/** * @copyright Utilitech AS 2023 * License: Fair Source 5 * * @brief Program for ESP32 and ESP8266 to receive data from AMS electric meters and send to MQTT * * @details This program was created to receive data from AMS electric meters via M-Bus, decode * and send to a MQTT broker. The data packet structure supported by this software is specific * to Norwegian meters, but may also support data from electricity providers in other countries. */ #include #if defined(ESP8266) ADC_MODE(ADC_VCC); #endif #if defined(ESP32) #include #include #include #endif #define WDT_TIMEOUT 60 #if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) #include #endif #include "FirmwareVersion.h" #include "AmsToMqttBridge.h" #include "AmsStorage.h" #include "AmsDataStorage.h" #include "EnergyAccounting.h" #include #include #include #include "hexutils.h" #include "HwTools.h" #include "EntsoeApi.h" #include "AmsWebServer.h" #include "AmsConfiguration.h" #include "AmsMqttHandler.h" #include "JsonMqttHandler.h" #include "RawMqttHandler.h" #include "DomoticzMqttHandler.h" #include "HomeAssistantMqttHandler.h" #include "PassthroughMqttHandler.h" #include "Uptime.h" #include "RemoteDebug.h" #define debugV_P(x, ...) if (Debug.isActive(Debug.VERBOSE)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define debugD_P(x, ...) if (Debug.isActive(Debug.DEBUG)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define debugI_P(x, ...) if (Debug.isActive(Debug.INFO)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define debugW_P(x, ...) if (Debug.isActive(Debug.WARNING)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define debugE_P(x, ...) if (Debug.isActive(Debug.ERROR)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define debugA_P(x, ...) if (Debug.isActive(Debug.ANY)) {Debug.printf_P(x, ##__VA_ARGS__);Debug.println();} #define BUF_SIZE_COMMON (2048) #define BUF_SIZE_HAN (1280) #include "IEC6205621.h" #include "IEC6205675.h" #include "LNG.h" #include "LNG2.h" #include "DataParsers.h" #include "Timezones.h" uint8_t commonBuffer[BUF_SIZE_COMMON]; uint8_t hanBuffer[BUF_SIZE_HAN]; HwTools hw; DNSServer* dnsServer = NULL; AmsConfiguration config; RemoteDebug Debug; EntsoeApi* eapi = NULL; Timezone* tz = NULL; AmsWebServer ws(commonBuffer, &Debug, &hw); bool mqttEnabled = false; AmsMqttHandler* mqttHandler = NULL; #if defined(ESP32) JsonMqttHandler* energySpeedometer = NULL; MqttConfig energySpeedometerConfig = { "mqtt.sandtime.energy", 8883, "", "amsleser", "", #if defined(ENERGY_SPEEDOMETER_USER) ENERGY_SPEEDOMETER_USER, #else "", #endif #if defined(ENERGY_SPEEDOMETER_PASS) ENERGY_SPEEDOMETER_PASS, #else "", #endif 0, true }; #endif Stream *hanSerial; SoftwareSerial *swSerial = NULL; HardwareSerial *hwSerial = NULL; uint8_t rxBufferErrors = 0; SystemConfig sysConfig; GpioConfig gpioConfig; MeterConfig meterConfig; AmsData meterState; bool ntpEnabled = false; bool mdnsEnabled = false; AmsDataStorage ds(&Debug); #if defined(ESP32) __NOINIT_ATTR EnergyAccountingRealtimeData rtd; #else EnergyAccountingRealtimeData rtd; #endif EnergyAccounting ea(&Debug, &rtd); bool wifiDisable11b = false; HDLCParser *hdlcParser = NULL; MBUSParser *mbusParser = NULL; GBTParser *gbtParser = NULL; GCMParser *gcmParser = NULL; LLCParser *llcParser = NULL; DLMSParser *dlmsParser = NULL; DSMRParser *dsmrParser = NULL; bool maxDetectPayloadDetectDone = false; uint8_t maxDetectedPayloadSize = 64; void configFileParse(); void swapWifiMode(); void WiFi_connect(); void WiFi_post_connect(); void WiFi_disconnect(unsigned long timeout); void MQTT_connect(); void handleNtpChange(); void handleDataSuccess(AmsData* data); void handleTemperature(unsigned long now); void handleSystem(unsigned long now); void handleAutodetect(unsigned long now); void handleButton(unsigned long now); void handlePriceApi(unsigned long now); void handleClear(unsigned long now); void handleEnergyAccountingChanged(); bool handleVoltageCheck(); bool readHanPort(); void setupHanPort(GpioConfig& gpioConfig, uint32_t baud, uint8_t parityOrdinal, bool invert); void rxerr(int err); int16_t unwrapData(uint8_t *buf, DataParserContext &context); void errorBlink(); void printHanReadError(int pos); void debugPrint(byte *buffer, int start, int length); #if defined(ESP32) uint8_t dnsState = 0; ip_addr_t dns0; void WiFiEvent(WiFiEvent_t event, WiFiEventInfo_t info) { switch(event) { case ARDUINO_EVENT_WIFI_READY: if (wifiDisable11b) { esp_wifi_config_11b_rate(WIFI_IF_AP, true); esp_wifi_config_11b_rate(WIFI_IF_STA, true); } break; case ARDUINO_EVENT_WIFI_STA_GOT_IP: { const ip_addr_t* dns = dns_getserver(0); memcpy(&dns0, dns, sizeof(dns0)); IPAddress res; int ret = WiFi.hostByName("hub.amsleser.no", res); if(ret == 0) { dnsState = 2; debugI_P(PSTR("No DNS, probably a closed network")); } else { debugI_P(PSTR("DNS is present and working, monitoring")); dnsState = 1; } break; } case ARDUINO_EVENT_WIFI_STA_DISCONNECTED: wifi_err_reason_t reason = (wifi_err_reason_t) info.wifi_sta_disconnected.reason; const char* descr = WiFi.disconnectReasonName(reason); debugI_P(PSTR("WiFi disconnected, reason %s"), descr); switch(reason) { case WIFI_REASON_AUTH_FAIL: case WIFI_REASON_NO_AP_FOUND: if(sysConfig.dataCollectionConsent == 0) { swapWifiMode(); } else if(strlen(descr) > 0) { WiFi_disconnect(5000); } break; default: if(strlen(descr) > 0) { WiFi_disconnect(2000); } } break; } } #endif void setup() { Serial.begin(115200); config.hasConfig(); // Need to run this to make sure all configuration have been migrated before we load GPIO config if(!config.getGpioConfig(gpioConfig)) { config.clearGpio(gpioConfig); } if(!config.getSystemConfig(sysConfig)) { sysConfig.boardType = 0; sysConfig.vendorConfigured = false; sysConfig.userConfigured = false; sysConfig.dataCollectionConsent = false; } delay(1); config.loadTempSensors(); hw.setup(&gpioConfig, &config); if(gpioConfig.apPin >= 0) { pinMode(gpioConfig.apPin, INPUT_PULLUP); if(!hw.ledOn(LED_GREEN)) { hw.ledOn(LED_INTERNAL); } delay(1000); if(digitalRead(gpioConfig.apPin) == LOW) { if(!hw.ledOn(LED_RED)) { hw.ledBlink(LED_INTERNAL, 4); } delay(2000); if(digitalRead(gpioConfig.apPin) == LOW) { if(!hw.ledOff(LED_GREEN)) { hw.ledOn(LED_INTERNAL); } delay(2000); if(digitalRead(gpioConfig.apPin) == HIGH) { config.clear(); if(!hw.ledBlink(LED_RED, 6)) { hw.ledBlink(LED_INTERNAL, 6); } } } } } hw.ledBlink(LED_INTERNAL, 1); hw.ledBlink(LED_RED, 1); hw.ledBlink(LED_YELLOW, 1); hw.ledBlink(LED_GREEN, 1); hw.ledBlink(LED_BLUE, 1); EntsoeConfig entsoe; if(config.getEntsoeConfig(entsoe) && entsoe.enabled && strlen(entsoe.area) > 0) { eapi = new EntsoeApi(&Debug); eapi->setup(entsoe); ws.setEntsoeApi(eapi); } ws.setPriceSettings(entsoe.area, entsoe.currency); ea.setFixedPrice(entsoe.fixedPrice / 1000.0, entsoe.currency); bool shared = false; config.getMeterConfig(meterConfig); Serial.flush(); Serial.end(); if(gpioConfig.hanPin == 3) { shared = true; #if defined(ESP8266) SerialConfig serialConfig; #elif defined(ESP32) uint32_t serialConfig; #endif switch(meterConfig.parity) { case 2: serialConfig = SERIAL_7N1; break; case 3: serialConfig = SERIAL_8N1; break; case 10: serialConfig = SERIAL_7E1; break; default: serialConfig = SERIAL_8E1; break; } #if defined(ESP32) #if ARDUINO_USB_CDC_ON_BOOT Serial0.begin(meterConfig.baud == 0 ? 2400 : meterConfig.baud, serialConfig, -1, -1, meterConfig.invert); #else Serial.begin(meterConfig.baud == 0 ? 2400 : meterConfig.baud, serialConfig, -1, -1, meterConfig.invert); #endif #else Serial.begin(meterConfig.baud == 0 ? 2400 : meterConfig.baud, serialConfig, SERIAL_FULL, 1, meterConfig.invert); #endif } if(!shared) { Serial.begin(115200); } Debug.setSerialEnabled(true); yield(); float vcc = hw.getVcc(); if (Debug.isActive(RemoteDebug::INFO)) { debugI_P(PSTR("AMS bridge started")); debugI_P(PSTR("Voltage: %.2fV"), vcc); } float vccBootLimit = gpioConfig.vccBootLimit == 0 ? 