1
0
mirror of https://github.com/PDP-10/its.git synced 2026-01-22 02:26:05 +00:00
PDP-10.its/src/rat/algsys.150

515 lines
16 KiB
Common Lisp
Executable File
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;; -*- Mode: Lisp; Package: Macsyma; -*-
;; (c) Copyright 1976, 1984 Massachusetts Institute of Technology
;; All Rights Reserved.
;; Enhancements (c) Copyright 1984 Symbolics Inc.
;; All Rights Reserved.
;; The data and information in the Enhancements are proprietary to, and
;; a valuable trade secret of, SYMBOLICS, INC., a Delaware corporation.
;; They are given in confidence by SYMBOLICS, pursuant to the license
;; agreement between Symbolics and their recipient, and may not be used,
;; reproduced, or copied, or distributed to any other party, in whole or
;; in part, without the prior written consent of SYMBOLICS except as
;; permitted by the license agreement.
(macsyma-module algsys)
(load-macsyma-macros ratmac)
(eval-when (eval compile)
#+PDP10
;; this file contains macysma variable binding calls which
;; have been observed to need unwind-protect even on the PDP10,
;; since the ERRLIST mechanism can't hack *catch and *throw.
;; In general unwind-protect is needed, but the bugs caused by not using
;; it are rare, and it is not deemed worth using UNWIND-PROTECT in
;; general.
(setq MBINDING-USAGE 'unwind-protect))
;This is the algsys package.
;It solves systems of polynomial equations by straight-forward
;resultant hackery. Other possible methods seem worse:
;the Buchberger-Spear canonical ideal basis algorithm is slow,
;and the "resolvent" method (see van der Waerden, section 79)
;blows up in time and space. The "resultant"
;method (see the following sections of van der Waerden and
;Macaulay's book - Algebraic Theory of Modular Systems) looks
;good, but it requires the evaluation of large determinants.
;Unless some hack (such as prs's for evaluating resultants of
;two polynomials) is developed for multi-polynomial resultants,
;this method will remain impractical.
;Some other possible ideas: Keeping the total number of equations constant,
;in an effort to reduce extraneous solutions, or Reducing to a linear
;equation before taking resultants.
(declare (special $algdelta $ratepsilon $algepsilon $keepfloat
varlist genvar *roots *failures $ratprint $numer $ratfac
$rnum $solvefactors $dispflag $breakup $rootsquad
*tvarxlist* errorsw $programmode *ivar* errset $polyfactor
bindlist loclist $float $infeval)
(*lexpr $ratsimp)
(genprefix alg))
(defmvar $%rnum_list '((mlist))
"Upon exit from ALGSYS this is bound to a list of the %RNUMS
which where introduced into the expression. Useful for mapping
over and using as an argument to SUBST.")
(defmvar $realonly nil "If t only real solutions are returned.")
(defmvar realonlyratnum nil
"A REALROOTS hack for RWG. Causes ALGSYS to retain rational numbers
returned by REALROOTS when REALONLY is TRUE."
in-core)
(defmvar $algexact nil "If t ALGSYS always calls SOLVE to try to find exact
solutions.")
(defmvar algnotexact nil
"A hack for RWG for univariate polys. Causes SOLVE not to get called
so that sqrts and cube roots will not be generated."
in-core)
(defmacro merrset (l)
`(let ((errset 'errbreak1) (unbind (cons bindlist loclist)) val)
(setq val (errset ,l nil))
(cond ((null val) (errlfun1 unbind)))
val))
;; Make sure that $SOLVE is in core. Only needed for small address
;; space systems.
