mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-11 23:43:15 +00:00
The committed FPSCR is updated in the cycle where an FPU instruction signals completion. Since we update the FPRF field in the FPSCR in that same cycle, the value put into r.comm_fpscr needs to include the new FPRF value. Otherwise, a subsequent flush (for example, due to the following instruction being an illegal instruction that has to be emulated) will drop the FPSCR update. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3792 lines
156 KiB
VHDL
3792 lines
156 KiB
VHDL
-- Floating-point unit for Microwatt
|
|
|
|
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.insn_helpers.all;
|
|
use work.decode_types.all;
|
|
use work.crhelpers.all;
|
|
use work.helpers.all;
|
|
use work.common.all;
|
|
|
|
entity fpu is
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
flush_in : in std_ulogic;
|
|
|
|
e_in : in Execute1ToFPUType;
|
|
e_out : out FPUToExecute1Type;
|
|
|
|
w_out : out FPUToWritebackType
|
|
);
|
|
end entity fpu;
|
|
|
|
architecture behaviour of fpu is
|
|
type fp_number_class is (ZERO, FINITE, INFINITY, NAN);
|
|
|
|
constant EXP_BITS : natural := 13;
|
|
constant UNIT_BIT : natural := 56;
|
|
constant QNAN_BIT : natural := UNIT_BIT - 1;
|
|
constant SP_LSB : natural := UNIT_BIT - 23;
|
|
constant SP_GBIT : natural := SP_LSB - 1;
|
|
constant SP_RBIT : natural := SP_LSB - 2;
|
|
constant DP_LSB : natural := UNIT_BIT - 52;
|
|
constant DP_GBIT : natural := DP_LSB - 1;
|
|
constant DP_RBIT : natural := DP_LSB - 2;
|
|
|
|
type fpu_reg_type is record
|
|
class : fp_number_class;
|
|
negative : std_ulogic;
|
|
denorm : std_ulogic;
|
|
naninf : std_ulogic;
|
|
zeroexp : std_ulogic;
|
|
exponent : signed(EXP_BITS-1 downto 0); -- unbiased
|
|
mantissa : std_ulogic_vector(63 downto 0); -- 8.56 format
|
|
end record;
|
|
|
|
type state_t is (IDLE, DO_ILLEGAL, DO_SPECIAL,
|
|
DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF,
|
|
DO_FMR, DO_FMRG, DO_FCMP, DO_FTDIV, DO_FTSQRT,
|
|
DO_FCFID, DO_FCTI,
|
|
DO_FRSP, DO_FRI,
|
|
DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT, DO_FMADD,
|
|
DO_FRE,
|
|
DO_FSEL,
|
|
DO_IDIVMOD,
|
|
FRI_1,
|
|
ADD_1, ADD_SHIFT, ADD_2, ADD_2B, ADD_3,
|
|
CMP_1, CMP_2,
|
|
MULT_1,
|
|
FMADD_0, FMADD_1, FMADD_2, FMADD_3,
|
|
FMADD_4, FMADD_5, FMADD_6,
|
|
DIV_2, DIV_3, DIV_4, DIV_5, DIV_6,
|
|
FRE_1,
|
|
SQRT_ODD, RSQRT_1,
|
|
FTDIV_1,
|
|
SQRT_1, SQRT_2, SQRT_3, SQRT_4,
|
|
SQRT_5, SQRT_6, SQRT_7, SQRT_8,
|
|
SQRT_9, SQRT_10, SQRT_11, SQRT_12,
|
|
INT_SHIFT, INT_ROUND, INT_ISHIFT,
|
|
INT_FINAL, INT_CHECK, INT_OFLOW,
|
|
FINISH, NORMALIZE,
|
|
ROUND_UFLOW_DIS, ROUND_UFLOW_EN,
|
|
ROUND_OFLOW_DIS, ROUND_OFLOW_EN,
|
|
ROUNDING, ROUND_INC, ROUNDING_2, ROUNDING_3,
|
|
RENORM_A, RENORM_B, RENORM_C,
|
|
RENORM_1, RENORM_2,
|
|
IDIV_NORMB, IDIV_NORMB2, IDIV_NORMB3,
|
|
IDIV_CLZA, IDIV_CLZA2, IDIV_CLZA3,
|
|
IDIV_NR0, IDIV_NR1, IDIV_NR2, IDIV_USE0_5,
|
|
IDIV_DODIV, IDIV_SH32,
|
|
IDIV_DIV, IDIV_DIV2, IDIV_DIV3, IDIV_DIV4, IDIV_DIV5,
|
|
IDIV_DIV6, IDIV_DIV7, IDIV_DIV8, IDIV_DIV9,
|
|
IDIV_EXT_TBH, IDIV_EXT_TBH2, IDIV_EXT_TBH3,
|
|
IDIV_EXT_TBH4, IDIV_EXT_TBH5,
|
|
IDIV_EXTDIV, IDIV_EXTDIV1, IDIV_EXTDIV2, IDIV_EXTDIV3,
|
|
IDIV_EXTDIV4, IDIV_EXTDIV5, IDIV_EXTDIV6,
|
|
IDIV_MODADJ, IDIV_MODADJ_NEG, IDIV_MODSUB,
|
|
IDIV_DIVADJ, IDIV_OVFCHK, IDIV_DONE, IDIV_ZERO);
|
|
|
|
type decode32 is array(0 to 31) of state_t;
|
|
type decode8 is array(0 to 7) of state_t;
|
|
|
|
type specialcase_t is record
|
|
invalid : std_ulogic;
|
|
zero_divide : std_ulogic;
|
|
new_fpscr : std_ulogic_vector(31 downto 0);
|
|
immed_result : std_ulogic; -- result is an input, zero, infinity or NaN
|
|
need_finish : std_ulogic; -- result needs further processing
|
|
qnan_result : std_ulogic;
|
|
result_sel : std_ulogic_vector(2 downto 0);
|
|
result_class : fp_number_class;
|
|
rsgn_op : std_ulogic_vector(1 downto 0);
|
|
end record;
|
|
|
|
type reg_type is record
|
|
state : state_t;
|
|
busy : std_ulogic;
|
|
f2stall : std_ulogic;
|
|
instr_done : std_ulogic;
|
|
complete : std_ulogic;
|
|
do_intr : std_ulogic;
|
|
illegal : std_ulogic;
|
|
op : insn_type_t;
|
|
insn : std_ulogic_vector(31 downto 0);
|
|
instr_tag : instr_tag_t;
|
|
dest_fpr : gspr_index_t;
|
|
fe_mode : std_ulogic;
|
|
rc : std_ulogic;
|
|
fp_rc : std_ulogic;
|
|
is_cmp : std_ulogic;
|
|
single_prec : std_ulogic;
|
|
sp_result : std_ulogic;
|
|
fpscr : std_ulogic_vector(31 downto 0);
|
|
comm_fpscr : std_ulogic_vector(31 downto 0); -- committed FPSCR value
|
|
a : fpu_reg_type;
|
|
b : fpu_reg_type;
|
|
c : fpu_reg_type;
|
|
r : std_ulogic_vector(63 downto 0); -- 8.56 format
|
|
s : std_ulogic_vector(55 downto 0); -- extended fraction
|
|
x : std_ulogic;
|
|
p : std_ulogic_vector(63 downto 0); -- 8.56 format
|
|
y : std_ulogic_vector(63 downto 0); -- 8.56 format
|
|
result_sign : std_ulogic;
|
|
result_class : fp_number_class;
|
|
result_exp : signed(EXP_BITS-1 downto 0);
|
|
shift : signed(EXP_BITS-1 downto 0);
|
|
writing_fpr : std_ulogic;
|
|
write_reg : gspr_index_t;
|
|
complete_tag : instr_tag_t;
|
|
writing_cr : std_ulogic;
|
|
writing_xer : std_ulogic;
|
|
int_result : std_ulogic;
|
|
cr_result : std_ulogic_vector(3 downto 0);
|
|
cr_mask : std_ulogic_vector(7 downto 0);
|
|
old_exc : std_ulogic_vector(12 downto 0);
|
|
update_fprf : std_ulogic;
|
|
quieten_nan : std_ulogic;
|
|
nsnan_result : std_ulogic;
|
|
tiny : std_ulogic;
|
|
denorm : std_ulogic;
|
|
round_mode : std_ulogic_vector(2 downto 0);
|
|
is_subtract : std_ulogic;
|
|
add_bsmall : std_ulogic;
|
|
is_arith : std_ulogic;
|
|
is_addition : std_ulogic;
|
|
is_multiply : std_ulogic;
|
|
is_inverse : std_ulogic;
|
|
is_sqrt : std_ulogic;
|
|
do_renorm_b : std_ulogic;
|
|
first : std_ulogic;
|
|
count : unsigned(1 downto 0);
|
|
doing_ftdiv : std_ulogic_vector(1 downto 0);
|
|
use_a : std_ulogic;
|
|
use_b : std_ulogic;
|
|
use_c : std_ulogic;
|
|
invalid : std_ulogic;
|
|
negate : std_ulogic;
|
|
longmask : std_ulogic;
|
|
integer_op : std_ulogic;
|
|
divext : std_ulogic;
|
|
divmod : std_ulogic;
|
|
is_signed : std_ulogic;
|
|
int_ovf : std_ulogic;
|
|
div_close : std_ulogic;
|
|
inc_quot : std_ulogic;
|
|
a_hi : std_ulogic_vector(7 downto 0);
|
|
a_lo : std_ulogic_vector(55 downto 0);
|
|
m32b : std_ulogic;
|
|
oe : std_ulogic;
|
|
xerc : xer_common_t;
|
|
xerc_result : xer_common_t;
|
|
res_sign : std_ulogic;
|
|
res_int : std_ulogic;
|
|
exec_state : state_t;
|
|
cycle_1 : std_ulogic;
|
|
cycle_1_ar : std_ulogic;
|
|
regsel : std_ulogic_vector(2 downto 0);
|
|
is_nan_inf : std_ulogic;
|
|
zero_fri : std_ulogic;
|
|
end record;
|
|
|
|
type lookup_table is array(0 to 1023) of std_ulogic_vector(17 downto 0);
|
|
|
|
signal r, rin : reg_type;
|
|
|
|
signal fp_result : std_ulogic_vector(63 downto 0);
|
|
signal opsel_a : std_ulogic_vector(2 downto 0);
|
|
signal opsel_b : std_ulogic_vector(2 downto 0);
|
|
signal opsel_c : std_ulogic_vector(2 downto 0);
|
|
signal opsel_r : std_ulogic_vector(1 downto 0);
|
|
signal opsel_s : std_ulogic_vector(1 downto 0);
|
|
signal opsel_aneg : std_ulogic;
|
|
signal opsel_aabs : std_ulogic;
|
|
signal opsel_mask : std_ulogic;
|
|
signal opsel_sel : std_ulogic_vector(2 downto 0);
|
|
signal in_a : std_ulogic_vector(63 downto 0);
|
|
signal in_b : std_ulogic_vector(63 downto 0);
|
|
signal result : std_ulogic_vector(63 downto 0);
|
|
signal lost_bits : std_ulogic;
|
|
signal r_hi_nz : std_ulogic;
|
|
signal r_lo_nz : std_ulogic;
|
|
signal r_gt_1 : std_ulogic;
|
|
signal s_nz : std_ulogic;
|
|
signal misc_sel : std_ulogic_vector(2 downto 0);
|
|
signal f_to_multiply : MultiplyInputType;
|
|
signal multiply_to_f : MultiplyOutputType;