0 : min(3.29, gpioConfig.vccBootLimit / 10.0); // Make sure it is never above 3.3v if(vccBootLimit > 2.5 && vccBootLimit < 3.3 && (gpioConfig.apPin == 0xFF || digitalRead(gpioConfig.apPin) == HIGH)) { // Skip if user is holding AP button while booting (HIGH = button is released) if (vcc < vccBootLimit) { if(Debug.isActive(RemoteDebug::INFO)) { Debug.printf_P(PSTR("(setup) Voltage is too low (%.2f < %.2f), sleeping\n"), vcc, vccBootLimit); Serial.flush(); } ESP.deepSleep(10000000); //Deep sleep to allow output cap to charge up } } WiFi.disconnect(true); WiFi.softAPdisconnect(true); WiFi.mode(WIFI_OFF); WiFiConfig wifiConf; if(config.getWiFiConfig(wifiConf)) { wifiDisable11b = !wifiConf.use11b; } bool hasFs = false; #if defined(ESP32) WiFi.onEvent(WiFiEvent); debugD_P(PSTR("ESP32 LittleFS")); hasFs = LittleFS.begin(true); debugD_P(PSTR(" size: %d"), LittleFS.totalBytes()); #else debugD_P(PSTR("ESP8266 LittleFS")); hasFs = LittleFS.begin(); #endif yield(); if(hasFs) { #if defined(ESP8266) LittleFS.gc(); if(!LittleFS.check()) { debugW_P(PSTR("LittleFS filesystem error")); if(!LittleFS.format()) { debugE_P(PSTR("Unable to format broken filesystem")); } } #endif bool flashed = false; if(LittleFS.exists(FILE_FIRMWARE)) { if (!config.hasConfig()) { debugI_P(PSTR("Device has no config, yet a firmware file exists, deleting file.")); } else if (gpioConfig.apPin == 0xFF || digitalRead(gpioConfig.apPin) == HIGH) { if(Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Found firmware")); #if defined(ESP8266) WiFi.setSleepMode(WIFI_LIGHT_SLEEP); WiFi.forceSleepBegin(); #endif int i = 0; while(hw.getVcc() > 1.0 && hw.getVcc() < 3.2 && i < 3) { if(Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR(" vcc not optimal, light sleep 10s")); #if defined(ESP8266) delay(10000); #elif defined(ESP32) esp_sleep_enable_timer_wakeup(10000000); esp_light_sleep_start(); #endif i++; } debugI_P(PSTR(" flashing")); File firmwareFile = LittleFS.open(FILE_FIRMWARE, (char*) "r"); debugD_P(PSTR(" firmware size: %d"), firmwareFile.size()); uint32_t maxSketchSpace = (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000; debugD_P(PSTR(" available: %d"), maxSketchSpace); if (!Update.begin(maxSketchSpace, U_FLASH)) { if(Debug.isActive(RemoteDebug::ERROR)) { debugE_P(PSTR("Unable to start firmware update")); Update.printError(Serial); } } else { while (firmwareFile.available()) { uint8_t ibuffer[128]; firmwareFile.read((uint8_t *)ibuffer, 128); Update.write(ibuffer, sizeof(ibuffer)); } flashed = Update.end(true); } config.setUpgradeInformation(flashed ? 2 : 0, 0xFF, FirmwareVersion::VersionString, ""); firmwareFile.close(); } else { debugW_P(PSTR("AP button pressed, skipping firmware update and deleting firmware file.")); } LittleFS.remove(FILE_FIRMWARE); } else if(LittleFS.exists(FILE_CFG)) { if(Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Found config")); configFileParse(); flashed = true; } if(flashed) { LittleFS.end(); if(Debug.isActive(RemoteDebug::INFO)) { debugI_P(PSTR("Firmware update complete, restarting")); Debug.flush(); } delay(250); ESP.restart(); return; } } LittleFS.end(); yield(); if(config.hasConfig()) { if(Debug.isActive(RemoteDebug::INFO)) config.print(&Debug); WiFi_connect(); handleNtpChange(); ds.load(); } else { if(Debug.isActive(RemoteDebug::INFO)) { debugI_P(PSTR("No configuration, booting AP")); } swapWifiMode(); } EnergyAccountingConfig *eac = new EnergyAccountingConfig(); if(!config.getEnergyAccountingConfig(*eac)) { config.clearEnergyAccountingConfig(*eac); config.setEnergyAccountingConfig(*eac); config.ackEnergyAccountingChange(); } ea.setup(&ds, eac); ea.load(); ea.setEapi(eapi); ws.setup(&config, &gpioConfig, &meterConfig, &meterState, &ds, &ea); #if defined(ESP32) esp_task_wdt_init(WDT_TIMEOUT, true); esp_task_wdt_add(NULL); #elif defined(ESP8266) ESP.wdtEnable(WDT_TIMEOUT * 1000); #endif } int buttonTimer = 0; bool buttonActive = false; unsigned long longPressTime = 5000; bool longPressActive = false; bool wifiConnected = false; unsigned long lastTemperatureRead = 0; unsigned long lastSysupdate = 0; unsigned long lastErrorBlink = 0; unsigned long lastVoltageCheck = 0; int lastError = 0; bool meterAutodetect = false; unsigned long meterAutodetectLastChange = 0; uint8_t meterAutoIndex = 0; uint32_t bauds[] = { 2400, 2400, 115200, 115200 }; uint8_t parities[] = { 11, 3, 3, 3 }; bool inverts[] = { false, false, false, true }; void loop() { unsigned long now = millis(); unsigned long start = now; Debug.handle(); unsigned long end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to handle debug"), millis()-start); } handleButton(now); if(now > 10000 && now - lastErrorBlink > 3000) { errorBlink(); } if(hwSerial != NULL) { #if defined ESP8266 if(hwSerial->hasRxError()) { debugE_P(PSTR("Serial RX error")); meterState.setLastError(METER_ERROR_RX); } if(hwSerial->hasOverrun()) { rxerr(2); } #endif } else if(swSerial != NULL) { if(swSerial->overflow()) { rxerr(2); } } // Only do normal stuff if we're not booted as AP if (WiFi.getMode() != WIFI_AP) { if (WiFi.status() != WL_CONNECTED) { wifiConnected = false; Debug.stop(); WiFi_connect(); } else { if(!wifiConnected) { WiFi_post_connect(); } if(config.isNtpChanged()) { handleNtpChange(); } #if defined ESP8266 if(mdnsEnabled) { start = millis(); MDNS.update(); end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to update mDNS"), millis()-start); } } #endif if (mqttEnabled || config.isMqttChanged()) { if(mqttHandler == NULL || !mqttHandler->connected() || config.isMqttChanged()) { MQTT_connect(); config.ackMqttChange(); } } else if(mqttHandler != NULL) { mqttHandler->disconnect(); } #if defined(ENERGY_SPEEDOMETER_PASS) if(sysConfig.energyspeedometer == 7) { if(!meterState.getMeterId().isEmpty()) { if(energySpeedometer == NULL) { uint16_t chipId; #if defined(ESP32) chipId = ( ESP.getEfuseMac() >> 32 ) % 0xFFFFFFFF; #else chipId = ESP.getChipId(); #endif strcpy(energySpeedometerConfig.clientId, (String("ams") + String(chipId, HEX)).c_str()); energySpeedometer = new JsonMqttHandler(energySpeedometerConfig, &Debug, (char*) commonBuffer, &hw); energySpeedometer->setCaVerification(false); } if(!energySpeedometer->connected()) { lwmqtt_err_t err = energySpeedometer->lastError(); if(err > 0) debugE_P(PSTR("Energyspeedometer connector reporting error (%d)"), err); energySpeedometer->connect(); energySpeedometer->publishSystem(&hw, eapi, &ea); } energySpeedometer->loop(); delay(10); } } else if(energySpeedometer != NULL) { if(energySpeedometer->connected()) { energySpeedometer->disconnect(); energySpeedometer->loop(); } else { delete energySpeedometer; energySpeedometer = NULL; } } #endif try { handlePriceApi(now); } catch(const std::exception& e) { debugE_P(PSTR("Exception in ENTSO-E loop (%s)"), e.what()); } start = millis(); ws.loop(); end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to handle web"), millis()-start); } } if(mqttHandler != NULL) { start = millis(); mqttHandler->loop(); delay(10); // Needed to preserve power. After adding this, the voltage is super smooth on a HAN powered device end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to handle mqtt"), millis()-start); } } /* if(now - lastVoltageCheck > 500) { handleVoltageCheck(); lastVoltageCheck = now; } */ } else { if(dnsServer != NULL) { dnsServer->processNextRequest(); } // Continously flash the LED when AP mode if (now / 50 % 64 == 0) { if(!hw.ledBlink(LED_YELLOW, 1)) { hw.ledBlink(LED_INTERNAL, 1); } } ws.loop(); } if(config.isMeterChanged()) { config.getMeterConfig(meterConfig); setupHanPort(gpioConfig, meterConfig.baud, meterConfig.parity, meterConfig.invert); config.ackMeterChanged(); if(gcmParser != NULL) { delete gcmParser; gcmParser = NULL; } } if(config.isEnergyAccountingChanged()) { handleEnergyAccountingChanged(); } try { start = millis(); if(readHanPort() || now - meterState.getLastUpdateMillis() > 30000) { end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to read HAN port (true)"), millis()-start); } handleTemperature(now); handleSystem(now); } else { end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to read HAN port (false)"), millis()-start); } } if(millis() - meterState.getLastUpdateMillis() > 1800000 && !ds.isHappy()) { handleClear(now); } } catch(const std::exception& e) { debugE_P(PSTR("Exception in readHanPort (%s)"), e.what()); meterState.setLastError(METER_ERROR_EXCEPTION); } try { handleAutodetect(now); } catch(const std::exception& e) { debugE_P(PSTR("Exception in meter autodetect (%s)"), e.what()); meterState.setLastError(METER_ERROR_AUTODETECT); } delay(10); // Needed for auto modem sleep start = millis(); #if defined(ESP32) esp_task_wdt_reset(); #elif defined(ESP8266) ESP.wdtFeed(); #endif yield(); end = millis(); if(end-start > 1000) { debugW_P(PSTR("Used %dms to feed WDT"), end-start); } if(end-now > 2000) { debugW_P(PSTR("loop() used %dms"), end-now); } } void handleClear(unsigned long now) { tmElements_t tm; breakTime(time(nullptr), tm); if(tm.Minute == 0) { AmsData nullData; debugI_P(PSTR("Clearing data that have not been updated")); ds.update(&nullData); } } void handleEnergyAccountingChanged() { EnergyAccountingConfig *eac = ea.getConfig(); config.getEnergyAccountingConfig(*eac); ea.setup(&ds, eac); config.ackEnergyAccountingChange(); } char ntpServerName[64] = ""; float maxVcc = 2.9; void handleNtpChange() { NtpConfig ntp; if(config.getNtpConfig(ntp)) { tz = resolveTimezone(ntp.timezone); if(ntp.enable && strlen(ntp.server) > 0) { strcpy(ntpServerName, ntp.server); } else if(ntp.enable) { strcpy(ntpServerName, "pool.ntp.org"); } else { memset(ntpServerName, 0, 64); } configTime(tz->toLocal(0), tz->toLocal(JULY1970)-JULY1970, ntpServerName, "", ""); sntp_servermode_dhcp(ntp.enable && ntp.dhcp ? 1 : 0); // Not implemented on ESP32? ntpEnabled = ntp.enable; ws.setTimezone(tz); ds.setTimezone(tz); ea.setTimezone(tz); } config.ackNtpChange(); } void handleSystem(unsigned long now) { if(config.isSystemConfigChanged()) { config.getSystemConfig(sysConfig); config.ackSystemConfigChanged(); } unsigned long start, end; if(now - lastSysupdate > 60000) { start = millis(); if(WiFi.getMode() != WIFI_AP && WiFi.status() == WL_CONNECTED) { if(mqttHandler != NULL) { mqttHandler->publishSystem(&hw, eapi, &ea); } #if defined(ENERGY_SPEEDOMETER_PASS) if(energySpeedometer != NULL) { energySpeedometer->publishSystem(&hw, eapi, &ea); } #endif } lastSysupdate = now; end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to send system update to MQTT"), millis()-start); } #if defined(ESP32) if(dnsState == 1) { const ip_addr_t* dns = dns_getserver(0); if(memcmp(&dns0, dns, sizeof(dns0)) != 0) { dns_setserver(0, &dns0); debugI_P(PSTR("Had to reset DNS server")); } } #endif } // After one hour, adjust buffer size to match the largest payload if(!maxDetectPayloadDetectDone && now > 3600000) { if(maxDetectedPayloadSize * 1.5 > meterConfig.bufferSize * 64) { int bufferSize = min((double) 64, ceil((maxDetectedPayloadSize * 1.5) / 64)); #if defined(ESP8266) if(gpioConfig.hanPin != 3 && gpioConfig.hanPin != 113) { bufferSize = min(bufferSize, 2); } else { bufferSize = min(bufferSize, 8); } #endif if(bufferSize != meterConfig.bufferSize) { debugI_P(PSTR("Increasing RX buffer to %d bytes"), bufferSize * 64); meterConfig.bufferSize = bufferSize; config.setMeterConfig(meterConfig); } } maxDetectPayloadDetectDone = true; } } void handleTemperature(unsigned long now) { unsigned long start, end; if(now - lastTemperatureRead > 15000) { start = millis(); if(hw.updateTemperatures()) { lastTemperatureRead = now; if(mqttHandler != NULL && WiFi.getMode() != WIFI_AP && WiFi.status() == WL_CONNECTED) { mqttHandler->publishTemperatures(&config, &hw); } } end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to update temperature"), millis()-start); } } } void handlePriceApi(unsigned long now) { unsigned long start, end; if(eapi != NULL && ntpEnabled) { start = millis(); if(eapi->loop() && mqttHandler != NULL) { end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to update prices"), millis()-start); } start = millis(); mqttHandler->publishPrices(eapi); end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to publish prices to MQTT"), millis()-start); } } else { end = millis(); if(end - start > 1000) { debugW_P(PSTR("Used %dms to handle price API"), millis()-start); } } } if(config.isEntsoeChanged()) { EntsoeConfig entsoe; if(config.getEntsoeConfig(entsoe) && entsoe.enabled && strlen(entsoe.area) > 0) { if(eapi == NULL) { eapi = new EntsoeApi(&Debug); ea.setEapi(eapi); ws.setEntsoeApi(eapi); } eapi->setup(entsoe); } else if(eapi != NULL) { delete eapi; eapi = NULL; ws.setEntsoeApi(NULL); } ws.setPriceSettings(entsoe.area, entsoe.currency); config.ackEntsoeChange(); ea.setFixedPrice(entsoe.fixedPrice / 1000.0, entsoe.currency); } } void handleAutodetect(unsigned long now) { if(meterState.getListType() == 0) { if(now - meterAutodetectLastChange > 20000 && (meterConfig.baud == 0 || meterConfig.parity == 0)) { meterAutodetect = true; meterAutoIndex++; // Default is to try the first one in setup() debugI_P(PSTR("Meter serial autodetect, swapping to: %d, %d, %s"), bauds[meterAutoIndex], parities[meterAutoIndex], inverts[meterAutoIndex] ? "true" : "false"); if(meterAutoIndex >= 4) meterAutoIndex = 0; setupHanPort(gpioConfig, bauds[meterAutoIndex], parities[meterAutoIndex], inverts[meterAutoIndex]); meterAutodetectLastChange = now; } } else if(meterAutodetect) { debugI_P(PSTR("Meter serial autodetected, saving: %d, %d, %s"), bauds[meterAutoIndex], parities[meterAutoIndex], inverts[meterAutoIndex] ? "true" : "false"); meterAutodetect = false; meterConfig.baud = bauds[meterAutoIndex]; meterConfig.parity = parities[meterAutoIndex]; meterConfig.invert = inverts[meterAutoIndex]; config.setMeterConfig(meterConfig); setupHanPort(gpioConfig, meterConfig.baud, meterConfig.parity, meterConfig.invert); } } void handleButton(unsigned long now) { if(gpioConfig.apPin != 0xFF) { if (digitalRead(gpioConfig.apPin) == LOW) { if (buttonActive == false) { buttonActive = true; buttonTimer = now; } if ((now - buttonTimer > longPressTime) && (longPressActive == false)) { longPressActive = true; swapWifiMode(); } } else { if (buttonActive == true) { if (longPressActive == true) { longPressActive = false; } else { // Single press action debugD_P(PSTR("Button was clicked, no action configured")); } buttonActive = false; } } } } bool handleVoltageCheck() { if(sysConfig.boardType == 7 && maxVcc > 2.8) { // Pow-U float vcc = hw.getVcc(); if(vcc > 3.4 || vcc < 2.8) { maxVcc = 0; } else if(vcc > maxVcc) { debugD_P(PSTR("Setting new max Vcc to %.2f"), vcc); maxVcc = vcc; } else if(WiFi.getMode() != WIFI_OFF) { float diff = min(maxVcc, (float) 3.3)-vcc; if(diff > 0.4) { debugW_P(PSTR("Vcc dropped to %.2f, disconnecting WiFi for 5 seconds to preserve power"), vcc); WiFi_disconnect(2000); return false; } } } return true; } void rxerr(int err) { if(err == 0) return; switch(err) { case 2: debugE_P(PSTR("Serial buffer overflow")); rxBufferErrors++; if(rxBufferErrors > 3 && meterConfig.bufferSize < 64) { meterConfig.bufferSize += 2; debugI_P(PSTR("Increasing RX buffer to %d bytes"), meterConfig.bufferSize * 64); config.setMeterConfig(meterConfig); rxBufferErrors = 0; } break; case 3: debugE_P(PSTR("Serial FIFO overflow")); break; case 4: debugW_P(PSTR("Serial frame error")); break; case 5: debugW_P(PSTR("Serial parity error")); break; } // Do not include serial break if(err > 1) meterState.setLastError(90+err); } void setupHanPort(GpioConfig& gpioConfig, uint32_t baud, uint8_t parityOrdinal, bool invert) { uint8_t pin = gpioConfig.hanPin; if(Debug.isActive(RemoteDebug::INFO)) Debug.printf_P(PSTR("(setupHanPort) Setting up