1;
reg [2:0] s_bits;
reg [25:0] nmi_counter;
reg [7:0] mcl6_feature;
wire [15:0] biu_muxed_segment;
wire [1:0] biu_segment;
wire [1:0] eu_biu_strobe;
wire [1:0] eu_biu_segment;
wire [4:0] eu_biu_req_code;
wire [1:0] eu_qs_out;
wire [1:0] eu_segment_override_value;
wire [7:0] pfq_top_byte_int;
//------------------------------------------------------------------------
//
// BIU Combinationals
//
//------------------------------------------------------------------------
// Outputs to the EU
//
assign BIU_DONE = biu_done_int;
assign PFQ_EMPTY = pfq_empty;
assign PFQ_ADDR_OUT = pfq_addr_out_d1;
assign BIU_SEGMENT = biu_segment;
assign BIU_REGISTER_ES = biu_register_es_d2;
assign BIU_REGISTER_SS = biu_register_ss_d2;
assign BIU_REGISTER_CS = biu_register_cs_d2;
assign BIU_REGISTER_DS = biu_register_ds_d2;
assign BIU_REGISTER_RM = biu_register_rm_d2;
assign BIU_REGISTER_REG = biu_register_reg_d2;
assign BIU_RETURN_DATA = biu_return_data_int_d2;
assign BIU_NMI_CAUGHT = nmi_caught;
// Input signals from the EU requesting BIU processing.
// eu_biu_strobe[1:0] are available for only one clock cycle and cause BIU to take immediate action.
// eu_biu_req stays asserted until the BIU is available to service the request.
//
assign eu_prefix_seg = EU_BIU_COMMAND[14];
assign eu_biu_strobe[1:0] = EU_BIU_COMMAND[13:12]; // 01=opcode fetch 10=clock load 11=load segment register(eu_biu_req_code has the regiter#)
assign eu_biu_segment[1:0] = EU_BIU_COMMAND[11:10];
assign eu_biu_req = EU_BIU_COMMAND[9];
assign eu_biu_req_code = EU_BIU_COMMAND[8:4];
assign eu_qs_out[1:0] = EU_BIU_COMMAND[3:2]; // Updated for every opcode fetch using biu_strobe and Jump request using eu_biu_rq
assign eu_segment_override_value[1:0] = EU_BIU_COMMAND[1:0];
// Select either the current EU Segment or the Segment Override value.
assign biu_segment = (eu_prefix_seg==1'b1) ? eu_segment_override_value : eu_biu_segment;
assign biu_muxed_segment = (biu_segment==2'b00) ? biu_register_es :
(biu_segment==2'b01) ? biu_register_ss :
(biu_segment==2'b10) ? biu_register_cs :
biu_register_ds ;
// Steer the Prefetch Queue to the EU
assign pfq_top_byte_int = (pfq_addr_out[1:0]==2'b00) ? pfq_entry0 :
(pfq_addr_out[1:0]==2'b01) ? pfq_entry1 :
(pfq_addr_out[1:0]==2'b10) ? pfq_entry2 :
pfq_entry3 ;
assign PFQ_TOP_BYTE = pfq_top_byte_int_d1;
// Generate the Prefetch Queue Flags
assign pfq_full = ( (pfq_addr_in[2]!=pfq_addr_out[2]) && (pfq_addr_in[1:0]==pfq_addr_out[1:0]) ) ? 1'b1 : 1'b0;
assign pfq_empty = ( (pfq_addr_in[2]==pfq_addr_out[2]) && (pfq_addr_in[1:0]==pfq_addr_out[1:0]) ) ? 1'b1 : 1'b0;
// Instruction cycle accuracy counter