|
|
signal msel_1 : std_ulogic_vector(1 downto 0);
|
|
signal msel_2 : std_ulogic_vector(1 downto 0);
|
|
signal msel_add : std_ulogic_vector(1 downto 0);
|
|
signal msel_inv : std_ulogic;
|
|
signal inverse_est : std_ulogic_vector(18 downto 0);
|
|
|
|
-- opsel values
|
|
constant AIN_ZERO : std_ulogic_vector(2 downto 0) := "000";
|
|
constant AIN_A : std_ulogic_vector(2 downto 0) := "001";
|
|
constant AIN_B : std_ulogic_vector(2 downto 0) := "010";
|
|
constant AIN_C : std_ulogic_vector(2 downto 0) := "011";
|
|
constant AIN_PS8 : std_ulogic_vector(2 downto 0) := "100";
|
|
constant AIN_RND_B32 : std_ulogic_vector(2 downto 0) := "101";
|
|
constant AIN_RND_RBIT : std_ulogic_vector(2 downto 0) := "110";
|
|
constant AIN_RND : std_ulogic_vector(2 downto 0) := "111";
|
|
|
|
constant BIN_ZERO : std_ulogic_vector(2 downto 0) := "000";
|
|
constant BIN_R : std_ulogic_vector(2 downto 0) := "001";
|
|
constant BIN_MINUSR : std_ulogic_vector(2 downto 0) := "100";
|
|
constant BIN_ABSR : std_ulogic_vector(2 downto 0) := "101";
|
|
constant BIN_ADDSUBR : std_ulogic_vector(2 downto 0) := "110";
|
|
constant BIN_RSIGNR : std_ulogic_vector(2 downto 0) := "111";
|
|
|
|
constant CIN_ZERO : std_ulogic_vector(2 downto 0) := "000";
|
|
constant CIN_SUBEXT : std_ulogic_vector(2 downto 0) := "001";
|
|
constant CIN_ABSEXT : std_ulogic_vector(2 downto 0) := "010";
|
|
constant CIN_INC : std_ulogic_vector(2 downto 0) := "011";
|
|
constant CIN_ROUND : std_ulogic_vector(2 downto 0) := "100";
|
|
constant CIN_RNDX : std_ulogic_vector(2 downto 0) := "101";
|
|
constant CIN_RNDQ : std_ulogic_vector(2 downto 0) := "110";
|
|
|
|
constant RES_SUM : std_ulogic_vector(1 downto 0) := "00";
|
|
constant RES_SHIFT : std_ulogic_vector(1 downto 0) := "01";
|
|
constant RES_MULT : std_ulogic_vector(1 downto 0) := "10";
|
|
constant RES_MISC : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant S_ZERO : std_ulogic_vector(1 downto 0) := "00";
|
|
constant S_NEG : std_ulogic_vector(1 downto 0) := "01";
|
|
constant S_SHIFT : std_ulogic_vector(1 downto 0) := "10";
|
|
constant S_MULT : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
-- msel values
|
|
constant MUL1_A : std_ulogic_vector(1 downto 0) := "00";
|
|
constant MUL1_B : std_ulogic_vector(1 downto 0) := "01";
|
|
constant MUL1_Y : std_ulogic_vector(1 downto 0) := "10";
|
|
constant MUL1_R : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant MUL2_C : std_ulogic_vector(1 downto 0) := "00";
|
|
constant MUL2_LUT : std_ulogic_vector(1 downto 0) := "01";
|
|
constant MUL2_P : std_ulogic_vector(1 downto 0) := "10";
|
|
constant MUL2_R : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant MULADD_ZERO : std_ulogic_vector(1 downto 0) := "00";
|
|
constant MULADD_CONST : std_ulogic_vector(1 downto 0) := "01";
|
|
constant MULADD_A : std_ulogic_vector(1 downto 0) := "10";
|
|
constant MULADD_RS : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
-- control signals and values for exponent data path
|
|
constant REXP1_ZERO : std_ulogic_vector(1 downto 0) := "00";
|
|
constant REXP1_R : std_ulogic_vector(1 downto 0) := "01";
|
|
constant REXP1_A : std_ulogic_vector(1 downto 0) := "10";
|
|
constant REXP1_BHALF : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant REXP2_CON : std_ulogic_vector(1 downto 0) := "00";
|
|
constant REXP2_NE : std_ulogic_vector(1 downto 0) := "01";
|
|
constant REXP2_C : std_ulogic_vector(1 downto 0) := "10";
|
|
constant REXP2_B : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant RECON2_ZERO : std_ulogic_vector(1 downto 0) := "00";
|
|
constant RECON2_UNIT : std_ulogic_vector(1 downto 0) := "01";
|
|
constant RECON2_BIAS : std_ulogic_vector(1 downto 0) := "10";
|
|
constant RECON2_MAX : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
signal re_sel1 : std_ulogic_vector(1 downto 0);
|
|
signal re_sel2 : std_ulogic_vector(1 downto 0);
|
|
signal re_con2 : std_ulogic_vector(1 downto 0);
|
|
signal re_neg1 : std_ulogic;
|
|
signal re_neg2 : std_ulogic;
|
|
signal re_set_result : std_ulogic;
|
|
|
|
constant RSH1_ZERO : std_ulogic_vector(1 downto 0) := "00";
|
|
constant RSH1_B : std_ulogic_vector(1 downto 0) := "01";
|
|
constant RSH1_NE : std_ulogic_vector(1 downto 0) := "10";
|
|
constant RSH1_S : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant RSH2_CON : std_ulogic := '0';
|
|
constant RSH2_A : std_ulogic := '1';
|
|
|
|
constant RSCON2_ZERO : std_ulogic_vector(3 downto 0) := "0000";
|
|
constant RSCON2_1 : std_ulogic_vector(3 downto 0) := "0001";
|
|
constant RSCON2_UNIT_52 : std_ulogic_vector(3 downto 0) := "0010";
|
|
constant RSCON2_64_UNIT : std_ulogic_vector(3 downto 0) := "0011";
|
|
constant RSCON2_32 : std_ulogic_vector(3 downto 0) := "0100";
|
|
constant RSCON2_52 : std_ulogic_vector(3 downto 0) := "0101";
|
|
constant RSCON2_UNIT : std_ulogic_vector(3 downto 0) := "0110";
|
|
constant RSCON2_63 : std_ulogic_vector(3 downto 0) := "0111";
|
|
constant RSCON2_64 : std_ulogic_vector(3 downto 0) := "1000";
|
|
constant RSCON2_MINEXP : std_ulogic_vector(3 downto 0) := "1001";
|
|
constant RSCON2_DPMINX : std_ulogic_vector(3 downto 0) := "1010";
|
|
|
|
signal rs_sel1 : std_ulogic_vector(1 downto 0);
|
|
signal rs_sel2 : std_ulogic;
|
|
signal rs_con2 : std_ulogic_vector(3 downto 0);
|
|
signal rs_neg1 : std_ulogic;
|
|
signal rs_neg2 : std_ulogic;
|
|
signal rs_norm : std_ulogic;
|
|
|
|
constant RSGN_NOP : std_ulogic_vector(1 downto 0) := "00";
|
|
constant RSGN_INV : std_ulogic_vector(1 downto 0) := "01";
|
|
constant RSGN_SUB : std_ulogic_vector(1 downto 0) := "10";
|
|
constant RSGN_SEL : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
signal rcls_op : std_ulogic_vector(1 downto 0);
|
|
constant RCLS_NOP : std_ulogic_vector(1 downto 0) := "00";
|
|
constant RCLS_SEL : std_ulogic_vector(1 downto 0) := "01";
|
|
constant RCLS_TZERO : std_ulogic_vector(1 downto 0) := "10";
|
|
constant RCLS_TINF : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
constant CROP_NONE : std_ulogic_vector(2 downto 0) := "000";
|
|
constant CROP_FCMP : std_ulogic_vector(2 downto 0) := "001";
|
|
constant CROP_MCRFS : std_ulogic_vector(2 downto 0) := "010";
|
|
constant CROP_FTDIV : std_ulogic_vector(2 downto 0) := "100";
|
|
constant CROP_FTSQRT : std_ulogic_vector(2 downto 0) := "101";
|
|
constant CROP_INTRES : std_ulogic_vector(2 downto 0) := "110";
|
|
|
|
signal scinfo : specialcase_t;
|
|
|
|
constant arith_decode : decode32 := (
|
|
-- indexed by bits 5..1 of opcode
|
|
2#01000# => DO_FRI,
|
|
2#01100# => DO_FRSP,
|
|
2#01110# => DO_FCTI,
|
|
2#01111# => DO_FCTI,
|
|
2#10010# => DO_FDIV,
|
|
2#10100# => DO_FADD,
|
|
2#10101# => DO_FADD,
|
|
2#10110# => DO_FSQRT,
|
|
2#11000# => DO_FRE,
|
|
2#11001# => DO_FMUL,
|
|
2#11010# => DO_FSQRT,
|
|
2#11100# => DO_FMADD,
|
|
2#11101# => DO_FMADD,
|
|
2#11110# => DO_FMADD,
|
|
2#11111# => DO_FMADD,
|
|
others => DO_ILLEGAL
|
|
);
|
|
|
|
constant cmp_decode : decode8 := (
|
|
2#000# => DO_FCMP,
|
|
2#001# => DO_FCMP,
|
|
2#010# => DO_MCRFS,
|
|
2#100# => DO_FTDIV,
|
|
2#101# => DO_FTSQRT,
|
|
others => DO_ILLEGAL
|
|
);
|
|
|
|
constant misc_decode : decode32 := (
|
|
-- indexed by bits 10, 8, 4, 2, 1 of opcode
|
|
2#00010# => DO_MTFSB,
|
|
2#01010# => DO_MTFSFI,
|
|
2#10010# => DO_FMRG,
|
|
2#11010# => DO_FMRG,
|
|
2#10011# => DO_MFFS,
|
|
2#11011# => DO_MTFSF,
|
|
2#10110# => DO_FCFID,
|
|
2#11110# => DO_FCFID,
|
|
others => DO_ILLEGAL
|
|
);
|
|
|
|
-- Inverse lookup table, indexed by the top 8 fraction bits
|
|
-- The first 256 entries are the reciprocal (1/x) lookup table,
|
|
-- and the remaining 768 entries are the reciprocal square root table.