HAN on pin %d with baud %d and parity %d\n"), pin, baud, parityOrdinal); if(baud == 0) { baud = bauds[meterAutoIndex]; parityOrdinal = parities[meterAutoIndex]; invert = inverts[meterAutoIndex]; } if(parityOrdinal == 0) { parityOrdinal = 3; // 8N1 } switch(sysConfig.boardType) { case 8: // HAN mosquito: has inverting level shifter invert = !invert; break; } if(pin == 3 || pin == 113) { #if ARDUINO_USB_CDC_ON_BOOT hwSerial = &Serial0; #else hwSerial = &Serial; #endif } #if defined(ESP32) if(pin == 9) { hwSerial = &Serial1; } #if defined(CONFIG_IDF_TARGET_ESP32) if(pin == 16) { hwSerial = &Serial2; } #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) hwSerial = &Serial1; #endif #endif if(pin == 0) { debugE_P(PSTR("Invalid GPIO configured for HAN")); return; } if(meterConfig.bufferSize < 1) meterConfig.bufferSize = 1; if(hwSerial != NULL) { debugD_P(PSTR("Hardware serial")); Serial.flush(); #if defined(ESP8266) SerialConfig serialConfig; #elif defined(ESP32) uint32_t serialConfig; #endif switch(parityOrdinal) { case 2: serialConfig = SERIAL_7N1; break; case 3: serialConfig = SERIAL_8N1; break; case 10: serialConfig = SERIAL_7E1; break; default: serialConfig = SERIAL_8E1; break; } if(meterConfig.bufferSize < 4) meterConfig.bufferSize = 4; // 64 bytes (1) is default for software serial, 256 bytes (4) for hardware hwSerial->setRxBufferSize(64 * meterConfig.bufferSize); #if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) hwSerial->begin(baud, serialConfig, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, invert); uart_set_pin(UART_NUM_1, UART_PIN_NO_CHANGE, pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); #elif defined(ESP32) hwSerial->begin(baud, serialConfig, -1, -1, invert); #else hwSerial->begin(baud, serialConfig, SERIAL_FULL, 1, invert); #endif #if defined(ESP8266) if(pin == 3) { debugI_P(PSTR("Switching UART0 to pin 1 & 3")); Serial.pins(1,3); } else if(pin == 113) { debugI_P(PSTR("Switching UART0 to pin 15 & 13")); Serial.pins(15,13); } #endif // Prevent pullup on TX pin if not uart0 #if defined(CONFIG_IDF_TARGET_ESP32S2) pinMode(17, INPUT); #elif defined(CONFIG_IDF_TARGET_ESP32C3) pinMode(7, INPUT); #elif defined(ESP32) if(pin == 9) { pinMode(10, INPUT); } else if(pin == 16) { pinMode(17, INPUT); } #elif defined(ESP8266) if(pin == 113) { pinMode(15, INPUT); } #endif #if defined(ESP32) hwSerial->onReceiveError(rxerr); #endif hanSerial = hwSerial; if(swSerial != NULL) { swSerial->end(); delete swSerial; swSerial = NULL; } } else { debugD_P(PSTR("Software serial")); Serial.flush(); if(swSerial == NULL) { swSerial = new SoftwareSerial(pin, -1, invert); } else { swSerial->end(); } SoftwareSerialConfig serialConfig; switch(parityOrdinal) { case 2: serialConfig = SWSERIAL_7N1; break; case 3: serialConfig = SWSERIAL_8N1; break; case 10: serialConfig = SWSERIAL_7E1; break; default: serialConfig = SWSERIAL_8E1; break; } #if defined(ESP8266) if(meterConfig.bufferSize > 2) meterConfig.bufferSize = 2; #endif swSerial->begin(baud, serialConfig, pin, -1, invert, meterConfig.bufferSize * 64); hanSerial = swSerial; Serial.end(); Serial.begin(115200); hwSerial = NULL; } // The library automatically sets the pullup in Serial.begin() if(!gpioConfig.hanPinPullup) { debugI_P(PSTR("HAN pin pullup disabled")); pinMode(gpioConfig.hanPin, INPUT); } hanSerial->setTimeout(250); // Empty buffer before starting while (hanSerial->available() > 0) { hanSerial->read(); } #if defined(ESP8266) if(hwSerial != NULL) { hwSerial->hasOverrun(); } else if(swSerial != NULL) { swSerial->overflow(); } #endif } void errorBlink() { if(lastError == 3) lastError = 0; lastErrorBlink = millis(); while(lastError < 3) { switch(lastError++) { case 0: if(lastErrorBlink - meterState.getLastUpdateMillis() > 30000) { debugW_P(PSTR("No HAN data received last 30s, single blink")); hw.ledBlink(LED_RED, 1); // If no message received from AMS in 30 sec, blink once if(meterState.getLastError() == 0) meterState.setLastError(METER_ERROR_NO_DATA); return; } break; case 1: if(mqttHandler != NULL && mqttHandler->lastError() != 0) { debugW_P(PSTR("MQTT connection not available, double blink")); hw.ledBlink(LED_RED, 2); // If MQTT error, blink twice return; } break; case 2: if(WiFi.getMode() != WIFI_AP && WiFi.status() != WL_CONNECTED) { debugW_P(PSTR("WiFi not connected, tripe blink")); hw.ledBlink(LED_RED, 3); // If WiFi not connected, blink three times return; } break; } } } void swapWifiMode() { if(!hw.ledOn(LED_YELLOW)) { hw.ledOn(LED_INTERNAL); } WiFiMode_t mode = WiFi.getMode(); if(dnsServer != NULL) { dnsServer->stop(); } WiFi.disconnect(true); WiFi.softAPdisconnect(true); WiFi.mode(WIFI_OFF); delay(10); yield(); if (mode != WIFI_AP || !config.hasConfig()) { if(Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Swapping to AP mode")); //wifi_softap_set_dhcps_offer_option(OFFER_ROUTER, 0); // Disable default gw /* Example code to set captive portal option in DHCP auto& server = WiFi.softAPDhcpServer(); server.onSendOptions([](const DhcpServer& server, auto& options) { // Captive Portal URI const IPAddress gateway = netif_ip4_addr(server.getNetif()); const String captive = F("http://") + gateway.toString(); options.add(114, captive.c_str(), captive.length()); }); */ WiFi.softAP(PSTR("AMS2MQTT")); WiFi.mode(WIFI_AP); if(dnsServer == NULL) { dnsServer = new DNSServer(); } dnsServer->setErrorReplyCode(DNSReplyCode::NoError); dnsServer->start(53, PSTR("*"), WiFi.softAPIP()); #if defined(DEBUG_MODE) Debug.setSerialEnabled(true); Debug.begin(F("192.168.4.1"), 23, RemoteDebug::VERBOSE); #endif } else { if(Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Swapping to STA mode")); if(dnsServer != NULL) { delete dnsServer; dnsServer = NULL; } WiFi_connect(); } delay(500); if(!hw.ledOff(LED_YELLOW)) { hw.ledOff(LED_INTERNAL); } } int len = 0; bool serialInit = false; bool readHanPort() { unsigned long start, end; if(!hanSerial->available()) { return false; } // Before reading, empty serial buffer to increase chance of getting first byte of a data transfer if(!serialInit) { hanSerial->readBytes(hanBuffer, BUF_SIZE_HAN); serialInit = true; return false; } DataParserContext ctx = {0,0,0,0}; strcpy_P((char*) ctx.system_title, PSTR("")); int pos = DATA_PARSE_INCOMPLETE; // For each byte received, check if we have a complete frame we can handle start = millis(); while(hanSerial->available() && pos == DATA_PARSE_INCOMPLETE) { // If buffer was overflowed, reset if(len >= BUF_SIZE_HAN) { hanSerial->readBytes(hanBuffer, BUF_SIZE_HAN); len = 0; debugI_P(PSTR("Buffer overflow, resetting")); return false; } hanBuffer[len++] = hanSerial->read(); ctx.length = len; pos = unwrapData((uint8_t *) hanBuffer, ctx); if(ctx.type > 0 && pos >= 0) { if(ctx.type == DATA_TAG_DLMS) { debugD_P(PSTR("Received valid DLMS at %d"), pos); } else if(ctx.type == DATA_TAG_DSMR) { debugD_P(PSTR("Received valid DSMR at %d"), pos); } else { // TODO: Move this so that payload is sent to MQTT debugE_P(PSTR("Unknown tag %02X at pos %d"), ctx.type, pos); len = 0; return false; } } yield(); } end = millis(); if(end-start > 1000) { debugW_P(PSTR("Used %dms to unwrap HAN data"), end-start); } if(pos == DATA_PARSE_INCOMPLETE) { return false; } else if(pos == DATA_PARSE_UNKNOWN_DATA) { debugW_P(PSTR("Unknown data received")); meterState.setLastError(pos); len = len + hanSerial->readBytes(hanBuffer+len, BUF_SIZE_HAN-len); if(Debug.isActive(RemoteDebug::VERBOSE)) { debugV_P(PSTR(" payload:")); debugPrint(hanBuffer, 0, len); } len = 0; return false; } if(pos == DATA_PARSE_INTERMEDIATE_SEGMENT) { len = 0; return false; } else if(pos < 0) { meterState.setLastError(pos); printHanReadError(pos); len += hanSerial->readBytes(hanBuffer+len, BUF_SIZE_HAN-len); if(mqttHandler != NULL) { mqttHandler->publishRaw(toHex(hanBuffer+pos, len)); } while(hanSerial->available()) hanSerial->read(); // Make sure it is all