assign BIU_CLK_COUNTER_ZERO = (clock_cycle_counter==13'h0000 || mcl6_feature[0]==1'b1) ? 1'b1 : 1'b0;
assign SSO_n = s_bits[0];
assign clk_rising_edge = (clk_d4==1'b0 && clk_d3==1'b0 && clk_d2==1'b1) ? 1'b1 : 1'b0;
assign clk_falling_edge = (clk_d4==1'b1 && clk_d3==1'b1 && clk_d2==1'b0) ? 1'b1 : 1'b0;
//------------------------------------------------------------------------
//
// BIU State Machine
//
//------------------------------------------------------------------------
//
always @(posedge CORE_CLK_INT)
begin : BIU_STATE_MACHINE
if (RESET_INT==1'b1)
begin
clk_d1 <= 'h0;
clk_d2 <= 'h0;
clk_d3 <= 'h0;
clk_d4 <= 'h0;
nmi_d1 <= 'h0;
nmi_d2 <= 'h0;
nmi_d3 <= 'h0;
nmi_d4 <= 'h0;
nmi_d5 <= 'h0;
nmi_caught <= 'h0;
eu_register_r3_d <= 'h0;
eu_biu_req_caught <= 'h0;
biu_register_cs <= 16'hFFFF;
biu_register_es <= 'h0;
biu_register_ss <= 'h0;
biu_register_ds <= 'h0;
biu_register_rm <= 'h0;
biu_register_reg <= 'h0;
clock_cycle_counter <= 'h0;
pfq_addr_out <= 'h0;
pfq_entry0 <= 'h0;
pfq_entry1 <= 'h0;
pfq_entry2 <= 'h0;
pfq_entry3 <= 'h0;
biu_state <= 8'hD0;
pfq_write <= 'h0;
pfq_addr_in <= 'h0;
biu_return_data_int <= 'h0;
biu_done_int <= 'h0;
ready_d1 <= 'h0;
ready_d2 <= 'h0;
ready_d3 <= 'h0;
eu_biu_req_d1 <= 'h0;
latched_data_in <= 'h0;
addr_out_temp <= 'h0;
s_bits <= 3'b111;
AD_OUT <= 'h0;
word_cycle <= 1'b0;
byte_num <= 1'b0;
ad_in_int <= 'h0;
BIU_INTR <= 'h0;
eu_prefix_lock_d1 <= 'h0;
eu_prefix_lock_d2 <= 'h0;
intr_d1 <= 'h0;
intr_d2 <= 'h0;
intr_d3 <= 'h0;
AD_OE <= 'h0;
RD_n <= 1'b1;
WR_n <= 1'b1;
IOM <= 'h0;
DTR <= 'h0;
DEN <= 1'b1;
INTA_n <= 1'b1;
inta_n_int <= 1'b1;
ale_int <= 1'b0;
rd_n_int <= 1'b1;
wr_n_int <= 1'b1;
iom_int <= 1'b0;
dtr_int <= 1'b0;
den_int <= 1'b1;
SRAM_OE_n <= 1'b1;
SRAM_WE_n <= 1'b1;
SRAM_D_OE <= 1'b0;
end
else
begin
// Register pipelining
clk_d1 <= CLK;
clk_d2 <= clk_d1;
clk_d3 <= clk_d2;
clk_d4 <= clk_d3;
ready_d1 <= READY_IN;
ready_d2 <= ready_d1;
ready_d3 <= ready_d2;
intr_d1 <= INTR;
intr_d2 <= intr_d1;
intr_d3 <= intr_d2;
// These signals may be pipelined from zero to two clocks.
// They are currently pipelined by two clocks.
biu_register_es_d1 <= biu_register_es;
biu_register_ss_d1 <= biu_register_ss;
biu_register_cs_d1 <= biu_register_cs;
biu_register_ds_d1 <= biu_register_ds;
biu_register_rm_d1 <= biu_register_rm;
biu_register_reg_d1 <= biu_register_reg;
biu_register_es_d2 <= biu_register_es_d1;
biu_register_ss_d2 <= biu_register_ss_d1;
biu_register_cs_d2 <= biu_register_cs_d1;
biu_register_ds_d2 <= biu_register_ds_d1;
biu_register_rm_d2 <= biu_register_rm_d1;
biu_register_reg_d2 <= biu_register_reg_d1;
// These signals may be pipelined from zero to one clock.