|
|
-- Output range is [0.5, 1) in 0.19 format, though the top
|
|
-- bit isn't stored since it is always 1.
|
|
-- Each output value is the inverse of the center of the input
|
|
-- range for the value, i.e. entry 0 is 1 / (1 + 1/512),
|
|
-- entry 1 is 1 / (1 + 3/512), etc.
|
|
constant inverse_table : lookup_table := (
|
|
-- 1/x lookup table
|
|
-- Unit bit is assumed to be 1, so input range is [1, 2)
|
|
18x"3fc01", 18x"3f411", 18x"3ec31", 18x"3e460", 18x"3dc9f", 18x"3d4ec", 18x"3cd49", 18x"3c5b5",
|
|
18x"3be2f", 18x"3b6b8", 18x"3af4f", 18x"3a7f4", 18x"3a0a7", 18x"39968", 18x"39237", 18x"38b14",
|
|
18x"383fe", 18x"37cf5", 18x"375f9", 18x"36f0a", 18x"36828", 18x"36153", 18x"35a8a", 18x"353ce",
|
|
18x"34d1e", 18x"3467a", 18x"33fe3", 18x"33957", 18x"332d7", 18x"32c62", 18x"325f9", 18x"31f9c",
|
|
18x"3194a", 18x"31303", 18x"30cc7", 18x"30696", 18x"30070", 18x"2fa54", 18x"2f443", 18x"2ee3d",
|
|
18x"2e841", 18x"2e250", 18x"2dc68", 18x"2d68b", 18x"2d0b8", 18x"2caee", 18x"2c52e", 18x"2bf79",
|
|
18x"2b9cc", 18x"2b429", 18x"2ae90", 18x"2a900", 18x"2a379", 18x"29dfb", 18x"29887", 18x"2931b",
|
|
18x"28db8", 18x"2885e", 18x"2830d", 18x"27dc4", 18x"27884", 18x"2734d", 18x"26e1d", 18x"268f6",
|
|
18x"263d8", 18x"25ec1", 18x"259b3", 18x"254ac", 18x"24fad", 18x"24ab7", 18x"245c8", 18x"240e1",
|
|
18x"23c01", 18x"23729", 18x"23259", 18x"22d90", 18x"228ce", 18x"22413", 18x"21f60", 18x"21ab4",
|
|
18x"2160f", 18x"21172", 18x"20cdb", 18x"2084b", 18x"203c2", 18x"1ff40", 18x"1fac4", 18x"1f64f",
|
|
18x"1f1e1", 18x"1ed79", 18x"1e918", 18x"1e4be", 18x"1e069", 18x"1dc1b", 18x"1d7d4", 18x"1d392",
|
|
18x"1cf57", 18x"1cb22", 18x"1c6f3", 18x"1c2ca", 18x"1bea7", 18x"1ba8a", 18x"1b672", 18x"1b261",
|
|
18x"1ae55", 18x"1aa50", 18x"1a64f", 18x"1a255", 18x"19e60", 18x"19a70", 18x"19686", 18x"192a2",
|
|
18x"18ec3", 18x"18ae9", 18x"18715", 18x"18345", 18x"17f7c", 18x"17bb7", 18x"177f7", 18x"1743d",
|
|
18x"17087", 18x"16cd7", 18x"1692c", 18x"16585", 18x"161e4", 18x"15e47", 18x"15ab0", 18x"1571d",
|
|
18x"1538e", 18x"15005", 18x"14c80", 18x"14900", 18x"14584", 18x"1420d", 18x"13e9b", 18x"13b2d",
|
|
18x"137c3", 18x"1345e", 18x"130fe", 18x"12da2", 18x"12a4a", 18x"126f6", 18x"123a7", 18x"1205c",
|
|
18x"11d15", 18x"119d2", 18x"11694", 18x"11359", 18x"11023", 18x"10cf1", 18x"109c2", 18x"10698",
|
|
18x"10372", 18x"10050", 18x"0fd31", 18x"0fa17", 18x"0f700", 18x"0f3ed", 18x"0f0de", 18x"0edd3",
|
|
18x"0eacb", 18x"0e7c7", 18x"0e4c7", 18x"0e1ca", 18x"0ded2", 18x"0dbdc", 18x"0d8eb", 18x"0d5fc",
|
|
18x"0d312", 18x"0d02b", 18x"0cd47", 18x"0ca67", 18x"0c78a", 18x"0c4b1", 18x"0c1db", 18x"0bf09",
|
|
18x"0bc3a", 18x"0b96e", 18x"0b6a5", 18x"0b3e0", 18x"0b11e", 18x"0ae5f", 18x"0aba3", 18x"0a8eb",
|
|
18x"0a636", 18x"0a383", 18x"0a0d4", 18x"09e28", 18x"09b80", 18x"098da", 18x"09637", 18x"09397",
|
|
18x"090fb", 18x"08e61", 18x"08bca", 18x"08936", 18x"086a5", 18x"08417", 18x"0818c", 18x"07f04",
|
|
18x"07c7e", 18x"079fc", 18x"0777c", 18x"074ff", 18x"07284", 18x"0700d", 18x"06d98", 18x"06b26",
|
|
18x"068b6", 18x"0664a", 18x"063e0", 18x"06178", 18x"05f13", 18x"05cb1", 18x"05a52", 18x"057f5",
|
|
18x"0559a", 18x"05342", 18x"050ed", 18x"04e9a", 18x"04c4a", 18x"049fc", 18x"047b0", 18x"04567",
|
|
18x"04321", 18x"040dd", 18x"03e9b", 18x"03c5c", 18x"03a1f", 18x"037e4", 18x"035ac", 18x"03376",
|
|
18x"03142", 18x"02f11", 18x"02ce2", 18x"02ab5", 18x"0288b", 18x"02663", 18x"0243d", 18x"02219",
|
|
18x"01ff7", 18x"01dd8", 18x"01bbb", 18x"019a0", 18x"01787", 18x"01570", 18x"0135b", 18x"01149",
|
|
18x"00f39", 18x"00d2a", 18x"00b1e", 18x"00914", 18x"0070c", 18x"00506", 18x"00302", 18x"00100",
|
|
-- 1/sqrt(x) lookup table
|
|
-- Input is in the range [1, 4), i.e. two bits to the left of the
|
|
-- binary point. Those 2 bits index the following 3 blocks of 256 values.
|
|
-- 1.0 ... 1.9999
|
|
18x"3fe00", 18x"3fa06", 18x"3f612", 18x"3f224", 18x"3ee3a", 18x"3ea58", 18x"3e67c", 18x"3e2a4",
|
|
18x"3ded2", 18x"3db06", 18x"3d73e", 18x"3d37e", 18x"3cfc2", 18x"3cc0a", 18x"3c85a", 18x"3c4ae",
|
|
18x"3c106", 18x"3bd64", 18x"3b9c8", 18x"3b630", 18x"3b29e", 18x"3af10", 18x"3ab86", 18x"3a802",
|
|
18x"3a484", 18x"3a108", 18x"39d94", 18x"39a22", 18x"396b6", 18x"3934e", 18x"38fea", 18x"38c8c",
|
|
18x"38932", 18x"385dc", 18x"3828a", 18x"37f3e", 18x"37bf6", 18x"378b2", 18x"37572", 18x"37236",
|
|
18x"36efe", 18x"36bca", 18x"3689a", 18x"36570", 18x"36248", 18x"35f26", 18x"35c06", 18x"358ea",
|
|
18x"355d4", 18x"352c0", 18x"34fb0", 18x"34ca4", 18x"3499c", 18x"34698", 18x"34398", 18x"3409c",
|
|
18x"33da2", 18x"33aac", 18x"337bc", 18x"334cc", 18x"331e2", 18x"32efc", 18x"32c18", 18x"32938",
|
|
18x"3265a", 18x"32382", 18x"320ac", 18x"31dd8", 18x"31b0a", 18x"3183e", 18x"31576", 18x"312b0",
|
|
18x"30fee", 18x"30d2e", 18x"30a74", 18x"307ba", 18x"30506", 18x"30254", 18x"2ffa4", 18x"2fcf8",
|
|
18x"2fa4e", 18x"2f7a8", 18x"2f506", 18x"2f266", 18x"2efca", 18x"2ed2e", 18x"2ea98", 18x"2e804",
|
|
18x"2e572", 18x"2e2e4", 18x"2e058", 18x"2ddce", 18x"2db48", 18x"2d8c6", 18x"2d646", 18x"2d3c8",
|
|
18x"2d14c", 18x"2ced4", 18x"2cc5e", 18x"2c9ea", 18x"2c77a", 18x"2c50c", 18x"2c2a2", 18x"2c038",
|
|
18x"2bdd2", 18x"2bb70", 18x"2b90e", 18x"2b6b0", 18x"2b454", 18x"2b1fa", 18x"2afa4", 18x"2ad4e",
|
|
18x"2aafc", 18x"2a8ac", 18x"2a660", 18x"2a414", 18x"2a1cc", 18x"29f86", 18x"29d42", 18x"29b00",
|
|
18x"298c2", 18x"29684", 18x"2944a", 18x"29210", 18x"28fda", 18x"28da6", 18x"28b74", 18x"28946",
|
|
18x"28718", 18x"284ec", 18x"282c4", 18x"2809c", 18x"27e78", 18x"27c56", 18x"27a34", 18x"27816",
|
|
18x"275fa", 18x"273e0", 18x"271c8", 18x"26fb0", 18x"26d9c", 18x"26b8a", 18x"2697a", 18x"2676c",
|
|
18x"26560", 18x"26356", 18x"2614c", 18x"25f46", 18x"25d42", 18x"25b40", 18x"2593e", 18x"25740",
|
|
18x"25542", 18x"25348", 18x"2514e", 18x"24f58", 18x"24d62", 18x"24b6e", 18x"2497c", 18x"2478c",
|
|
18x"2459e", 18x"243b0", 18x"241c6", 18x"23fde", 18x"23df6", 18x"23c10", 18x"23a2c", 18x"2384a",
|
|
18x"2366a", 18x"2348c", 18x"232ae", 18x"230d2", 18x"22efa", 18x"22d20", 18x"22b4a", 18x"22976",
|
|
18x"227a2", 18x"225d2", 18x"22402", 18x"22234", 18x"22066", 18x"21e9c", 18x"21cd2", 18x"21b0a",
|
|
18x"21944", 18x"2177e", 18x"215ba", 18x"213fa", 18x"21238", 18x"2107a", 18x"20ebc", 18x"20d00",
|
|
18x"20b46", 18x"2098e", 18x"207d6", 18x"20620", 18x"2046c", 18x"202b8", 18x"20108", 18x"1ff58",
|
|
18x"1fda8", 18x"1fbfc", 18x"1fa50", 18x"1f8a4", 18x"1f6fc", 18x"1f554", 18x"1f3ae", 18x"1f208",
|
|
18x"1f064", 18x"1eec2", 18x"1ed22", 18x"1eb82", 18x"1e9e4", 18x"1e846", 18x"1e6aa", 18x"1e510",
|
|
18x"1e378", 18x"1e1e0", 18x"1e04a", 18x"1deb4", 18x"1dd20", 18x"1db8e", 18x"1d9fc", 18x"1d86c",
|
|
18x"1d6de", 18x"1d550", 18x"1d3c4", 18x"1d238", 18x"1d0ae", 18x"1cf26", 18x"1cd9e", 18x"1cc18",
|
|
18x"1ca94", 18x"1c910", 18x"1c78c", 18x"1c60a", 18x"1c48a", 18x"1c30c", 18x"1c18e", 18x"1c010",