empty, in case we overflowed buffer above len = 0; return false; } // Data is valid, clear the rest of the buffer to avoid tainted parsing for(int i = pos+ctx.length; ipublishRaw(toHex((byte*) payload, ctx.length)); } debugV_P(PSTR("Using application data:")); if(Debug.isActive(RemoteDebug::VERBOSE)) debugPrint((byte*) payload, 0, ctx.length); // Rudimentary detector for L&G proprietary format, this is terrible code... Fix later if(payload[0] == CosemTypeStructure && payload[2] == CosemTypeArray && payload[1] == payload[3]) { debugV_P(PSTR("LNG")); LNG lngData = LNG(payload, meterState.getMeterType(), &meterConfig, ctx, &Debug); if(lngData.getListType() >= 3) { data = new AmsData(); data->apply(meterState); data->apply(lngData); } } else if(payload[0] == CosemTypeStructure && payload[2] == CosemTypeLongUnsigned && payload[5] == CosemTypeLongUnsigned && payload[8] == CosemTypeLongUnsigned && payload[11] == CosemTypeLongUnsigned && payload[14] == CosemTypeLongUnsigned && payload[17] == CosemTypeLongUnsigned ) { debugV_P(PSTR("LNG2")); LNG2 lngData = LNG2(payload, meterState.getMeterType(), &meterConfig, ctx, &Debug); if(lngData.getListType() >= 3) { data = new AmsData(); data->apply(meterState); data->apply(lngData); } } else { debugV_P(PSTR("DLMS")); // TODO: Split IEC6205675 into DataParserKaifa and DataParserObis. This way we can add other means of parsing, for those other proprietary formats data = new IEC6205675(payload, meterState.getMeterType(), &meterConfig, ctx, meterState); } } else if(ctx.type == DATA_TAG_DSMR) { data = new IEC6205621(payload, tz); } len = 0; if(data != NULL) { if(data->getListType() > 0) { handleDataSuccess(data); } delete data; } yield(); return true; } void handleDataSuccess(AmsData* data) { if(rxBufferErrors > 0) rxBufferErrors--; if(!hw.ledBlink(LED_GREEN, 1)) hw.ledBlink(LED_INTERNAL, 1); if(mqttHandler != NULL) { #if defined(ESP32) esp_task_wdt_reset(); #elif defined(ESP8266) ESP.wdtFeed(); #endif yield(); if(mqttHandler->publish(data, &meterState, &ea, eapi)) { delay(10); } } #if defined(ENERGY_SPEEDOMETER_PASS) if(energySpeedometer != NULL && energySpeedometer->publish(&meterState, &meterState, &ea, eapi)) { delay(10); } #endif time_t now = time(nullptr); if(now < FirmwareVersion::BuildEpoch && data->getListType() >= 3) { if(data->getMeterTimestamp() > FirmwareVersion::BuildEpoch) { debugI_P(PSTR("Using timestamp from meter")); now = data->getMeterTimestamp(); } else if(data->getPackageTimestamp() > FirmwareVersion::BuildEpoch) { debugI_P(PSTR("Using timestamp from meter (DLMS)")); now = data->getPackageTimestamp(); } if(now > FirmwareVersion::BuildEpoch) { timeval tv { now, 0}; settimeofday(&tv, nullptr); } } meterState.apply(*data); bool saveData = false; if(!ds.isHappy() && now > FirmwareVersion::BuildEpoch) { // Must use "isHappy()" in case day state gets reset and lastTimestamp is "now" debugD_P(PSTR("Its time to update data storage")); tmElements_t tm; breakTime(now, tm); if(tm.Minute == 0 && data->getListType() >= 3) { debugV_P(PSTR(" using actual data")); saveData = ds.update(data); } else if(tm.Minute == 1 && meterState.getListType() >= 3) { debugV_P(PSTR(" using estimated data")); saveData = ds.update(&meterState); } if(saveData) { debugI_P(PSTR("Saving data")); ds.save(); } } if(ea.update(data)) { debugI_P(PSTR("Saving energy accounting")); ea.save(); saveData = true; // Trigger LittleFS.end } if(saveData) { LittleFS.end(); } } void printHanReadError(int pos) { if(Debug.isActive(RemoteDebug::WARNING)) { switch(pos) { case DATA_PARSE_BOUNDRY_FLAG_MISSING: debugW_P(PSTR("Boundry flag missing")); break; case DATA_PARSE_HEADER_CHECKSUM_ERROR: debugW_P(PSTR("Header checksum error")); break; case DATA_PARSE_FOOTER_CHECKSUM_ERROR: debugW_P(PSTR("Frame checksum error")); break; case DATA_PARSE_INCOMPLETE: debugW_P(PSTR("Received frame is incomplete")); break; case GCM_AUTH_FAILED: debugW_P(PSTR("Decrypt authentication failed")); break; case GCM_ENCRYPTION_KEY_FAILED: debugW_P(PSTR("Setting decryption key failed")); break; case GCM_DECRYPT_FAILED: debugW_P(PSTR("Decryption failed")); break; case MBUS_FRAME_LENGTH_NOT_EQUAL: debugW_P(PSTR("Frame length mismatch")); break; case DATA_PARSE_INTERMEDIATE_SEGMENT: debugI_P(PSTR("Intermediate segment received")); break; case DATA_PARSE_UNKNOWN_DATA: debugW_P(PSTR("Unknown data format %02X"), hanBuffer[0]); break; default: debugW_P(PSTR("Unspecified error while reading data: %d"), pos); } } } void debugPrint(byte *buffer, int start, int length) { for (int i = start; i < start + length; i++) { if (buffer[i] < 0x10) Debug.print(F("0")); Debug.print(buffer[i], HEX); Debug.print(F(" ")); if ((i - start + 1) % 16 == 0) Debug.println(F("")); else if ((i - start + 1) % 4 == 0) Debug.print(F(" ")); yield(); // Let other get some resources too } Debug.println(F("")); } unsigned long wifiTimeout = WIFI_CONNECTION_TIMEOUT; unsigned long lastWifiRetry = -WIFI_CONNECTION_TIMEOUT; void WiFi_disconnect(unsigned long timeout) { if (Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Not connected to WiFi, closing resources")); if(mqttHandler != NULL) { mqttHandler->disconnect(); } #if defined(ESP8266) WiFiClient::stopAll(); #endif MDNS.end(); WiFi.disconnect(true); WiFi.softAPdisconnect(true); WiFi.enableAP(false); WiFi.mode(WIFI_OFF); yield(); wifiTimeout = timeout; } void WiFi_connect() { if(millis() - lastWifiRetry < wifiTimeout) { delay(50); return; } lastWifiRetry = millis(); /* if(!handleVoltageCheck()) { debugW_P(PSTR("Voltage is not high enough to reconnect")); return; } */ if (WiFi.status() != WL_CONNECTED) { WiFiConfig wifi; if(!config.getWiFiConfig(wifi) || strlen(wifi.ssid) == 0) { swapWifiMode(); return; } if(WiFi.getMode() != WIFI_OFF) { WiFi_disconnect(5000); return; } wifiTimeout = WIFI_CONNECTION_TIMEOUT; if (Debug.isActive(RemoteDebug::INFO)) debugI_P(PSTR("Connecting to WiFi network: %s"), wifi.ssid); #if defined(ESP32) if(strlen(wifi.hostname) > 0) { WiFi.setHostname(wifi.hostname); } #endif WiFi.mode(WIFI_STA); if(strlen(wifi.ip) > 0) { IPAddress ip, gw, sn(255,255,255,0), dns1, dns2; ip.fromString(wifi.ip); gw.fromString(wifi.gateway); sn.fromString(wifi.subnet); if(strlen(wifi.dns1) > 0) { dns1.fromString(wifi.dns1); } else if(strlen(wifi.gateway) > 0) { dns1.fromString(wifi.gateway); // If no DNS, set gateway by default } if(strlen(wifi.dns2) > 0) { dns2.fromString(wifi.dns2); } else if(dns1.toString().isEmpty()) { dns2.fromString(F("208.67.220.220")); // Add OpenDNS as second by default if nothing is configured } if(!WiFi.config(ip, gw, sn, dns1, dns2)) { debugE_P(PSTR("Static IP configuration is invalid, not using")); } } #if defined(ESP8266) if(strlen(wifi.hostname) > 0) { WiFi.hostname(wifi.hostname); } //wifi_set_phy_mode(PHY_MODE_11N); if(!wifi.use11b) { wifi_set_user_sup_rate(RATE_11G6M, RATE_11G54M); wifi_set_user_rate_limit(RC_LIMIT_11G, 0x00, RATE_11G_G54M, RATE_11G_G6M); wifi_set_user_rate_limit(RC_LIMIT_11N, 0x00, RATE_11N_MCS7S, RATE_11N_MCS0); wifi_set_user_limit_rate_mask(LIMIT_RATE_MASK_ALL); } #endif #if defined(ESP32) WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN); WiFi.setSortMethod(WIFI_CONNECT_AP_BY_SIGNAL); #endif WiFi.setAutoReconnect(true); if(WiFi.begin(wifi.ssid, wifi.psk)) { if(wifi.sleep <= 2) { switch(wifi.sleep) { case 0: WiFi.setSleep(WIFI_PS_NONE); break; case 1: WiFi.setSleep(WIFI_PS_MIN_MODEM); break; case 2: WiFi.setSleep(WIFI_PS_MAX_MODEM); break; } } yield(); } else { if (Debug.isActive(RemoteDebug::ERROR)) debugI_P(PSTR("Unable to start WiFi")); } } } void WiFi_post_connect() { wifiConnected = true; WiFiConfig wifi; if(config.getWiFiConfig(wifi)) { #if defined(ESP32) if(sysConfig.dataCollectionConsent == 0 && wifi.use11b) { // If first boot and phyMode is better than 11b, disable 11b for BUS powered devices switch(sysConfig.boardType) { case 2: // spenceme case 3: // Pow-K