#+PDP10
(find-function '$solve)
(defmfun $algsys (lhslist varxlist)
(setq $%rnum_list (list '(mlist)))
(cond ((not ($listp lhslist))
(merror "Wrong type arg to ALGSYS:~%~M" lhslist))
((not ($listp varxlist))
(merror "Wrong type arg to ALGSYS:~%~M" varxlist)))
((lambda (tlhslist *tvarxlist* solnlist $ratprint $ratepsilon
$keepfloat varlist genvar $ratfac $breakup
$solvefactors *roots *failures *ivar* $polyfactor
varxl $infeval $numer $float numerflg)
(dolist (var (cdr ($listofvars (list '(mlist simp) lhslist varxlist))))
(if (and (symbolp var) (not (constant var)))
(setq varxl (cons var varxl))))
(orderpointer varlist)
(setq tlhslist
(mapcar (function (lambda (q) (cadr (ratf (meqhk q)))))
(cdr lhslist)))
(setq *ivar* (caadr (ratf '$%I)))
(setq *tvarxlist*
(mapcar #'(lambda (q)
(cond ((mnump q)
(merror "Unacceptable variable to ALGSYS:~%~M"
q))
(t (caadr (ratf q)))))
(cdr varxlist)))
(putorder *tvarxlist*)
(mbinding (varxl varxl)
(setq solnlist
(mapcar #'(lambda (q)
(addmlist
(bbsorteqns
(addparam (roundroots1 q) varxlist))))
(algsys tlhslist))))
(remorder *tvarxlist*)
(setq solnlist (addmlist solnlist))
(if numerflg (let (($numer t) ($float t)) (ssimplifya solnlist))
solnlist))
nil nil nil nil 1.0e-7
nil (reverse (cdr varxlist)) nil nil nil
nil nil nil nil nil nil nil nil nil $numer))
(defun condensesolnl (tempsolnl)
(let (solnl)
(map #'(lambda (q) (or (subsetl (cdr q) (car q))
(setq solnl (cons (car q) solnl))))
(sort tempsolnl (function (lambda (a b) (> (length a)
(length b))))))
solnl))
(defun subsetl (l1 s2)
(or (equal s2 (list nil))
(do ((l l1 (cdr l)))
((null l) nil)
(cond ((m-subset (car l) s2) (return t))))))
(defun m-subset (s1 s2)
(do ((s s1 (cdr s)))
((null s) t)
(cond ((not (memalike (car s) s2)) (return nil)))))
(defun algsys (tlhslist)
(condensesolnl (apply (function append)
(mapcar (function algsys0)
(distrep (mapcar (function lofactors)
tlhslist))))))
(defun algsys0 (tlhslist)
(cond ((null tlhslist) (list nil))
((equal tlhslist (list nil)) nil)
(t (algsys1 tlhslist))))
(defun algsys1 (tlhslist)
((lambda (resulteq vartorid nlhslist)
(setq vartorid (cdr resulteq)
resulteq (car resulteq)
nlhslist (mapcar (function (lambda (q)
(cond ((among vartorid q)
(presultant q resulteq
vartorid))
(t q))))
(delet resulteq tlhslist)))
(bakalevel (algsys nlhslist) tlhslist vartorid))
(findleastvar tlhslist) nil nil))
(defun addmlist (l) (cons '(MLIST) l))
(defmacro what-the-$ev (&rest l)
;; macro for calling $EV when you are not really
;; sure why you are calling it, but you want the
;; features of multiple evaluations and unpredictabiltiy
;; anyway.
`(meval (list '($ev) ,@l)))
(defun rootsp (asolnset eqn) ;eqn is ((MLIST) eq deriv)
(let (rr ($keepfloat t) ($numer t) ($float t))
(setq rr (what-the-$EV eqn asolnset)) ; ratsimp?