|
|
18x"1be94", 18x"1bd1a", 18x"1bba0", 18x"1ba28", 18x"1b8b2", 18x"1b73c", 18x"1b5c6", 18x"1b452",
|
|
18x"1b2e0", 18x"1b16e", 18x"1affe", 18x"1ae8e", 18x"1ad20", 18x"1abb4", 18x"1aa46", 18x"1a8dc",
|
|
-- 2.0 ... 2.9999
|
|
18x"1a772", 18x"1a608", 18x"1a4a0", 18x"1a33a", 18x"1a1d4", 18x"1a070", 18x"19f0c", 18x"19da8",
|
|
18x"19c48", 18x"19ae6", 18x"19986", 18x"19828", 18x"196ca", 18x"1956e", 18x"19412", 18x"192b8",
|
|
18x"1915e", 18x"19004", 18x"18eae", 18x"18d56", 18x"18c00", 18x"18aac", 18x"18958", 18x"18804",
|
|
18x"186b2", 18x"18562", 18x"18412", 18x"182c2", 18x"18174", 18x"18026", 18x"17eda", 18x"17d8e",
|
|
18x"17c44", 18x"17afa", 18x"179b2", 18x"1786a", 18x"17724", 18x"175de", 18x"17498", 18x"17354",
|
|
18x"17210", 18x"170ce", 18x"16f8c", 18x"16e4c", 18x"16d0c", 18x"16bcc", 18x"16a8e", 18x"16950",
|
|
18x"16814", 18x"166d8", 18x"1659e", 18x"16464", 18x"1632a", 18x"161f2", 18x"160ba", 18x"15f84",
|
|
18x"15e4e", 18x"15d1a", 18x"15be6", 18x"15ab2", 18x"15980", 18x"1584e", 18x"1571c", 18x"155ec",
|
|
18x"154bc", 18x"1538e", 18x"15260", 18x"15134", 18x"15006", 18x"14edc", 18x"14db0", 18x"14c86",
|
|
18x"14b5e", 18x"14a36", 18x"1490e", 18x"147e6", 18x"146c0", 18x"1459a", 18x"14476", 18x"14352",
|
|
18x"14230", 18x"1410c", 18x"13fea", 18x"13eca", 18x"13daa", 18x"13c8a", 18x"13b6c", 18x"13a4e",
|
|
18x"13930", 18x"13814", 18x"136f8", 18x"135dc", 18x"134c2", 18x"133a8", 18x"1328e", 18x"13176",
|
|
18x"1305e", 18x"12f48", 18x"12e30", 18x"12d1a", 18x"12c06", 18x"12af2", 18x"129de", 18x"128ca",
|
|
18x"127b8", 18x"126a6", 18x"12596", 18x"12486", 18x"12376", 18x"12266", 18x"12158", 18x"1204a",
|
|
18x"11f3e", 18x"11e32", 18x"11d26", 18x"11c1a", 18x"11b10", 18x"11a06", 18x"118fc", 18x"117f4",
|
|
18x"116ec", 18x"115e4", 18x"114de", 18x"113d8", 18x"112d2", 18x"111ce", 18x"110ca", 18x"10fc6",
|
|
18x"10ec2", 18x"10dc0", 18x"10cbe", 18x"10bbc", 18x"10abc", 18x"109bc", 18x"108bc", 18x"107be",
|
|
18x"106c0", 18x"105c2", 18x"104c4", 18x"103c8", 18x"102cc", 18x"101d0", 18x"100d6", 18x"0ffdc",
|
|
18x"0fee2", 18x"0fdea", 18x"0fcf0", 18x"0fbf8", 18x"0fb02", 18x"0fa0a", 18x"0f914", 18x"0f81e",
|
|
18x"0f72a", 18x"0f636", 18x"0f542", 18x"0f44e", 18x"0f35a", 18x"0f268", 18x"0f176", 18x"0f086",
|
|
18x"0ef94", 18x"0eea4", 18x"0edb4", 18x"0ecc6", 18x"0ebd6", 18x"0eae8", 18x"0e9fa", 18x"0e90e",
|
|
18x"0e822", 18x"0e736", 18x"0e64a", 18x"0e55e", 18x"0e474", 18x"0e38a", 18x"0e2a0", 18x"0e1b8",
|
|
18x"0e0d0", 18x"0dfe8", 18x"0df00", 18x"0de1a", 18x"0dd32", 18x"0dc4c", 18x"0db68", 18x"0da82",
|
|
18x"0d99e", 18x"0d8ba", 18x"0d7d6", 18x"0d6f4", 18x"0d612", 18x"0d530", 18x"0d44e", 18x"0d36c",
|
|
18x"0d28c", 18x"0d1ac", 18x"0d0cc", 18x"0cfee", 18x"0cf0e", 18x"0ce30", 18x"0cd54", 18x"0cc76",
|
|
18x"0cb9a", 18x"0cabc", 18x"0c9e0", 18x"0c906", 18x"0c82a", 18x"0c750", 18x"0c676", 18x"0c59c",
|
|
18x"0c4c4", 18x"0c3ea", 18x"0c312", 18x"0c23a", 18x"0c164", 18x"0c08c", 18x"0bfb6", 18x"0bee0",
|
|
18x"0be0a", 18x"0bd36", 18x"0bc62", 18x"0bb8c", 18x"0baba", 18x"0b9e6", 18x"0b912", 18x"0b840",
|
|
18x"0b76e", 18x"0b69c", 18x"0b5cc", 18x"0b4fa", 18x"0b42a", 18x"0b35a", 18x"0b28a", 18x"0b1bc",
|
|
18x"0b0ee", 18x"0b01e", 18x"0af50", 18x"0ae84", 18x"0adb6", 18x"0acea", 18x"0ac1e", 18x"0ab52",
|
|
18x"0aa86", 18x"0a9bc", 18x"0a8f0", 18x"0a826", 18x"0a75c", 18x"0a694", 18x"0a5ca", 18x"0a502",
|
|
18x"0a43a", 18x"0a372", 18x"0a2aa", 18x"0a1e4", 18x"0a11c", 18x"0a056", 18x"09f90", 18x"09ecc",
|
|
-- 3.0 ... 3.9999
|
|
18x"09e06", 18x"09d42", 18x"09c7e", 18x"09bba", 18x"09af6", 18x"09a32", 18x"09970", 18x"098ae",
|
|
18x"097ec", 18x"0972a", 18x"09668", 18x"095a8", 18x"094e8", 18x"09426", 18x"09368", 18x"092a8",
|
|
18x"091e8", 18x"0912a", 18x"0906c", 18x"08fae", 18x"08ef0", 18x"08e32", 18x"08d76", 18x"08cba",
|
|
18x"08bfe", 18x"08b42", 18x"08a86", 18x"089ca", 18x"08910", 18x"08856", 18x"0879c", 18x"086e2",
|
|
18x"08628", 18x"08570", 18x"084b6", 18x"083fe", 18x"08346", 18x"0828e", 18x"081d8", 18x"08120",
|
|
18x"0806a", 18x"07fb4", 18x"07efe", 18x"07e48", 18x"07d92", 18x"07cde", 18x"07c2a", 18x"07b76",
|
|
18x"07ac2", 18x"07a0e", 18x"0795a", 18x"078a8", 18x"077f4", 18x"07742", 18x"07690", 18x"075de",
|
|
18x"0752e", 18x"0747c", 18x"073cc", 18x"0731c", 18x"0726c", 18x"071bc", 18x"0710c", 18x"0705e",
|
|
18x"06fae", 18x"06f00", 18x"06e52", 18x"06da4", 18x"06cf6", 18x"06c4a", 18x"06b9c", 18x"06af0",
|
|
18x"06a44", 18x"06998", 18x"068ec", 18x"06840", 18x"06796", 18x"066ea", 18x"06640", 18x"06596",
|
|
18x"064ec", 18x"06442", 18x"0639a", 18x"062f0", 18x"06248", 18x"061a0", 18x"060f8", 18x"06050",
|
|
18x"05fa8", 18x"05f00", 18x"05e5a", 18x"05db4", 18x"05d0e", 18x"05c68", 18x"05bc2", 18x"05b1c",
|
|
18x"05a76", 18x"059d2", 18x"0592e", 18x"05888", 18x"057e4", 18x"05742", 18x"0569e", 18x"055fa",
|
|
18x"05558", 18x"054b6", 18x"05412", 18x"05370", 18x"052ce", 18x"0522e", 18x"0518c", 18x"050ec",
|
|
18x"0504a", 18x"04faa", 18x"04f0a", 18x"04e6a", 18x"04dca", 18x"04d2c", 18x"04c8c", 18x"04bee",
|
|
18x"04b50", 18x"04ab0", 18x"04a12", 18x"04976", 18x"048d8", 18x"0483a", 18x"0479e", 18x"04700",
|
|
18x"04664", 18x"045c8", 18x"0452c", 18x"04490", 18x"043f6", 18x"0435a", 18x"042c0", 18x"04226",
|
|
18x"0418a", 18x"040f0", 18x"04056", 18x"03fbe", 18x"03f24", 18x"03e8c", 18x"03df2", 18x"03d5a",
|
|
18x"03cc2", 18x"03c2a", 18x"03b92", 18x"03afa", 18x"03a62", 18x"039cc", 18x"03934", 18x"0389e",
|
|
18x"03808", 18x"03772", 18x"036dc", 18x"03646", 18x"035b2", 18x"0351c", 18x"03488", 18x"033f2",
|
|
18x"0335e", 18x"032ca", 18x"03236", 18x"031a2", 18x"03110", 18x"0307c", 18x"02fea", 18x"02f56",
|
|
18x"02ec4", 18x"02e32", 18x"02da0", 18x"02d0e", 18x"02c7c", 18x"02bec", 18x"02b5a", 18x"02aca",
|
|
18x"02a38", 18x"029a8", 18x"02918", 18x"02888", 18x"027f8", 18x"0276a", 18x"026da", 18x"0264a",
|
|
18x"025bc", 18x"0252e", 18x"024a0", 18x"02410", 18x"02384", 18x"022f6", 18x"02268", 18x"021da",
|
|
18x"0214e", 18x"020c0", 18x"02034", 18x"01fa8", 18x"01f1c", 18x"01e90", 18x"01e04", 18x"01d78",
|
|
18x"01cee", 18x"01c62", 18x"01bd8", 18x"01b4c", 18x"01ac2", 18x"01a38", 18x"019ae", 18x"01924",
|
|
18x"0189c", 18x"01812", 18x"01788", 18x"01700", 18x"01676", 18x"015ee", 18x"01566", 18x"014de",
|
|
18x"01456", 18x"013ce", 18x"01346", 18x"012c0", 18x"01238", 18x"011b2", 18x"0112c", 18x"010a4",
|
|
18x"0101e", 18x"00f98", 18x"00f12", 18x"00e8c", 18x"00e08", 18x"00d82", 18x"00cfe", 18x"00c78",
|
|
18x"00bf4", 18x"00b70", 18x"00aec", 18x"00a68", 18x"009e4", 18x"00960", 18x"008dc", 18x"00858",
|
|
18x"007d6", 18x"00752", 18x"006d0", 18x"0064e", 18x"005cc", 18x"0054a", 18x"004c8", 18x"00446",
|
|
18x"003c4", 18x"00342", 18x"002c2", 18x"00240", 18x"001c0", 18x"00140", 18x"000c0", 18x"00040"
|
|
);
|
|
|
|
-- Left and right shifter with 120 bit input and 64 bit output.