UART0 case 4: // Pow-U UART0 case 5: // Pow-K+ case 6: // Pow-P1 case 7: // Pow-U+ case 8: // dbeinder: HAN mosquito wifi_phy_mode_t phyMode; if(esp_wifi_sta_get_negotiated_phymode(&phyMode) == ESP_OK) { if(phyMode > WIFI_PHY_MODE_11B) { debugI_P(PSTR("WiFi supports better rates than 802.11b, disabling")) wifi.use11b = false; config.setWiFiConfig(wifi); return; } } break; } } if(wifi.power >= 195) WiFi.setTxPower(WIFI_POWER_19_5dBm); else if(wifi.power >= 190) WiFi.setTxPower(WIFI_POWER_19dBm); else if(wifi.power >= 185) WiFi.setTxPower(WIFI_POWER_18_5dBm); else if(wifi.power >= 170) WiFi.setTxPower(WIFI_POWER_17dBm); else if(wifi.power >= 150) WiFi.setTxPower(WIFI_POWER_15dBm); else if(wifi.power >= 130) WiFi.setTxPower(WIFI_POWER_13dBm); else if(wifi.power >= 110) WiFi.setTxPower(WIFI_POWER_11dBm); else if(wifi.power >= 85) WiFi.setTxPower(WIFI_POWER_8_5dBm); else if(wifi.power >= 70) WiFi.setTxPower(WIFI_POWER_7dBm); else if(wifi.power >= 50) WiFi.setTxPower(WIFI_POWER_5dBm); else if(wifi.power >= 20) WiFi.setTxPower(WIFI_POWER_2dBm); else WiFi.setTxPower(WIFI_POWER_MINUS_1dBm); #elif defined(ESP8266) WiFi.setOutputPower(wifi.power / 10.0); #endif WebConfig web; if(config.getWebConfig(web) && web.security > 0) { Debug.setPassword(web.password); } DebugConfig debug; if(config.getDebugConfig(debug)) { Debug.begin(wifi.hostname, debug.serial || debug.telnet ? (uint8_t) debug.level : RemoteDebug::WARNING); // I don't know why, but ESP8266 stops working after a while if ERROR level is set if(!debug.telnet) { Debug.stop(); } } else { Debug.stop(); } if(Debug.isActive(RemoteDebug::INFO)) { debugI_P(PSTR("Successfully connected to WiFi!")); debugI_P(PSTR("IP: %s"), WiFi.localIP().toString().c_str()); debugI_P(PSTR("GW: %s"), WiFi.gatewayIP().toString().c_str()); debugI_P(PSTR("DNS: %s"), WiFi.dnsIP().toString().c_str()); } mdnsEnabled = false; if(strlen(wifi.hostname) > 0 && wifi.mdns) { debugD_P(PSTR("mDNS is enabled, using host: %s"), wifi.hostname); if(MDNS.begin(wifi.hostname)) { mdnsEnabled = true; MDNS.addService(F("http"), F("tcp"), 80); } else { debugE_P(PSTR("Failed to set up mDNS!")); } } } MqttConfig mqttConfig; if(config.getMqttConfig(mqttConfig)) { mqttEnabled = strlen(mqttConfig.host) > 0; ws.setMqttEnabled(mqttEnabled); } sprintf_P((char*) commonBuffer, PSTR("AMS reader %s"), wifi.hostname); SSDP.setSchemaURL("ssdp/schema.xml"); SSDP.setHTTPPort(80); SSDP.setName((char*) commonBuffer); //SSDP.setSerialNumber("0"); SSDP.setURL("/"); SSDP.setModelName("AMS reader"); //SSDP.setModelNumber("929000226503"); SSDP.setModelURL("https://amsleser.no"); SSDP.setManufacturer("Utilitech AS"); SSDP.setManufacturerURL("http://amsleser.no"); SSDP.setDeviceType("rootdevice"); sprintf_P((char*) commonBuffer, PSTR("amsreader/%s"), FirmwareVersion::VersionString); #if defined(ESP32) SSDP.setModelDescription("Device to read data from electric smart meters"); SSDP.setServerName((char*) commonBuffer); //SSDP.setUUID(""); SSDP.setIcons( "" "image/svg+xml" "48" "48" "24" "favicon.svg" ""); #endif SSDP.setInterval(300); SSDP.begin(); } int16_t unwrapData(uint8_t *buf, DataParserContext &context) { int16_t ret = 0; bool doRet = false; uint16_t end = BUF_SIZE_HAN; uint8_t tag = (*buf); uint8_t lastTag = DATA_TAG_NONE; while(tag != DATA_TAG_NONE) { int16_t curLen = context.length; int8_t res = 0; switch(tag) { case DATA_TAG_HDLC: if(hdlcParser == NULL) hdlcParser = new HDLCParser(); res = hdlcParser->parse(buf, context); break; case DATA_TAG_MBUS: if(mbusParser == NULL) mbusParser = new MBUSParser(); res = mbusParser->parse(buf, context); break; case DATA_TAG_GBT: if(gbtParser == NULL) gbtParser = new GBTParser(); res = gbtParser->parse(buf, context); break; case DATA_TAG_GCM: if(gcmParser == NULL) gcmParser = new GCMParser(meterConfig.encryptionKey, meterConfig.authenticationKey); res = gcmParser->parse(buf, context); break; case DATA_TAG_LLC: if(llcParser == NULL) llcParser = new LLCParser(); res = llcParser->parse(buf, context); break; case DATA_TAG_DLMS: if(dlmsParser == NULL) dlmsParser = new DLMSParser(); res = dlmsParser->parse(buf, context); if(res >= 0) doRet = true; break; case DATA_TAG_DSMR: if(dsmrParser == NULL) dsmrParser = new DSMRParser(); res = dsmrParser->parse(buf, context, lastTag != DATA_TAG_NONE); if(res >= 0) doRet = true; break; default: debugE_P(PSTR("Ended up in default case while unwrapping...(tag %02X)"), tag); return DATA_PARSE_UNKNOWN_DATA; } lastTag = tag; if(res == DATA_PARSE_INCOMPLETE) { return res; } if(context.length > end) return false; if(Debug.isActive(RemoteDebug::VERBOSE)) { switch(tag) { case DATA_TAG_HDLC: debugV_P(PSTR("HDLC frame:")); // If MQTT bytestream payload is selected (mqttHandler == NULL), send the payload to MQTT if(mqttHandler != NULL) { mqttHandler->publishRaw(toHex(buf, curLen)); } break; case DATA_TAG_MBUS: debugV_P(PSTR("MBUS frame:")); // If MQTT bytestream payload is selected (mqttHandler == NULL), send the payload to MQTT if(mqttHandler != NULL) { mqttHandler->publishRaw(toHex(buf, curLen)); } break; case DATA_TAG_GBT: debugV_P(PSTR("GBT frame:")); break; case DATA_TAG_GCM: debugV_P(PSTR("GCM frame:")); break; case DATA_TAG_LLC: debugV_P(PSTR("LLC frame:")); break; case DATA_TAG_DLMS: debugV_P(PSTR("DLMS frame:")); break; case DATA_TAG_DSMR: debugV_P(PSTR("DSMR frame:")); if(mqttHandler != NULL) { mqttHandler->publishRaw(String((char*)buf)); } break; } debugPrint(buf, 0, curLen); } if(res == DATA_PARSE_FINAL_SEGMENT) { if(tag == DATA_TAG_MBUS) { res = mbusParser->write(buf, context); } } if(res < 0) { return res; } buf += res; end -= res; ret += res; // If we are ready to return, do that if(doRet) { context.type = tag; return ret; } // Use start byte of new buffer position as tag for next round in loop tag = (*buf); } debugE_P(PSTR("Got to end of unwrap method...")); return DATA_PARSE_UNKNOWN_DATA; } unsigned long lastMqttRetry = -10000; void MQTT_connect() { if(millis() - lastMqttRetry < (config.isMqttChanged() ? 5000 : 30000)) { yield(); return; } lastMqttRetry = millis(); MqttConfig mqttConfig; if(!config.getMqttConfig(mqttConfig) || strlen(mqttConfig.host) == 0) { if(Debug.isActive(RemoteDebug::WARNING)) debugW_P(PSTR("No MQTT config")); ws.setMqttEnabled(false); mqttEnabled = false; return; } mqttEnabled = true; ws.setMqttEnabled(true); if(mqttHandler != NULL && mqttHandler->getFormat() != mqttConfig.payloadFormat) { delete mqttHandler; mqttHandler = NULL; } if(mqttHandler == NULL) { switch(mqttConfig.payloadFormat) { case 0: mqttHandler = new JsonMqttHandler(mqttConfig, &Debug, (char*) commonBuffer, &hw); break; case 1: case 2: mqttHandler = new RawMqttHandler(mqttConfig, &Debug, (char*) commonBuffer); break; case 3: DomoticzConfig domo; config.getDomoticzConfig(domo); mqttHandler = new DomoticzMqttHandler(mqttConfig, &Debug, (char*) commonBuffer, domo); break; case 4: HomeAssistantConfig haconf; config.getHomeAssistantConfig(haconf); mqttHandler = new HomeAssistantMqttHandler(mqttConfig, &Debug, (char*) commonBuffer, sysConfig.boardType, haconf, &hw); break; case 255: mqttHandler = new PassthroughMqttHandler(mqttConfig, &Debug, (char*) commonBuffer); break; } } ws.setMqttHandler(mqttHandler); if(mqttHandler != NULL) { mqttHandler->connect(); mqttHandler->publishSystem(&hw, eapi, &ea); } } void configFileParse() { debugD_P(PSTR("Parsing config file")); if(!LittleFS.exists(FILE_CFG)) { debugW_P(PSTR("Config file does not exist")); return; } File file = LittleFS.open(FILE_CFG, (char*) "r"); bool lSys = false; bool lWiFi = false; bool lMqtt = false; bool lWeb = false; bool lMeter = false; bool lGpio = false; bool lDomo = false; bool lHa = false; bool lNtp = false; bool lEntsoe = false; bool lEac = false; bool sEa = false; bool sDs = false; ds.load(); SystemConfig sys; WiFiConfig wifi; MqttConfig mqtt; WebConfig web; MeterConfig meter; GpioConfig gpio; DomoticzConfig