(cond ((and (complexnump (cadr rr)) (complexnump (caddr rr)))
(lessp (cabs (cadr rr))
(times $algdelta (max 1 (cabs (caddr rr))))))
(t nil))))
(defun round1 (a)
(cond ((floatp a)
(setq a (rationalize a))
(fpcofrat1 (car a) (cdr a)))
(t a)))
(defun roundrhs (eqn)
(list (car eqn) (cadr eqn) (round1 (caddr eqn))))
(defun roundroots1 (lsoln) (mapcar (function roundrhs) lsoln))
(defun bbsorteqns (l) (sort (append l nil) 'ORDERLESSP))
(defun putorder (tempvarl)
(do ((n 1 (1+ n))
(tempvarl tempvarl (cdr tempvarl)))
((null tempvarl) nil)
(putprop (car tempvarl) n 'VARORDER)))
(defun remorder (gvarl)
(mapc (function (lambda (x) (remprop x 'VARORDER))) gvarl))
(defun orderlessp (eqn1 eqn2)
(< (get (caadr (ratf (cadr eqn1))) 'VARORDER)
(get (caadr (ratf (cadr eqn2))) 'VARORDER)))
(defun addparam (asolnsetl varxlist)
(cond ((= (length asolnsetl) (length *tvarxlist*))
asolnsetl)
(t
(do ((tvarxl (cdr varxlist) (cdr tvarxl))
(defvar (mapcar #'cadr asolnsetl))
(var) (param))
((null tvarxl) asolnsetl)
(setq var (car tvarxl))
(cond ((memalike var defvar) nil)
(t (setq param (make-param)
asolnsetl (cons (list '(MEQUAL) var param)
(cdr (substitute
param var
(addmlist asolnsetl)))))))))))
(declare (special *vardegs*))
(defun findleastvar (lhsl)
(do ((tlhsl lhsl (cdr tlhsl))
(teq) (*vardegs*) (tdeg)
;; Largest possible fixnum. The actual degree of any polynomial
;; is supposed to be less than this number.
(leastdeg (lsh -1 -1))
(leasteq) (leastvar))
((null tlhsl) (cons leasteq leastvar))
(setq teq (car tlhsl))
(setq *vardegs* (getvardegs teq))
(setq tdeg (killvardegsc teq))
(mapc (function (lambda (q) (cond ((not (> (cdr q) leastdeg))
(setq leastdeg (cdr q)
leasteq teq
leastvar (car q))))))
*vardegs*)
(cond ((< tdeg leastdeg) (setq leastdeg tdeg
leasteq teq
leastvar (car teq))))))
(defun killvardegsc (poly)
(cond ((pconstp poly) 0)
(t (do ((poly (cdr poly) (cddr poly))
(tdeg 0 (max tdeg (+ (car poly)
(cond ((= (car poly) 0)
(killvardegsc (cadr poly)))
(t (killvardegsn (cadr poly))))))))
((null poly) tdeg)))))
(defun killvardegsn (poly)
(cond ((pconstp poly) 0)
(t ((lambda (x) (and x
(not (> (cdr x) (cadr poly)))
(setq *vardegs* (delete x *vardegs*))))
(assq (car poly) *vardegs*))
(do ((poly (cdr poly) (cddr poly))
(tdeg 0 (max tdeg (+ (car poly)
(killvardegsn (cadr poly))))))
((null poly) tdeg)))))
(defun getvardegs (poly)
(cond ((pconstp poly) nil)
((pconstp (caddr poly))
(cons (cons (car poly) (cadr poly))
(getvardegs (pterm (cdr poly) 0))))
(t (getvardegs (pterm (cdr poly) 0)))))
(declare (unspecial *vardegs*))
(defun pconstp (poly)
(or (atom poly) (not (memq (car poly) *tvarxlist*))))
(defun pfreeofmainvarsp (poly)
(cond ((atom poly) poly)
((null (memq (car poly) *tvarxlist*))
($radcan (pdis poly)))
(t poly)))
(defun lofactors (poly)
(setq poly (pfreeofmainvarsp poly))