|
|
-- Shifts inp left by shift bits and returns the upper 64 bits of
|
|
-- the result. The shift parameter is interpreted as a signed
|
|
-- number in the range -64..63, with negative values indicating
|
|
-- right shifts.
|
|
function shifter_64(inp: std_ulogic_vector(119 downto 0);
|
|
shift: std_ulogic_vector(6 downto 0))
|
|
return std_ulogic_vector is
|
|
variable s1 : std_ulogic_vector(94 downto 0);
|
|
variable s2 : std_ulogic_vector(70 downto 0);
|
|
variable shift_result : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
case shift(6 downto 5) is
|
|
when "00" =>
|
|
s1 := inp(119 downto 25);
|
|
when "01" =>
|
|
s1 := inp(87 downto 0) & "0000000";
|
|
when "10" =>
|
|
s1 := x"0000000000000000" & inp(119 downto 89);
|
|
when others =>
|
|
s1 := x"00000000" & inp(119 downto 57);
|
|
end case;
|
|
case shift(4 downto 3) is
|
|
when "00" =>
|
|
s2 := s1(94 downto 24);
|
|
when "01" =>
|
|
s2 := s1(86 downto 16);
|
|
when "10" =>
|
|
s2 := s1(78 downto 8);
|
|
when others =>
|
|
s2 := s1(70 downto 0);
|
|
end case;
|
|
case shift(2 downto 0) is
|
|
when "000" =>
|
|
shift_result := s2(70 downto 7);
|
|
when "001" =>
|
|
shift_result := s2(69 downto 6);
|
|
when "010" =>
|
|
shift_result := s2(68 downto 5);
|
|
when "011" =>
|
|
shift_result := s2(67 downto 4);
|
|
when "100" =>
|
|
shift_result := s2(66 downto 3);
|
|
when "101" =>
|
|
shift_result := s2(65 downto 2);
|
|
when "110" =>
|
|
shift_result := s2(64 downto 1);
|
|
when others =>
|
|
shift_result := s2(63 downto 0);
|
|
end case;
|
|
return shift_result;
|
|
end;
|
|
|
|
-- Split a DP floating-point number into components and work out its class.
|
|
-- If is_int = 1, the input is considered an integer
|
|
function decode_dp(fpr: std_ulogic_vector(63 downto 0); is_fp: std_ulogic;
|
|
is_32bint: std_ulogic; is_signed: std_ulogic) return fpu_reg_type is
|
|
variable reg : fpu_reg_type;
|
|
variable exp_nz : std_ulogic;
|
|
variable exp_ao : std_ulogic;
|
|
variable frac_nz : std_ulogic;
|
|
variable low_nz : std_ulogic;
|
|
variable cls : std_ulogic_vector(2 downto 0);
|
|
begin
|
|
reg.negative := fpr(63);
|
|
reg.denorm := '0';
|
|
reg.naninf := '0';
|
|
reg.zeroexp := '0';
|
|
exp_nz := or (fpr(62 downto 52));
|
|
exp_ao := and (fpr(62 downto 52));
|
|
frac_nz := or (fpr(51 downto 0));
|
|
low_nz := or (fpr(31 downto 0));
|
|
if is_fp = '1' then
|
|
reg.naninf := exp_ao;
|
|
reg.zeroexp := not exp_nz;
|
|
reg.denorm := frac_nz and not exp_nz;
|
|
reg.exponent := signed(resize(unsigned(fpr(62 downto 52)), EXP_BITS)) - to_signed(1023, EXP_BITS);
|
|
if exp_nz = '0' then
|
|
reg.exponent := to_signed(-1022, EXP_BITS);
|
|
end if;
|
|
reg.mantissa := std_ulogic_vector(shift_left(resize(unsigned(exp_nz & fpr(51 downto 0)), 64),
|
|
UNIT_BIT - 52));
|
|
cls := exp_ao & exp_nz & frac_nz;
|
|
case cls is
|
|
when "000" => reg.class := ZERO;
|
|
when "001" => reg.class := FINITE; -- denormalized
|
|
when "010" => reg.class := FINITE;
|
|
when "011" => reg.class := FINITE;
|
|
when "110" => reg.class := INFINITY;
|
|
when others => reg.class := NAN;
|
|
end case;
|
|
elsif is_32bint = '1' then
|
|
reg.negative := fpr(31);
|
|
reg.mantissa(31 downto 0) := fpr(31 downto 0);
|
|
reg.mantissa(63 downto 32) := (others => (is_signed and fpr(31)));
|
|
reg.exponent := (others => '0');
|
|
if low_nz = '1' then
|
|
reg.class := FINITE;
|
|
else
|
|
reg.class := ZERO;
|
|
end if;
|
|
else
|
|
reg.mantissa := fpr;
|
|
reg.exponent := (others => '0');
|
|
if (fpr(63) or exp_nz or frac_nz) = '1' then
|
|
reg.class := FINITE;
|
|
else
|
|
reg.class := ZERO;
|
|
end if;
|
|
end if;
|
|
return reg;
|
|
end;
|
|
|
|
-- Construct a DP floating-point result from components
|
|
function pack_dp(negative: std_ulogic; class: fp_number_class; exp: signed(EXP_BITS-1 downto 0);
|
|
mantissa: std_ulogic_vector; single_prec: std_ulogic; quieten_nan: std_ulogic)
|
|
return std_ulogic_vector is
|
|
variable dp_result : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
dp_result := (others => '0');
|
|
case class is
|
|
when ZERO =>
|
|
when FINITE =>
|
|
if mantissa(UNIT_BIT) = '1' then
|
|
-- normalized number
|
|
dp_result(62 downto 52) := std_ulogic_vector(resize(exp, 11) + 1023);
|
|
end if;
|
|
dp_result(51 downto 29) := mantissa(UNIT_BIT - 1 downto SP_LSB);
|
|
if single_prec = '0' then
|
|
dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
|
|
end if;
|
|
when INFINITY =>
|
|
dp_result(62 downto 52) := "11111111111";
|
|
when NAN =>
|
|
dp_result(62 downto 52) := "11111111111";
|
|
dp_result(51) := quieten_nan or mantissa(QNAN_BIT);
|
|
dp_result(50 downto 29) := mantissa(QNAN_BIT - 1 downto SP_LSB);
|
|
if single_prec = '0' then
|
|
dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
|
|
end if;
|
|
end case;
|
|
dp_result(63) := negative;
|
|
return dp_result;
|
|
end;
|
|
|
|
-- Determine whether to increment when rounding
|
|
-- Returns rounding_inc & inexact
|
|
-- If single_prec = 1, assumes x includes the bottom 31 (== SP_LSB - 2)
|
|
-- bits of the mantissa already (usually arranged by setting set_x = 1 earlier).