// They are currently pipelined by one clock.
pfq_top_byte_int_d1 <= pfq_top_byte_int;
pfq_addr_out_d1 <= pfq_addr_out;
// This signal may be pipelined any number of clocks as
// long as is stable before BIU_DONE is asserted.
biu_return_data_int_d1 <= biu_return_data_int;
biu_return_data_int_d2 <= biu_return_data_int_d1;
nmi_d1 <= NMI;
nmi_d2 <= nmi_d1;
nmi_d3 <= nmi_d2;
nmi_d4 <= nmi_d3;
nmi_d5 <= nmi_d4;
// If NMI hardware signal is high for 400ms, then we missed the rising edge.
// The solution is to add a '0' in the input pipeline so that a rising edge is seen.
//
if (nmi_d5==1'b1) nmi_counter <= nmi_counter + 1'b1;
else nmi_counter <= 'h0;
if (nmi_counter==26'h2625a00)
begin
nmi_d2 <= 1'b0;
nmi_counter <= 'h0;
end
// NMI is caught on it's rising edge
if (BIU_NMI_DEBOUNCE==1'b1)
begin
nmi_caught <= 1'b0;
end
else if (nmi_d5==1'b0 && nmi_d4==1'b1)
begin
nmi_caught <= 1'b1;
end
// INTR sampled on the rising edge of the CLK
if (clk_d4==1'b0 && clk_d3==1'b0 && clk_d2==1'b1)
begin
BIU_INTR <= intr_d3;
end
eu_prefix_lock_d1 <= EU_PREFIX_LOCK;
eu_prefix_lock_d2 <= eu_prefix_lock_d1;
// Register pipelining in and out of the BIU.
eu_register_r3_d <= EU_REGISTER_R3;
ad_in_int <= AD_IN;
INTA_n <= inta_n_int;
ALE <= ale_int;
RD_n <= rd_n_int;
WR_n <= wr_n_int;
IOM <= iom_int;
DTR <= dtr_int;
DEN <= den_int;
// Capture a bus request from the EU
eu_biu_req_d1 <= eu_biu_req;
if (eu_biu_req_d1==1'b0 && eu_biu_req==1'b1)
begin
eu_biu_req_caught <= 1'b1;
end
else if (biu_done_int==1'b1)
begin
eu_biu_req_caught <= 1'b0;
end
// Strobe from EU to update the segment and addressing registers
if (eu_biu_strobe==2'b11)
begin
case (eu_biu_req_code[2:0]) // synthesis parallel_case
3'h0 : biu_register_es <= EU_BIU_DATAOUT[15:0];
3'h1 : biu_register_ss <= EU_BIU_DATAOUT[15:0];
3'h2 : biu_register_cs <= EU_BIU_DATAOUT[15:0];
3'h3 : biu_register_ds <= EU_BIU_DATAOUT[15:0];
3'h4 : biu_register_rm <= EU_BIU_DATAOUT[15:0];
3'h5 : biu_register_reg <= EU_BIU_DATAOUT[15:0];
default : ;
endcase
end
// Strobe from EU to set the 8088 clock cycle counter
if (eu_biu_strobe==2'b10)
begin
clock_cycle_counter <= EU_BIU_DATAOUT[12:0];
end
else if (clock_cycle_counter!=13'h0000)
begin
clock_cycle_counter <= clock_cycle_counter - 1;
end
// Prefetch Queue
// --------------
// Increment the output address of the queue upon EU fetch request strobe.
// Update/flush the Prefetch Queue when the EU asserts the Jump request.
// Increment the input address during prefetch queue fetches.