(cond ((signp e poly) (list 0))
((or (atom poly) (not (atom (car poly)))) nil)
(t (do ((tfactors (pfactor poly) (cddr tfactors))
(lfactors))
((null tfactors) lfactors)
(setq poly (pfreeofmainvarsp (car tfactors)))
(cond ((signp e poly) (return (list 0)))
((and (not (atom poly)) (atom (car poly)))
(setq lfactors (cons (pabs poly) lfactors))))))))
(defun combiney (listofl)
(cond ((memq nil listofl) nil)
(t (combiney1 (delete '(0) listofl)))))
(defun combiney1 (listofl)
(cond ((null listofl) (list nil))
(t (mapcan #'(lambda (r)
(cond ((intersect (car listofl) r) (list r))
(t (mapcar #'(lambda (q) (cons q r))
(car listofl)))))
(combiney1 (cdr listofl))))))
(defun midpnt (l) (rhalf (rplus* (car l) (cadr l))))
(defun rflot (l)
(let ((rr (midpnt l)))
(if realonlyratnum (list '(rat) (car rr) (cdr rr))
(quotient (plus 0.0 (car rr)) (cdr rr)))))
(defun memberroot (a x eps)
(cond ((null x) nil)
((lessp (abs (difference a (car x)))
(quotient (plus 0.0 (car eps)) (cdr eps)))
t)
(t (memberroot a (cdr x) eps))))
(defun commonroots (eps solnl1 solnl2)
(cond ((null solnl1) nil)
((memberroot (car solnl1) solnl2 eps)
(cons (car solnl1) (commonroots eps (cdr solnl1) solnl2)))
(t (commonroots eps (cdr solnl1) solnl2))))
(defun deletmult (l)
(and l (cons (car l) (deletmult (cddr l)))))
(defun punivarp (poly)
(do ((l (cdr poly) (cddr l)))
((null l) t)
(or (numberp (cadr l))
(and (eq (caadr l) *ivar*)
(punivarp (cadr l)))
(return nil))))
(defun realonly (rootsl)
(cond ((null rootsl) nil)
((freeof '$%I (car rootsl))
(nconc (list (car rootsl)) (realonly (cdr rootsl))))
(t (realonly (cdr rootsl)))))
(defun presultant (p1 p2 var)
(cadr (ratf ($resultant (pdis p1) (pdis p2) (pdis (list var 1. 1.))))))
(defun ptimeftrs (l)
(prog (ll)
(setq ll (cddr l))
(cond ((null ll) (return (car l)))
(t (return (ptimes (car l) (ptimeftrs ll)))))))
(defun ebaksubst (solnl lhsl)
(mapcar #'(lambda (q) (cadr (ratf (what-the-$EV (pdis q)
(cons '(MLIST) solnl)
'$radcan))))
lhsl))
(defun baksubst (solnl lhsl)
(setq lhsl (delq 'T (mapcar #'(lambda (q)
(car (merrset (baksubst1 solnl q))))
lhsl))) ;catches arith. ovfl
(cond ((memq nil lhsl) (list nil))
(t lhsl)))
(defun baksubst1 (solnl poly)
(let* (($keepfloat (not $realonly)) ;sturm1 needs poly with
(poly1 ;integer coefs
(cdr
(ratf (what-the-$EV (pdis poly)
(cons '(MLIST) solnl)
'$NUMER)))))
(cond ((and (complexnump (pdis (car poly1)))
(numberp (cdr poly1)))
(rootsp (cons '(MLIST) solnl)
(list '(MLIST) (pdis poly) (tayapprox poly))))
(t (car poly1)))))
(defun complexnump (p)
((lambda (p)
(or (numberp p) (eq (pdis (pget (car p))) '$%i)))
(cadr (ratf ($ratsimp p)))))
(defun bakalevel (solnl lhsl var)
(apply (function append)
(mapcar #'(lambda (q) (bakalevel1 q lhsl var)) solnl)))
(defun bakalevel1 (solnl lhsl var)
(cond ((exactonly solnl)