|
|
function fp_rounding(mantissa: std_ulogic_vector(63 downto 0); x: std_ulogic;
|
|
single_prec: std_ulogic; rn: std_ulogic_vector(2 downto 0);
|
|
sign: std_ulogic)
|
|
return std_ulogic_vector is
|
|
variable grx : std_ulogic_vector(2 downto 0);
|
|
variable ret : std_ulogic_vector(1 downto 0);
|
|
variable lsb : std_ulogic;
|
|
begin
|
|
if single_prec = '0' then
|
|
grx := mantissa(DP_GBIT downto DP_RBIT) & (x or (or mantissa(DP_RBIT - 1 downto 0)));
|
|
lsb := mantissa(DP_LSB);
|
|
else
|
|
grx := mantissa(SP_GBIT downto SP_RBIT) & x;
|
|
lsb := mantissa(SP_LSB);
|
|
end if;
|
|
ret(1) := '0';
|
|
ret(0) := or (grx);
|
|
case rn(1 downto 0) is
|
|
when "00" => -- round to nearest
|
|
if grx = "100" and rn(2) = '0' then
|
|
ret(1) := lsb; -- tie, round to even
|
|
else
|
|
ret(1) := grx(2);
|
|
end if;
|
|
when "01" => -- round towards zero
|
|
when others => -- round towards +/- inf
|
|
if rn(0) = sign then
|
|
-- round towards greater magnitude
|
|
ret(1) := ret(0);
|
|
end if;
|
|
end case;
|
|
return ret;
|
|
end;
|
|
|
|
-- Determine result flags to write into the FPSCR
|
|
function result_flags(sign: std_ulogic; class: fp_number_class; int_result: std_ulogic;
|
|
unitbit: std_ulogic)
|
|
return std_ulogic_vector is
|
|
begin
|
|
if int_result = '1' then
|
|
return "00000";
|
|
else
|
|
case class is
|
|
when ZERO =>
|
|
return sign & "0010";
|
|
when FINITE =>
|
|
return (not unitbit) & sign & (not sign) & "00";
|
|
when INFINITY =>
|
|
return '0' & sign & (not sign) & "01";
|
|
when NAN =>
|
|
return "10001";
|
|
end case;
|
|
end if;
|
|
end;
|
|
|
|
begin
|
|
fpu_multiply_0: entity work.multiply
|
|
port map (
|
|
clk => clk,
|
|
m_in => f_to_multiply,
|
|
m_out => multiply_to_f
|
|
);
|
|
|
|
fpu_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' or flush_in = '1' then
|
|
r.state <= IDLE;
|
|
r.busy <= '0';
|
|
r.f2stall <= '0';
|
|
r.instr_done <= '0';
|
|
r.complete <= '0';
|
|
r.illegal <= '0';
|
|
r.do_intr <= '0';
|
|
r.writing_fpr <= '0';
|
|
r.writing_cr <= '0';
|
|
r.writing_xer <= '0';
|
|
r.fpscr <= (others => '0');
|
|
r.write_reg <= (others =>'0');
|
|
r.complete_tag.valid <= '0';
|
|
r.cr_mask <= (others =>'0');
|
|
r.cr_result <= (others =>'0');
|
|
r.instr_tag.valid <= '0';
|
|
r.exec_state <= IDLE;
|
|
if rst = '1' then
|
|
r.fpscr <= (others => '0');
|
|
r.comm_fpscr <= (others => '0');
|
|
elsif r.do_intr = '0' then
|
|
-- flush_in = 1 and not due to us generating an interrupt,
|
|
-- roll back to committed fpscr
|
|
r.fpscr <= r.comm_fpscr;
|
|
end if;
|
|
else
|
|
assert not (r.state /= IDLE and e_in.valid = '1') severity failure;
|
|
assert not (rin.state = FINISH and rin.r = 64x"0" and rin.x = '1');
|
|
assert not (rin.state = ROUNDING and rin.r(UNIT_BIT) = '0' and
|
|
not (rin.tiny = '1' or rin.zero_fri = '1'));
|
|
r <= rin;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- synchronous reads from lookup table
|
|
lut_access: process(clk)
|
|
variable addrhi : std_ulogic_vector(1 downto 0);
|
|
variable addr : std_ulogic_vector(9 downto 0);
|
|
begin
|
|
if rising_edge(clk) then
|
|
if r.is_sqrt = '1' then
|
|
addrhi := r.b.mantissa(UNIT_BIT + 1 downto UNIT_BIT);
|
|
else
|
|
addrhi := "00";
|
|
end if;
|
|
addr := addrhi & r.b.mantissa(UNIT_BIT - 1 downto UNIT_BIT - 8);
|
|
if is_X(addr) then
|
|
inverse_est <= (others => 'X');
|
|
else
|
|
inverse_est <= '1' & inverse_table(to_integer(unsigned(addr)));
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
e_out.busy <= r.busy;
|
|
e_out.f2stall <= r.f2stall;
|
|
e_out.exception <= r.fpscr(FPSCR_FEX);
|
|
|
|
-- Note that the cycle where r.complete = 1 for an instruction can be as
|
|
-- late as the second cycle of the following instruction (i.e. in the state
|
|
-- following IDLE state). Hence it is important that none of the fields of
|
|
-- r that are used below are modified in IDLE state.
|
|
w_out.valid <= r.complete;
|
|
w_out.instr_tag <= r.complete_tag;
|
|
w_out.write_enable <= r.writing_fpr and r.complete;
|
|
w_out.write_reg <= r.write_reg;
|
|
w_out.write_data <= fp_result;
|
|
w_out.write_cr_enable <= r.writing_cr and r.complete;
|
|
w_out.write_cr_mask <= r.cr_mask;
|
|
w_out.write_cr_data <= r.cr_result & r.cr_result & r.cr_result & r.cr_result &
|
|
r.cr_result & r.cr_result & r.cr_result & r.cr_result;
|
|
w_out.write_xerc <= r.writing_xer and r.complete;
|
|
w_out.xerc <= r.xerc_result;
|
|
w_out.interrupt <= r.do_intr;
|
|
w_out.intr_vec <= 16#700#;
|
|
w_out.srr1 <= (47-44 => r.illegal, 47-43 => not r.illegal, others => '0');
|
|
|
|
-- This is active in the second cycle of an instruction, and works out if
|
|
-- we have a special case where one or more operand is NaN, infinity, or zero,
|
|
-- meaning that an exception is generated or a specific value results
|
|
-- immediately without further calculation.
|
|
fpu_specialcases: process(all)
|
|
variable e : specialcase_t;
|
|
variable invalid_mul : std_ulogic;
|
|
begin
|
|
e.invalid := '0';
|
|
e.zero_divide := '0';
|
|
e.new_fpscr := (others => '0');
|
|
e.immed_result := '0';
|
|
e.need_finish := '0';
|
|
e.qnan_result := '0';
|
|
e.result_sel := AIN_ZERO;
|
|
e.result_class := FINITE;
|
|
e.rsgn_op := RSGN_NOP;
|
|
|
|
-- Check if any operand is a signalling NAN
|
|
if (r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
|
|
(r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') or
|
|
(r.c.class = NAN and r.c.mantissa(QNAN_BIT) = '0') then
|
|
e.new_fpscr(FPSCR_VXSNAN) := '1';
|
|
e.invalid := '1';
|
|
end if;
|
|
|
|
-- Check for this case here since VXIMZ can be set along with VXSNAN
|
|
invalid_mul := '0';
|
|
if r.is_multiply = '1' and
|
|
((r.a.class = INFINITY and r.c.class = ZERO) or
|
|
(r.a.class = ZERO and r.c.class = INFINITY)) then
|
|
e.new_fpscr(FPSCR_VXIMZ) := '1';
|
|
e.invalid := '1';
|
|
invalid_mul := '1';
|
|
end if;
|
|
|
|
-- Note that any operand for which r.use_X is 0 will have class = ZERO
|
|
if r.is_nan_inf = '1' then
|
|
e.immed_result := '1';
|
|
|
|
if r.int_result = '1' then
|
|
e.qnan_result := '1';
|
|
e.new_fpscr(FPSCR_VXCVI) := '1';
|
|
|
|
elsif r.a.class = NAN or r.b.class = NAN or r.c.class = NAN then
|
|
e.result_class := NAN;
|
|
e.rsgn_op := RSGN_SEL;
|
|
-- Select the first input that is a NaN
|
|
if r.a.class = NAN then
|
|
e.result_sel := AIN_A;
|
|
elsif r.b.class = NAN then
|
|
e.result_sel := AIN_B;
|
|
elsif r.c.class = NAN then
|
|
e.result_sel := AIN_C;
|
|
end if;
|
|
|
|
else
|
|
-- some operand is an infinity
|
|
if invalid_mul = '1' then
|
|
e.qnan_result := '1';
|
|
elsif (r.a.class = INFINITY or r.c.class = INFINITY) then
|
|
if r.is_multiply = '1' then
|
|
e.rsgn_op := RSGN_SUB;
|
|
end if;
|
|
if r.is_subtract = '1' and r.b.class = INFINITY then
|
|
e.new_fpscr(FPSCR_VXISI) := '1';
|
|
e.qnan_result := '1';
|
|
end if;
|
|
end if;
|
|
if r.is_inverse = '1' and r.a.class = INFINITY and r.b.class = INFINITY then
|
|
e.new_fpscr(FPSCR_VXIDI) := '1';
|
|
e.qnan_result := '1';
|
|
end if;
|
|
if r.b.class = INFINITY and r.is_sqrt = '1' and r.b.negative = '1' then
|
|
e.new_fpscr(FPSCR_VXSQRT) := '1';
|
|
e.qnan_result := '1';
|
|
end if;
|
|
if r.b.class = INFINITY and r.is_inverse = '1' then
|
|
-- fdiv, fre, frsqrte
|
|
e.result_class := ZERO;
|
|
else
|
|
e.result_class := INFINITY;
|
|
end if;
|
|
end if;
|
|
|
|
elsif r.use_a = '1' and r.a.class = ZERO then
|
|
e.immed_result := '1';
|
|