//---------------------------------------------------------------------------------
if (eu_biu_req_caught==1'b1 && eu_biu_req_code==5'h19)
begin
pfq_addr_out <= eu_register_r3_d; // Update the prefetch queue to the new address.
end
else if (eu_biu_strobe==2'b01 && pfq_empty==1'b0)
begin
pfq_addr_out <= pfq_addr_out + 1; // Increment the current IP - Instruction Pointer
end
if (eu_biu_req_caught==1'b1 && eu_biu_req_code==5'h19)
begin
pfq_addr_in <= eu_register_r3_d; // Update the prefetch queue to the new address.
end
else if (pfq_write==1'b1)
begin
pfq_addr_in <= pfq_addr_in + 1;
end
// Write to the selected prefetch queue entry.
if (pfq_write==1'b1)
begin
case (pfq_addr_in[1:0]) // synthesis parallel_case
2'b00 : pfq_entry0 <= latched_data_in[7:0];
2'b01 : pfq_entry1 <= latched_data_in[7:0];
2'b10 : pfq_entry2 <= latched_data_in[7:0];
2'b11 : pfq_entry3 <= latched_data_in[7:0];
default : ;
endcase
end
// 8088 BIU State Machine
// ----------------------
biu_state <= biu_state + 1'b1;
case (biu_state) // synthesis parallel_case
8'h00 : begin
// Debounce signals
pfq_write <= 1'b0;
byte_num <= 1'b0;
word_cycle <= 1'b0;
sram_select <= 1'b0;
if (eu_biu_req_caught==1'b1)
begin
case (eu_biu_req_code) // synthesis parallel_case
// Interrupt ACK Cycle
8'h16 : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
word_cycle <= 1'b1;
s_bits <= 3'b000;
biu_state <= 8'h01;
end
// IO Byte Read
8'h08 : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
s_bits <= 3'b001;
biu_state <= 8'h01;
end
// IO Word Read
8'h1A : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
word_cycle <= 1'b1;
s_bits <= 3'b001;
biu_state <= 8'h01;
end
// IO Byte Write
8'h0A : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
s_bits <= 3'b010;
biu_state <= 8'h01;
end
// IO Word Write
8'h1C : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
word_cycle <= 1'b1;
s_bits <= 3'b010;
biu_state <= 8'h01;
end
// Halt Request
8'h18 : begin
addr_out_temp <= { biu_register_cs[15:0] , 4'h0 } + pfq_addr_out[15:0] ;
s_bits <= 3'b011;
biu_state <= 8'h01;
end
// Memory Byte Read
8'h0C : begin
addr_out_temp <= { biu_muxed_segment[15:0] , 4'h0 } + eu_register_r3_d[15:0];
s_bits <= 3'b101;
biu_state <= 8'h01;
end
// Memory Word Read
8'h10 : begin
addr_out_temp <= { biu_muxed_segment[15:0] , 4'h0 } + eu_register_r3_d[15:0];
word_cycle <= 1'b1;
s_bits <= 3'b101;
biu_state <= 8'h01;
end
// Memory Word Read from Stack Segment
8'h11 : begin
addr_out_temp <= { biu_register_ss[15:0] , 4'h0 } + eu_register_r3_d[15:0];
word_cycle <= 1'b1;
s_bits <= 3'b101;
biu_state <= 8'h01;
end
// Memory Word Read from Segment 0x0000 - Used for interrupt vector fetches
8'h12 : begin
addr_out_temp <= { 4'h0 , eu_register_r3_d[15:0] };
word_cycle <= 1'b1;
s_bits <= 3'b101;
biu_state <= 8'h01;
end
// Memory Byte Write
8'h0E : begin
addr_out_temp <= { biu_muxed_segment[15:0] , 4'h0 } + eu_register_r3_d[15:0];
s_bits <= 3'b110;
biu_state <= 8'h01;
end
// Memory Word Write
8'h13 : begin
addr_out_temp <= { biu_muxed_segment[15:0] , 4'h0 } + eu_register_r3_d[15:0];
word_cycle <= 1'b1;
s_bits <= 3'b110;
biu_state <= 8'h01;
end
// Memory Word Write to Stack Segment
8'h14 : begin
addr_out_temp <= { biu_register_ss[15:0] , 4'h0 } + eu_register_r3_d[15:0];
word_cycle <= 1'b1;