domo; HomeAssistantConfig haconf; NtpConfig ntp; EntsoeConfig entsoe; EnergyAccountingConfig eac; size_t size; char* buf = (char*) commonBuffer; memset(buf, 0, 1024); while((size = file.readBytesUntil('\n', buf, 1024)) > 0) { for(uint16_t i = 0; i < size; i++) { if(buf[i] < 32 || buf[i] > 126) { memset(buf+i, 0, size-i); debugD_P(PSTR("Found non-ascii, shortening line from %d to %d"), size, i); size = i; break; } } if(strncmp_P(buf, PSTR("boardType "), 10) == 0) { if(!lSys) { config.getSystemConfig(sys); lSys = true; }; sys.boardType = String(buf+10).toInt(); } else if(strncmp_P(buf, PSTR("ssid "), 5) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.ssid, buf+5); } else if(strncmp_P(buf, PSTR("psk "), 4) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.psk, buf+4); } else if(strncmp_P(buf, PSTR("ip "), 3) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.ip, buf+3); } else if(strncmp_P(buf, PSTR("gateway "), 8) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.gateway, buf+8); } else if(strncmp_P(buf, PSTR("subnet "), 7) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.subnet, buf+7); } else if(strncmp_P(buf, PSTR("dns1 "), 5) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.dns1, buf+5); } else if(strncmp_P(buf, PSTR("dns2 "), 5) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.dns2, buf+5); } else if(strncmp_P(buf, PSTR("hostname "), 9) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; strcpy(wifi.hostname, buf+9); } else if(strncmp_P(buf, PSTR("use11b "), 7) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; wifi.use11b = String(buf+7).toInt() == 1; } else if(strncmp_P(buf, PSTR("mdns "), 5) == 0) { if(!lWiFi) { config.getWiFiConfig(wifi); lWiFi = true; }; wifi.mdns = String(buf+5).toInt() == 1;; } else if(strncmp_P(buf, PSTR("mqttHost "), 9) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; strcpy(mqtt.host, buf+9); } else if(strncmp_P(buf, PSTR("mqttPort "), 9) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; mqtt.port = String(buf+9).toInt(); } else if(strncmp_P(buf, PSTR("mqttClientId "), 13) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; strcpy(mqtt.clientId, buf+13); } else if(strncmp_P(buf, PSTR("mqttPublishTopic "), 17) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; strcpy(mqtt.publishTopic, buf+17); } else if(strncmp_P(buf, PSTR("mqttUsername "), 13) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; strcpy(mqtt.username, buf+13); } else if(strncmp_P(buf, PSTR("mqttPassword "), 13) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; strcpy(mqtt.password, buf+13); } else if(strncmp_P(buf, PSTR("mqttPayloadFormat "), 18) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; mqtt.payloadFormat = String(buf+18).toInt(); } else if(strncmp_P(buf, PSTR("mqttSsl "), 8) == 0) { if(!lMqtt) { config.getMqttConfig(mqtt); lMqtt = true; }; mqtt.ssl = String(buf+8).toInt() == 1;; } else if(strncmp_P(buf, PSTR("webSecurity "), 12) == 0) { if(!lWeb) { config.getWebConfig(web); lWeb = true; }; web.security = String(buf+12).toInt(); } else if(strncmp_P(buf, PSTR("webUsername "), 12) == 0) { if(!lWeb) { config.getWebConfig(web); lWeb = true; }; strcpy(web.username, buf+12); } else if(strncmp_P(buf, PSTR("webPassword "), 12) == 0) { if(!lWeb) { config.getWebConfig(web); lWeb = true; }; strcpy(web.password, buf+12); } else if(strncmp_P(buf, PSTR("meterBaud "), 10) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; meter.baud = String(buf+10).toInt(); } else if(strncmp_P(buf, PSTR("meterParity "), 12) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; if(strncmp_P(buf+12, PSTR("7N1"), 3) == 0) meter.parity = 2; if(strncmp_P(buf+12, PSTR("8N1"), 3) == 0) meter.parity = 3; if(strncmp_P(buf+12, PSTR("7E1"), 3) == 0) meter.parity = 10; if(strncmp_P(buf+12, PSTR("8E1"), 3) == 0) meter.parity = 11; } else if(strncmp_P(buf, PSTR("meterInvert "), 12) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; meter.invert = String(buf+12).toInt() == 1;; } else if(strncmp_P(buf, PSTR("meterDistributionSystem "), 24) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; meter.distributionSystem = String(buf+24).toInt(); } else if(strncmp_P(buf, PSTR("meterMainFuse "), 14) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; meter.mainFuse = String(buf+14).toInt(); } else if(strncmp_P(buf, PSTR("meterProductionCapacity "), 24) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; meter.productionCapacity = String(buf+24).toInt(); } else if(strncmp_P(buf, PSTR("meterEncryptionKey "), 19) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; fromHex(meter.encryptionKey, String(buf+19), 16); } else if(strncmp_P(buf, PSTR("meterAuthenticationKey "), 23) == 0) { if(!lMeter) { config.getMeterConfig(meter); lMeter = true; }; fromHex(meter.authenticationKey, String(buf+23), 16); } else if(strncmp_P(buf, PSTR("gpioHanPin "), 11) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.hanPin = String(buf+11).toInt(); } else if(strncmp_P(buf, PSTR("gpioHanPinPullup "), 17) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.hanPinPullup = String(buf+17).toInt() == 1; } else if(strncmp_P(buf, PSTR("gpioApPin "), 10) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.apPin = String(buf+10).toInt(); } else if(strncmp_P(buf, PSTR("gpioLedPin "), 11) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledPin = String(buf+11).toInt(); } else if(strncmp_P(buf, PSTR("gpioLedInverted "), 16) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledInverted = String(buf+16).toInt() == 1; } else if(strncmp_P(buf, PSTR("gpioLedPinRed "), 14) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledPinRed = String(buf+14).toInt(); } else if(strncmp_P(buf, PSTR("gpioLedPinGreen "), 16) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledPinGreen = String(buf+16).toInt(); } else if(strncmp_P(buf, PSTR("gpioLedPinBlue "), 15) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledPinBlue = String(buf+15).toInt(); } else if(strncmp_P(buf, PSTR("gpioLedRgbInverted "), 19) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.ledRgbInverted = String(buf+19).toInt() == 1; } else if(strncmp_P(buf, PSTR("gpioTempSensorPin "), 18) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.tempSensorPin = String(buf+18).toInt(); } else if(strncmp_P(buf, PSTR("gpioTempAnalogSensorPin "), 24) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.tempAnalogSensorPin = String(buf+24).toInt(); } else if(strncmp_P(buf, PSTR("gpioVccPin "), 11) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccPin = String(buf+11).toInt(); } else if(strncmp_P(buf, PSTR("gpioVccOffset "), 14) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccOffset = String(buf+14).toFloat() * 100; } else if(strncmp_P(buf, PSTR("gpioVccMultiplier "), 18) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccMultiplier = String(buf+18).toFloat() * 1000; } else if(strncmp_P(buf, PSTR("gpioVccBootLimit "), 17) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccBootLimit = String(buf+17).toFloat() * 10; } else if(strncmp_P(buf, PSTR("gpioVccResistorGnd "), 19) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccResistorGnd = String(buf+19).toInt(); } else if(strncmp_P(buf, PSTR("gpioVccResistorVcc "), 19) == 0) { if(!lGpio) { config.getGpioConfig(gpio); lGpio = true; }; gpio.vccResistorVcc = String(buf+19).toInt(); } else if(strncmp_P(buf, PSTR("domoticzElidx "), 14) == 0) { if(!lDomo) { config.getDomoticzConfig(domo); lDomo = true; }; domo.elidx = String(buf+14).toInt(); } else if(strncmp_P(buf, PSTR("domoticzVl1idx "), 15) == 0) { if(!lDomo) { config.getDomoticzConfig(domo); lDomo = true; }; domo.vl1idx = String(buf+15).toInt(); } else if(strncmp_P(buf, PSTR("domoticzVl2idx "), 15) == 0) { if(!lDomo) { config.getDomoticzConfig(domo); lDomo = true; }; domo.vl2idx = String(buf+15).toInt(); } else if(strncmp_P(buf, PSTR("domoticzVl3idx "), 