if r.is_addition = '1' then
|
|
-- result is +/- B
|
|
e.result_sel := AIN_B;
|
|
e.result_class := r.b.class;
|
|
-- r.result_sign is already correct
|
|
if r.b.class = FINITE and r.int_result = '0' and
|
|
(r.single_prec = '1' or (r.fpscr(FPSCR_UE) = '1' and r.b.denorm = '1')) then
|
|
e.need_finish := '1';
|
|
end if;
|
|
else
|
|
e.result_class := ZERO;
|
|
end if;
|
|
if r.is_inverse = '1' and r.b.class = ZERO then
|
|
-- fdiv 0 / 0
|
|
e.new_fpscr(FPSCR_VXZDZ) := '1';
|
|
e.qnan_result := '1';
|
|
end if;
|
|
|
|
elsif r.use_c = '1' and r.c.class = ZERO then
|
|
-- fmadd/sub A * 0 + B
|
|
e.immed_result := '1';
|
|
e.result_sel := AIN_B;
|
|
e.result_class := r.b.class;
|
|
if r.b.class = FINITE and r.int_result = '0' and
|
|
(r.single_prec = '1' or (r.fpscr(FPSCR_UE) = '1' and r.b.denorm = '1')) then
|
|
e.need_finish := '1';
|
|
end if;
|
|
|
|
elsif r.use_b = '1' and r.b.class = ZERO and r.is_multiply = '0' then
|
|
-- B is zero, other operands are finite
|
|
e.immed_result := '1';
|
|
if r.is_inverse = '1' then
|
|
-- fdiv, fre, frsqrte
|
|
e.result_class := INFINITY;
|
|
e.new_fpscr(FPSCR_ZX) := '1';
|
|
e.zero_divide := '1';
|
|
elsif r.is_addition = '1' then
|
|
-- fadd, result is A
|
|
e.result_sel := AIN_A;
|
|
e.rsgn_op := RSGN_SEL;
|
|
if r.a.class = FINITE and r.int_result = '0' and
|
|
(r.single_prec = '1' or (r.fpscr(FPSCR_UE) = '1' and r.a.denorm = '1')) then
|
|
e.need_finish := '1';
|
|
end if;
|
|
else
|
|
-- other things, result is zero
|
|
e.result_class := ZERO;
|
|
end if;
|
|
end if;
|
|
if r.is_sqrt = '1' and r.b.class = FINITE and r.b.negative = '1' then
|
|
e.immed_result := '1';
|
|
e.new_fpscr(FPSCR_VXSQRT) := '1';
|
|
e.qnan_result := '1';
|
|
end if;
|
|
|
|
if e.qnan_result = '1' then
|
|
e.invalid := '1';
|
|
e.result_class := NAN;
|
|
end if;
|
|
scinfo <= e;
|
|
end process;
|
|
|
|
fpu_1: process(all)
|
|
variable v : reg_type;
|
|
variable adec : fpu_reg_type;
|
|
variable bdec : fpu_reg_type;
|
|
variable cdec : fpu_reg_type;
|
|
variable fpscr_mask : std_ulogic_vector(31 downto 0);
|
|
variable j, k : integer;
|
|
variable flm : std_ulogic_vector(7 downto 0);
|
|
variable fpin_a : std_ulogic;
|
|
variable fpin_b : std_ulogic;
|
|
variable fpin_c : std_ulogic;
|
|
variable is_32bint : std_ulogic;
|
|
variable mask : std_ulogic_vector(63 downto 0);
|
|
variable in_a0 : std_ulogic_vector(63 downto 0);
|
|
variable in_b0 : std_ulogic_vector(63 downto 0);
|
|
variable misc : std_ulogic_vector(63 downto 0);
|
|
variable shift_res : std_ulogic_vector(63 downto 0);
|
|
variable round : std_ulogic_vector(1 downto 0);
|
|
variable update_fx : std_ulogic;
|
|
variable arith_done : std_ulogic;
|
|
variable invalid : std_ulogic;
|
|
variable zero_divide : std_ulogic;
|
|
variable min_exp : signed(EXP_BITS-1 downto 0);
|
|
variable max_exp : signed(EXP_BITS-1 downto 0);
|
|
variable bias_exp : signed(EXP_BITS-1 downto 0);
|
|
variable new_exp : signed(EXP_BITS-1 downto 0);
|
|
variable exp_tiny : std_ulogic;
|
|
variable exp_huge : std_ulogic;
|
|
variable clz : std_ulogic_vector(5 downto 0);
|
|
variable set_x : std_ulogic;
|
|
variable set_xs : std_ulogic;
|
|
variable mshift : signed(EXP_BITS-1 downto 0);
|
|
variable need_check : std_ulogic;
|
|
variable msb : std_ulogic;
|
|
variable set_a : std_ulogic;
|
|
variable set_a_exp : std_ulogic;
|
|
variable set_a_mant : std_ulogic;
|
|
variable set_a_hi : std_ulogic;
|
|
variable set_a_lo : std_ulogic;
|
|
variable set_b : std_ulogic;
|
|
variable set_b_mant : std_ulogic;
|
|
variable set_c : std_ulogic;
|
|
variable set_y : std_ulogic;
|
|
variable set_r : std_ulogic;
|
|
variable set_s : std_ulogic;
|
|
variable qnan_result : std_ulogic;
|
|
variable invalid_mul : std_ulogic;
|
|
variable px_nz : std_ulogic;
|
|
variable pcmpb_eq : std_ulogic;
|
|
variable pcmpb_lt : std_ulogic;
|
|
variable pcmpc_eq : std_ulogic;
|
|
variable pcmpc_lt : std_ulogic;
|
|
variable pshift : std_ulogic;
|
|
variable renorm_sqrt : std_ulogic;
|
|
variable sqrt_exp : signed(EXP_BITS-1 downto 0);
|
|
variable shiftin : std_ulogic;
|
|
variable shiftin0 : std_ulogic;
|
|
variable mulexp : signed(EXP_BITS-1 downto 0);
|
|
variable maddend : std_ulogic_vector(127 downto 0);
|
|
variable sum : std_ulogic_vector(63 downto 0);
|
|
variable mult_mask : std_ulogic;
|
|
variable sign_bit : std_ulogic;
|
|
variable rexp_in1 : signed(EXP_BITS-1 downto 0);
|
|
variable rexp_in2 : signed(EXP_BITS-1 downto 0);
|
|
variable rexp_cin : std_ulogic;
|
|
variable rexp_sum : signed(EXP_BITS-1 downto 0);
|
|
variable rsh_in1 : signed(EXP_BITS-1 downto 0);
|
|
variable rsh_in2 : signed(EXP_BITS-1 downto 0);
|
|
variable exec_state : state_t;
|
|
variable opcbits : std_ulogic_vector(4 downto 0);
|
|
variable illegal : std_ulogic;
|
|
variable rsign : std_ulogic;
|
|
variable rsgn_op : std_ulogic_vector(1 downto 0);
|
|
variable is_nan_inf : std_ulogic;
|
|
variable is_zero_den : std_ulogic;
|
|
variable set_reg_ind : std_ulogic;
|
|
variable cr_op : std_ulogic_vector(2 downto 0);
|
|
variable cr_result : std_ulogic_vector(3 downto 0);
|
|
variable set_cr : std_ulogic;
|
|
variable set_fpcc : std_ulogic;
|
|
variable asign : std_ulogic;
|
|
variable bneg : std_ulogic;
|
|
variable ci : std_ulogic;
|
|
variable rormr : std_ulogic_vector(63 downto 0);
|
|
variable sorms : std_ulogic_vector(55 downto 0);
|
|
begin
|
|
v := r;
|
|
v.complete := '0';
|
|
v.do_intr := '0';
|
|
is_32bint := '0';
|
|
exec_state := IDLE;
|
|
is_nan_inf := '0';
|
|
is_zero_den := '0';
|
|
v.cycle_1 := e_in.valid;
|
|
v.cycle_1_ar := '0';
|
|
|
|
if r.complete = '1' or r.do_intr = '1' then
|
|
v.instr_done := '0';
|
|
v.writing_fpr := '0';
|
|
v.writing_cr := '0';
|
|
v.writing_xer := '0';
|
|
v.illegal := '0';
|
|
end if;
|
|
|
|
-- capture incoming instruction
|
|
if e_in.valid = '1' then
|
|
v.insn := e_in.insn;
|
|
v.op := e_in.op;
|
|
v.instr_tag := e_in.itag;
|
|
v.fe_mode := or (e_in.fe_mode);
|
|
v.dest_fpr := e_in.frt;
|
|
v.single_prec := e_in.single;
|
|
v.is_signed := e_in.is_signed;
|
|
v.rc := e_in.rc;
|
|
v.fp_rc := '0';
|
|
v.is_cmp := e_in.out_cr;
|
|
v.oe := e_in.oe;
|
|
v.m32b := e_in.m32b;
|
|
v.xerc := e_in.xerc;
|
|
v.longmask := '0';
|
|
v.integer_op := '0';
|
|
v.divext := '0';
|
|
v.divmod := '0';
|
|
v.is_sqrt := '0';
|
|
v.is_multiply := '0';
|
|
v.is_addition := '0';
|
|
v.is_subtract := '0';
|
|
v.is_inverse := '0';
|
|
v.add_bsmall := '0';
|
|
v.do_renorm_b := '0';
|
|
fpin_a := '0';
|
|
fpin_b := '0';
|
|
fpin_c := '0';
|
|
v.use_a := e_in.valid_a;
|
|
v.use_b := e_in.valid_b;
|
|
v.use_c := e_in.valid_c;
|
|
v.round_mode := '0' & r.fpscr(FPSCR_RN+1 downto FPSCR_RN);
|
|
v.result_sign := '0';
|
|
v.negate := '0';
|
|
v.quieten_nan := '1';
|
|
v.int_result := '0';
|
|
v.is_arith := '0';
|
|
v.zero_fri := '0';
|
|
case e_in.op is
|
|
when OP_FP_ARITH =>
|
|
fpin_a := e_in.valid_a;
|
|
fpin_b := e_in.valid_b;
|
|
fpin_c := e_in.valid_c;
|
|
v.longmask := e_in.single;
|
|
v.fp_rc := e_in.rc;
|
|
v.is_arith := '1';
|
|
v.cycle_1_ar := '1';
|
|
exec_state := arith_decode(to_integer(unsigned(e_in.insn(5 downto 1))));
|
|
if e_in.insn(5 downto 1) = "10110" or e_in.insn(5 downto 1) = "11010" then
|
|
v.is_sqrt := '1';
|
|
end if;
|
|
if e_in.insn(5 downto 1) = "01111" then -- fcti*z
|
|
v.round_mode := "001";
|
|
elsif e_in.insn(5 downto 1) = "01000" then -- fri*
|
|
v.round_mode := '1' & e_in.insn(7 downto 6);