s_bits <= 3'b110;
biu_state <= 8'h01;
end
// Jump Request
8'h19 : begin
biu_done_int <= 1'b1;
biu_state <= 8'h0B;
end
default : ;
endcase
end
else if (pfq_full==1'b0)
begin
addr_out_temp <= { biu_register_cs[15:0] , 4'h0 } + pfq_addr_in[15:0] ;
s_bits <= 3'b100;
biu_state <= 8'h01;
end
else
begin
biu_state <= 8'h00;
end
end
// Feature checks
8'h01 : begin
// Snoop memory writes to certain addresses within the PCjr's ROM
if (s_bits[2:0]==3'b110 && addr_out_temp==20'hFFFF0) mcl6_feature <= EU_BIU_DATAOUT[7:0];
SRAM_A[18:0] <= addr_out_temp[18:0];
if (s_bits[2]==1'b1 && addr_out_temp[19:16]>4'h1 && addr_out_temp[19:16]<4'hA)
begin
sram_select <= 1'b1;
// Fast SRAM controller
if (mcl6_feature[1]==1'b1)
begin
biu_state <= 8'h10;
if (s_bits[2:0]==3'b110) biu_done_int <= 1'b1; // Posted write, so send done back to EU
end
end
end
// 2 Wait for the next falling edge of CLK
8'h02 : begin
if (clk_falling_edge==1'b1)
begin
iom_int <= ~s_bits[2]; // Memory cycles
dtr_int <= s_bits[1]; // Read cycles
AD_OUT[19:0] <= addr_out_temp[19:0];
AD_OE <= 1'b1;
ale_int <= 1'b1;
end
else
begin
biu_state <= biu_state;
end
end
// 3 Wait for the next rising edge of CLK
8'h03 : begin
if (clk_rising_edge==1'b1)
begin
ale_int <= 1'b0;
if (s_bits[1:0]==2'b10) // Assert DEN_n early for write cycles
begin
den_int <= 1'b0;
end
end
else
begin
biu_state <= biu_state;
end
end
// 4 Wait for the next falling edge of CLK
8'h04 : begin
if (clk_falling_edge==1'b1)
begin
AD_OE <= s_bits[1]; // Turn off bus drivers for read and inta cycles
case (s_bits[2:0])
3'b000: inta_n_int <= 1'b0; // Interrupt Acknowledge
3'b001: rd_n_int <= 1'b0; // Read IO Port
3'b010: wr_n_int <= 1'b0; // Write IO Port
3'b100: rd_n_int <= 1'b0; // Code Access
3'b101: rd_n_int <= 1'b0; // Read Memory
3'b110: wr_n_int <= 1'b0; // Write Memory
default: ;
endcase
if (word_cycle==1'b1 && byte_num==1'b1)
begin
AD_OUT[7:0] <= EU_BIU_DATAOUT[15:8];
SRAM_D_OUT[7:0] <= EU_BIU_DATAOUT[15:8];
end
else
begin
AD_OUT[7:0] <= EU_BIU_DATAOUT[7:0];
SRAM_D_OUT[7:0] <= EU_BIU_DATAOUT[7:0];
end
end
else
begin
biu_state <= biu_state;
end
end
// 5 Wait for the next rising edge of CLK
8'h05 : begin
SRAM_OE_n <= rd_n_int;
if (sram_select==1'b1)
begin
SRAM_WE_n <= wr_n_int;
SRAM_D_OE <= ~wr_n_int;
end
if (clk_rising_edge==1'b1)
begin
den_int <= 1'b0; // Assert late DEN_n for read and inta cycles
end
else
begin
biu_state <= biu_state;
end
end
// 6 Wait for the next falling edge of CLK ** Nothing to do on this clock edge
// 7 Wait for the next rising edge of CLK
8'h07 : begin
if (clk_rising_edge==1'b1 && ready_d1==1'b1)
begin
ale_int <= 1'b0;
end
else
begin
biu_state <= biu_state;
end
end
// 8 Wait for the next falling edge of CLK
8'h08 : begin
if (clk_falling_edge==1'b1)
begin
if (sram_select==1'b1) latched_data_in <= SRAM_D_IN; else latched_data_in <= ad_in_int;
wr_n_int <= 1'b1;
rd_n_int <= 1'b1;
SRAM_OE_n <= 1'b1;
SRAM_WE_n <= 1'b1;
inta_n_int <= 1'b1;
if (s_bits[2:0]==3'b100) pfq_write <= 1'b1; // If a code fetch, then strobe the prefetch queue
if (s_bits[1:0]!=2'b10) den_int <= 1'b1;
end
else
begin
biu_state <= biu_state;
end
end
// 8 Steer the data
8'h09 : begin
SRAM_D_OE <= 1'b0;
pfq_write <= 1'b0; // Debounce the prefetch queue write pulse and increment the prefetch queue address.