15) == 0) { if(!lDomo) { config.getDomoticzConfig(domo); lDomo = true; }; domo.vl3idx = String(buf+15).toInt(); } else if(strncmp_P(buf, PSTR("domoticzCl1idx "), 15) == 0) { if(!lDomo) { config.getDomoticzConfig(domo); lDomo = true; }; domo.cl1idx = String(buf+15).toInt(); } else if(strncmp_P(buf, PSTR("homeAssistantDiscoveryPrefix "), 29) == 0) { if(!lHa) { config.getHomeAssistantConfig(haconf); lHa = true; }; strcpy(haconf.discoveryPrefix, buf+29); } else if(strncmp_P(buf, PSTR("homeAssistantDiscoveryHostname "), 31) == 0) { if(!lHa) { config.getHomeAssistantConfig(haconf); lHa = true; }; strcpy(haconf.discoveryHostname, buf+31); } else if(strncmp_P(buf, PSTR("homeAssistantDiscoveryNameTag "), 30) == 0) { if(!lHa) { config.getHomeAssistantConfig(haconf); lHa = true; }; strcpy(haconf.discoveryNameTag, buf+30); } else if(strncmp_P(buf, PSTR("ntpEnable "), 10) == 0) { if(!lNtp) { config.getNtpConfig(ntp); lNtp = true; }; ntp.enable = String(buf+10).toInt() == 1; } else if(strncmp_P(buf, PSTR("ntpDhcp "), 8) == 0) { if(!lNtp) { config.getNtpConfig(ntp); lNtp = true; }; ntp.dhcp = String(buf+8).toInt() == 1; } else if(strncmp_P(buf, PSTR("ntpServer "), 10) == 0) { if(!lNtp) { config.getNtpConfig(ntp); lNtp = true; }; strcpy(ntp.server, buf+10); } else if(strncmp_P(buf, PSTR("ntpTimezone "), 12) == 0) { if(!lNtp) { config.getNtpConfig(ntp); lNtp = true; }; strcpy(ntp.timezone, buf+12); } else if(strncmp_P(buf, PSTR("entsoeToken "), 12) == 0) { if(!lEntsoe) { config.getEntsoeConfig(entsoe); lEntsoe = true; }; strcpy(entsoe.token, buf+12); } else if(strncmp_P(buf, PSTR("entsoeArea "), 11) == 0) { if(!lEntsoe) { config.getEntsoeConfig(entsoe); lEntsoe = true; }; strcpy(entsoe.area, buf+11); } else if(strncmp_P(buf, PSTR("entsoeCurrency "), 15) == 0) { if(!lEntsoe) { config.getEntsoeConfig(entsoe); lEntsoe = true; }; strcpy(entsoe.currency, buf+15); } else if(strncmp_P(buf, PSTR("entsoeMultiplier "), 17) == 0) { if(!lEntsoe) { config.getEntsoeConfig(entsoe); lEntsoe = true; }; entsoe.multiplier = String(buf+17).toFloat() * 1000; } else if(strncmp_P(buf, PSTR("entsoeFixedPrice "), 17) == 0) { if(!lEntsoe) { config.getEntsoeConfig(entsoe); lEntsoe = true; }; entsoe.fixedPrice = String(buf+17).toFloat() * 1000; } else if(strncmp_P(buf, PSTR("thresholds "), 11) == 0) { if(!lEac) { config.getEnergyAccountingConfig(eac); lEac = true; }; int i = 0; char * pch = strtok (buf+11," "); while (pch != NULL && i < 10) { eac.thresholds[i++] = String(pch).toInt(); pch = strtok (NULL, " "); } eac.hours = String(pch).toInt(); } else if(strncmp_P(buf, PSTR("dayplot "), 8) == 0) { int i = 0; DayDataPoints day = { 0 }; char * pch = strtok (buf+8," "); while (pch != NULL) { int64_t val = String(pch).toInt(); if(day.version < 5) { if(i == 0) { day.version = val; } else if(i == 1) { day.lastMeterReadTime = val; } else if(i == 2) { day.activeImport = val; } else if(i > 2 && i < 27) { day.hImport[i-3] = val / 10; } else if(i == 27) { day.activeExport = val; } else if(i > 27 && i < 52) { day.hExport[i-28] = val / 10; } } else { if(i == 1) { day.lastMeterReadTime = val; } else if(i == 2) { day.activeImport = val; } else if(i == 3) { day.accuracy = val; } else if(i > 3 && i < 28) { day.hImport[i-4] = val / pow(10, day.accuracy); } else if(i == 28) { day.activeExport = val; } else if(i > 28 && i < 53) { day.hExport[i-29] = val / pow(10, day.accuracy); } } pch = strtok (NULL, " "); i++; } ds.setDayData(day); sDs = true; } else if(strncmp_P(buf, PSTR("monthplot "), 10) == 0) { int i = 0; MonthDataPoints month = { 0 }; char * pch = strtok (buf+10," "); while (pch != NULL) { int64_t val = String(pch).toInt(); if(month.version < 6) { if(i == 0) { month.version = val; } else if(i == 1) { month.lastMeterReadTime = val; } else if(i == 2) { month.activeImport = val; } else if(i > 2 && i < 34) { month.dImport[i-3] = val / 10; } else if(i == 34) { month.activeExport = val; } else if(i > 34 && i < 66) { month.dExport[i-35] = val / 10; } } else { if(i == 1) { month.lastMeterReadTime = val; } else if(i == 2) { month.activeImport = val; } else if(i == 3) { month.accuracy = val; } else if(i > 3 && i < 35) { month.dImport[i-4] = val / pow(10, month.accuracy); } else if(i == 35) { month.activeExport = val; } else if(i > 35 && i < 67) { month.dExport[i-36] = val / pow(10, month.accuracy); } } pch = strtok (NULL, " "); i++; } ds.setMonthData(month); sDs = true; } else if(strncmp_P(buf, PSTR("energyaccounting "), 17) == 0) { uint8_t i = 0; EnergyAccountingData ead = { 0, 0, 0, 0, 0, // Cost 0, 0, 0, // Income 0, 0, 0, // Last month import, export and accuracy 0, 0, // Peak 1 0, 0, // Peak 2 0, 0, // Peak 3 0, 0, // Peak 4 0, 0 // Peak 5 }; uint8_t peak = 0; uint64_t totalImport = 0, totalExport = 0; char * pch = strtok (buf+17," "); while (pch != NULL) { if(ead.version < 5) { if(i == 0) { long val = String(pch).toInt(); ead.version = val; } else if(i == 1) { long val = String(pch).toInt(); ead.month = val; } else if(i == 2) { float val = String(pch).toFloat(); if(val > 0.0) { ead.peaks[0] = { 1, (uint16_t) (val*100) }; } } else if(i == 3) { float val = String(pch).toFloat(); ead.costYesterday = val * 100; } else if(i == 4) { float val = String(pch).toFloat(); ead.costThisMonth = val * 100; } else if(i == 5) { float val = String(pch).toFloat(); ead.costLastMonth = val * 100; } else if(i >= 6 && i < 18) { uint8_t hour = i-6; { long val = String(pch).toInt(); ead.peaks[peak].day = val; } pch = strtok (NULL, " "); i++; { float val = String(pch).toFloat(); ead.peaks[peak].value = val * 100; } peak++; } } else { if(i == 1) { long val = String(pch).toInt(); ead.month = val; } else if(i == 2) { float val = String(pch).toFloat(); ead.costYesterday = val * 100; } else if(i == 3) { float val = String(pch).toFloat(); ead.costThisMonth = val * 100; } else if(i == 4) { float val = String(pch).toFloat(); ead.costLastMonth = val * 100; } else if(i == 5) { float val = String(pch).toFloat(); ead.incomeYesterday= val * 100; } else if(i == 6) { float val = String(pch).toFloat(); ead.incomeThisMonth = val * 100; } else if(i == 7) { float val = String(pch).toFloat(); ead.incomeLastMonth = val * 100; } else if(i >= 8 && i < 18) { uint8_t hour = i-8; { long val = String(pch).toInt(); ead.peaks[peak].day = val; } pch = strtok (NULL, " "); i++; { float val = String(pch).toFloat(); ead.peaks[peak].value = val * 100; } peak++; } else if(i == 18) { float val = String(pch).toFloat(); totalImport = val * 1000; } else if(i == 19) { float val = String(pch).toFloat(); totalExport = val * 1000; } } pch = strtok (NULL, " "); i++; } uint8_t accuracy = 0; uint64_t importUpdate = totalImport, exportUpdate = totalExport; while(importUpdate > UINT32_MAX || exportUpdate > UINT32_MAX) { accuracy++; importUpdate = totalImport / pow(10, accuracy); exportUpdate = totalExport / pow(10, accuracy); } ead.lastMonthImport = importUpdate; ead.lastMonthExport = exportUpdate; ead.version = 6; ea.setData(ead); sEa = true; } memset(buf, 0, 1024); } debugD_P(PSTR("Deleting config file")); file.close(); if(!LittleFS.remove(FILE_CFG)) { debugW_P(PSTR("Unable to remove config file, formatting filesystem")); if(!sDs) { ds.load(); sDs = true; } if(!sEa) { ea.load(); sEa = true; } if(!LittleFS.format()) { debugE_P(PSTR("Unable to format broken filesystem")); } } debugI_P(PSTR("Saving configuration now...")); Serial.flush(); if(lSys) config.setSystemConfig(sys); if(lWiFi) config.setWiFiConfig(wifi); if(lMqtt) config.setMqttConfig(mqtt); if(lWeb) config.setWebConfig(web); if(lMeter) config.setMeterConfig(meter); if(lGpio) config.setGpioConfig(gpio); if(lDomo) config.setDomoticzConfig(domo); if(lHa) config.setHomeAssistantConfig(haconf); if(lNtp) config.setNtpConfig(ntp); if(lEntsoe) config.setEntsoeConfig(entsoe); if(lEac) config.setEnergyAccountingConfig(eac); if(sDs) ds.save(); if(sEa) ea.save(); config.save(); LittleFS.end(); }