(cond (solnl (mergesoln solnl (algsys (ebaksubst solnl lhsl))))
((cdr lhsl)
(bakalevel (callsolve (setq solnl (findleastvar lhsl)))
(remove (car solnl) lhsl) var))
(t (callsolve (cons (car lhsl) var)))))
(t (mergesoln solnl (apprsys (baksubst solnl lhsl))))))
(defun exactonly (solnl)
(cond ((atom solnl)
(and (not (floatp solnl))
(or (null realonlyratnum) (not (eq solnl 'rat)))))
(t (and (exactonly (car solnl)) (exactonly (cdr solnl))))))
(defun mergesoln (asoln solnl)
(let ((errorsw t) s (unbind (cons bindlist loclist)))
(mapcan
#'(lambda (q)
(setq s (*catch 'errorsw
(append
(mapcar #'(lambda (r)
(what-the-$EV r
(cons '(MLIST) q))
)
asoln)
q)))
(cond ((eq s t) (errlfun1 unbind) nil)
(t (list s))))
solnl)))
(defun callsolve (pv)
((lambda (poly var varlist genvar *roots *failures $programmode)
(cond ((or $algexact (not (punivarp poly))
(biquadraticp poly))
(solve (pdis poly) (pdis (list var 1 1)) 1)
(cond ((null (or *roots *failures))
(list nil))
(t
(append (mapcan (function (lambda (q)
(callapprs (cadr (ratf (meqhk q))))))
(deletmult *failures))
(mapcar (function list)
(cond ($realonly
(realonly (deletmult *roots)))
(t (deletmult *roots))))))))
(t (callapprs poly))))
(car pv) (cdr pv) varlist genvar nil nil t))
(defun biquadraticp (poly)
(or (atom poly)
(if algnotexact
(< (cadr poly) 2)
(or (< (cadr poly) 3)
(and (= (cadr poly) 4) (biquadp1 (cdddr poly)))))))
(defun biquadp1 (l)
(or (null l)
(and (or (= (car l) 2) (= (car l) 0))
(biquadp1 (cddr l)))))
(defun callapprs (poly)
(or (punivarp poly)
(merror "ALGSYS cannot solve - system too complicated."))
(let ($rootsquad $dispflag)
(cond ($realonly
(mapcar (function (lambda (q)
(list (list '(MEQUAL)
(pdis (list (car poly) 1 1))
(rflot q)))))
(sturm1 poly (cons 1 $algepsilon))))
(t (mapcar #'list
(let (($programmode t) l)
(setq l (cdr ($allroots (pdis poly))))
(cond ((not (eq (caaar l) 'mequal)) (cdr l))
(t l))))))))
(defun apprsys (lhsl)
(cond ((null lhsl) (list nil))
(t
(do tlhsl lhsl (cdr tlhsl) nil
(cond ((null tlhsl)
(merror
"ALGSYS cannot solve - system too complicated."))
((pconstp (car tlhsl)) (return nil))
((punivarp (car tlhsl))
(return (bakalevel (callapprs (car tlhsl))
lhsl nil))))))))
(defun tayapprox (p)
(cons '(MPLUS)
(mapcar (function (lambda (x)
(list '(MYCABS) (pdis (ptimes (list x 1 1)
(pderivative p x))))))
(listovars p))))
(defmfun mycabs (x)
(and (complexnump x) (cabs x)))
(defun distrep (lol)
(condensesolnl (condensesublist (combiney lol))))
(defun condensey (l)
((lambda (result)
(map '(lambda (q) (or (memalike (car q) (cdr q))
(setq result (cons (car q) result))))
l)
result)
nil))
(defun condensesublist (lol) (mapcar #'condensey lol))
(defun exclude (l1 l2)
(cond ((null l2) nil)
((member (car l2) l1) (exclude l1 (cdr l2)))
(t (append (list (car l2)) (exclude l1 (cdr l2))))))