if (s_bits!=3'b000 && (word_cycle==1'b1 && byte_num==1'b1))
begin
biu_return_data_int[15:8] <= latched_data_in[7:0];
end
else
begin
biu_return_data_int[15:0] <= { 8'h00 , latched_data_in[7:0] };
end
end
// 9 Wait for the next rising edge of CLK to complete the bus cycle
8'h0A : begin
if (clk_rising_edge==1'b1)
begin
den_int <= 1'b1;
dtr_int <= 1'b1;
addr_out_temp[15:0] <= addr_out_temp[15:0] + 1;
if (word_cycle==1'b1 && byte_num==1'b0)
begin
byte_num <= 1'b1;
biu_state <= 8'h01;
end
else
begin
if (s_bits!=3'b100)
begin
biu_done_int <= 1'b1;
end
end
end
else
begin
biu_state <= biu_state;
end
end
8'h0B : begin
biu_done_int <= 1'b0;
pfq_write <= 1'b0;
SRAM_D_OE <= 1'b0;
biu_state <= 8'h00;
end
// Fast SRAM controller
8'h10 : begin
biu_done_int <= 1'b0;
SRAM_D_OUT[7:0] <= EU_BIU_DATAOUT[7:0];
if (s_bits[2:1]==2'b10) SRAM_OE_n <= 1'b0; else SRAM_WE_n <= 1'b0;
if (s_bits[2:1]==2'b11) SRAM_D_OE <= 1'b1;
end
8'h16 : begin
SRAM_A[15:0] <= addr_out_temp[15:0] + 1'b1;
SRAM_OE_n <= 1'b1;
SRAM_WE_n <= 1'b1;
biu_return_data_int[15:0] <= { 8'h00 , SRAM_D_IN[7:0] };
latched_data_in <= SRAM_D_IN;
if (word_cycle==1'b0)
begin
if (s_bits[2:0]==3'b100)
begin
pfq_write <= 1'b1;
end
else
begin
if (s_bits[2:0]!=3'b110) biu_done_int <= 1'b1;
end
biu_state <= 8'h0B;
end
end
8'h17 : begin
SRAM_D_OUT[7:0] <= EU_BIU_DATAOUT[15:8];
if (s_bits[2:1]==2'b10) SRAM_OE_n <= 1'b0; else SRAM_WE_n <= 1'b0;
if (s_bits[2:1]==2'b11) SRAM_D_OE <= 1'b1;
end
8'h1D : begin
SRAM_OE_n <= 1'b1;
SRAM_WE_n <= 1'b1;
biu_return_data_int[15:8] <= SRAM_D_IN[7:0];
if (s_bits[2:0]!=3'b110) biu_done_int <= 1'b1;
biu_state <= 8'h0B;
end
default : ;
endcase
end
end // BIU
endmodule // biu_min.v