|
|
end if;
|
|
case e_in.insn(5 downto 1) is
|
|
when "10100" | "10101" => -- fadd and fsub
|
|
v.is_addition := '1';
|
|
v.result_sign := e_in.fra(63);
|
|
if unsigned(e_in.fra(62 downto 52)) <= unsigned(e_in.frb(62 downto 52)) then
|
|
v.result_sign := e_in.frb(63) xnor e_in.insn(1);
|
|
else
|
|
v.add_bsmall := '1';
|
|
end if;
|
|
v.is_subtract := not (e_in.fra(63) xor e_in.frb(63) xor e_in.insn(1));
|
|
when "11001" => -- fmul
|
|
v.is_multiply := '1';
|
|
v.result_sign := e_in.fra(63) xor e_in.frc(63);
|
|
when "11100" | "11101" | "11110" | "11111" => --fmadd family
|
|
v.is_multiply := '1';
|
|
v.is_addition := '1';
|
|
v.result_sign := e_in.frb(63) xnor e_in.insn(1);
|
|
v.is_subtract := not (e_in.fra(63) xor e_in.frb(63) xor
|
|
e_in.frc(63) xor e_in.insn(1));
|
|
v.negate := e_in.insn(2);
|
|
v.do_renorm_b := '1';
|
|
when "10010" => -- fdiv
|
|
v.is_inverse := '1';
|
|
v.result_sign := e_in.fra(63) xor e_in.frb(63);
|
|
v.do_renorm_b := '1';
|
|
when "11000" | "11010" => -- fre and frsqrte
|
|
v.is_inverse := '1';
|
|
v.result_sign := e_in.frb(63);
|
|
v.do_renorm_b := '1';
|
|
when "01110" | "01111" => -- fcti*
|
|
v.int_result := '1';
|
|
v.result_sign := e_in.frb(63);
|
|
when "01000" => -- fri*
|
|
v.zero_fri := '1';
|
|
v.result_sign := e_in.frb(63);
|
|
when others => -- frsp and fsqrt
|
|
v.result_sign := e_in.frb(63);
|
|
v.do_renorm_b := '1';
|
|
end case;
|
|
when OP_FP_CMP =>
|
|
fpin_a := e_in.valid_a;
|
|
fpin_b := e_in.valid_b;
|
|
exec_state := cmp_decode(to_integer(unsigned(e_in.insn(8 downto 6))));
|
|
when OP_FP_MISC =>
|
|
v.fp_rc := e_in.rc;
|
|
opcbits := e_in.insn(10) & e_in.insn(8) & e_in.insn(4) & e_in.insn(2) & e_in.insn(1);
|
|
exec_state := misc_decode(to_integer(unsigned(opcbits)));
|
|
case opcbits is
|
|
when "10010" | "11010" =>
|
|
-- fmrg*
|
|
v.int_result := '1';
|
|
v.result_sign := '0';
|
|
when "10011" =>
|
|
-- mffs*
|
|
v.int_result := '1';
|
|
v.result_sign := '0';
|
|
if e_in.insn(20 downto 16) /= "00000" then
|
|
-- mffs* variants other than mffs have bit 0 reserved
|
|
v.rc := '0';
|
|
end if;
|
|
when "10110" => -- fcfid
|
|
v.result_sign := e_in.frb(63);
|
|
v.longmask := e_in.single;
|
|
when others =>
|
|
v.result_sign := '0';
|
|
end case;
|
|
when OP_FP_MOVE =>
|
|
v.fp_rc := e_in.rc;
|
|
fpin_a := e_in.valid_a;
|
|
fpin_b := e_in.valid_b;
|
|
fpin_c := e_in.valid_c;
|
|
v.quieten_nan := '0';
|
|
if e_in.insn(5) = '0' then
|
|
exec_state := DO_FMR;
|
|
if e_in.insn(9) = '1' then
|
|
v.result_sign := '0'; -- fabs
|
|
elsif e_in.insn(8) = '1' then
|
|
v.result_sign := '1'; -- fnabs
|
|
elsif e_in.insn(7) = '1' then
|
|
v.result_sign := e_in.frb(63); -- fmr
|
|
elsif e_in.insn(6) = '1' then
|
|
v.result_sign := not e_in.frb(63); -- fneg
|
|
else
|
|
v.result_sign := e_in.fra(63); -- fcpsgn
|
|
end if;
|
|
else
|
|
exec_state := DO_FSEL;
|
|
v.result_sign := e_in.frb(63);
|
|
end if;
|
|
when OP_DIV =>
|
|
v.integer_op := '1';
|
|
is_32bint := e_in.single;
|
|
if e_in.single = '0' then
|
|
v.result_sign := e_in.is_signed and (e_in.fra(63) xor e_in.frb(63));
|
|
else
|
|
v.result_sign := e_in.is_signed and (e_in.fra(31) xor e_in.frb(31));
|
|
end if;
|
|
exec_state := DO_IDIVMOD;
|
|
when OP_DIVE =>
|
|
v.integer_op := '1';
|
|
v.divext := '1';
|
|
is_32bint := e_in.single;
|
|
if e_in.single = '0' then
|
|
v.result_sign := e_in.is_signed and (e_in.fra(63) xor e_in.frb(63));
|
|
else
|
|
v.result_sign := e_in.is_signed and (e_in.fra(31) xor e_in.frb(31));
|
|
end if;
|
|
exec_state := DO_IDIVMOD;
|
|
when OP_MOD =>
|
|
v.integer_op := '1';
|
|
v.divmod := '1';
|
|
is_32bint := e_in.single;
|
|
if e_in.single = '0' then
|
|
v.result_sign := e_in.is_signed and e_in.fra(63);
|
|
else
|
|
v.result_sign := e_in.is_signed and e_in.fra(31);
|
|
end if;
|
|
exec_state := DO_IDIVMOD;
|
|
when others =>
|
|
exec_state := DO_ILLEGAL;
|
|
end case;
|
|
v.tiny := '0';
|
|
v.denorm := '0';
|
|
v.int_ovf := '0';
|
|
v.div_close := '0';
|
|
|
|
adec := decode_dp(e_in.fra, fpin_a, is_32bint, e_in.is_signed);
|
|
bdec := decode_dp(e_in.frb, fpin_b, is_32bint, e_in.is_signed);
|
|
cdec := decode_dp(e_in.frc, fpin_c, '0', '0');
|
|
v.a := adec;
|
|
v.b := bdec;
|
|
v.c := cdec;
|
|
|
|
if e_in.op = OP_FP_ARITH then
|
|
is_nan_inf := adec.naninf or bdec.naninf or cdec.naninf;
|
|
is_zero_den := adec.zeroexp or bdec.zeroexp or cdec.zeroexp;
|
|
end if;
|
|
|
|
v.a_hi := 8x"0";
|
|
v.a_lo := 56x"0";
|
|
end if;
|
|
|
|
r_hi_nz <= or (r.r(UNIT_BIT + 1 downto SP_LSB));
|
|
r_lo_nz <= or (r.r(SP_LSB - 1 downto DP_LSB));
|
|
r_gt_1 <= or (r.r(63 downto 1));
|
|
s_nz <= or (r.s);
|
|
|
|
if r.single_prec = '0' then
|
|
if r.doing_ftdiv(1) = '0' then
|
|
max_exp := to_signed(1023, EXP_BITS);
|
|
else
|
|
max_exp := to_signed(1020, EXP_BITS);
|
|
end if;
|
|
if r.doing_ftdiv(0) = '0' then
|
|
min_exp := to_signed(-1022, EXP_BITS);
|
|
else
|
|
min_exp := to_signed(-1021, EXP_BITS);
|
|
end if;
|
|
bias_exp := to_signed(1536, EXP_BITS);
|
|
else
|
|
max_exp := to_signed(127, EXP_BITS);
|
|
min_exp := to_signed(-126, EXP_BITS);
|
|
bias_exp := to_signed(192, EXP_BITS);
|
|
end if;
|
|
new_exp := r.result_exp - r.shift;
|
|
exp_tiny := '0';
|
|
exp_huge := '0';
|
|
if is_X(new_exp) or is_X(min_exp) then
|
|
exp_tiny := 'X';
|
|
elsif new_exp < min_exp then
|
|
exp_tiny := '1';
|
|
end if;
|
|
if is_X(new_exp) or is_X(max_exp) then
|
|
exp_huge := 'X';
|
|
elsif new_exp > max_exp then
|
|
exp_huge := '1';
|
|
end if;
|
|
|
|
-- Compare P with zero and with B
|
|
-- This has a 2-bit shift in it (p(59..4) compared to b(57..2))
|
|
-- because it's used in the FP division code to determine whether
|
|
-- to increment the quotient at bit 2 (DP_RBIT).
|
|
px_nz := or (r.p(UNIT_BIT + 1 downto 4));
|
|
pcmpb_eq := '0';
|
|
if r.p(59 downto 4) = r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT) then
|
|
pcmpb_eq := '1';
|
|
end if;
|
|
pcmpb_lt := '0';
|
|
if is_X(r.p(59 downto 4)) or is_X(r.b.mantissa(55 downto 0)) then
|
|
pcmpb_lt := 'X';
|
|
elsif unsigned(r.p(59 downto 4)) < unsigned(r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT)) then
|
|
pcmpb_lt := '1';
|
|
end if;
|
|
-- Compare P with zero and with C
|
|
-- This is used in the square root and integer division code
|
|
-- to decide whether to increment the result by 1
|
|
pcmpc_eq := '0';
|
|
if r.p = r.c.mantissa then
|
|
pcmpc_eq := '1';
|
|
end if;
|
|
pcmpc_lt := '0';
|
|
if is_X(r.p) or is_X(r.c.mantissa) then
|
|
pcmpc_lt := 'X';
|
|
elsif unsigned(r.p) < unsigned(r.c.mantissa) then
|
|
pcmpc_lt := '1';
|
|
end if;
|
|
|
|
v.update_fprf := '0';
|
|
v.first := '0';
|
|
v.doing_ftdiv := "00";
|
|
opsel_a <= AIN_ZERO;
|
|
opsel_aneg <= '0';
|
|
opsel_aabs <= '0';
|
|
opsel_mask <= '0';
|
|
opsel_b <= BIN_R;
|
|
opsel_c <= CIN_ZERO;
|
|
opsel_r <= RES_SUM;
|
|
opsel_s <= S_ZERO;
|
|
misc_sel <= "000";
|
|
opsel_sel <= AIN_ZERO;
|
|
fpscr_mask := x"FFFFFFFF";
|
|
cr_op := CROP_NONE;
|
|
update_fx := '0';
|
|
arith_done := '0';
|
|
invalid := '0';
|
|
zero_divide := '0';
|
|
set_x := '0';
|
|
set_xs := '0';
|
|
qnan_result := '0';
|
|
set_a := '0';
|
|
set_a_exp := '0';
|
|
set_a_mant := '0';
|
|
set_a_hi := '0';
|
|
set_a_lo := '0';
|
|
set_b := '0';
|
|
set_b_mant := '0';
|
|
set_c := '0';
|
|
set_r := '1';
|
|
set_s := '0';
|
|
set_cr := '0';
|
|
set_fpcc := '0';
|
|
f_to_multiply.is_signed <= '0';
|
|
f_to_multiply.valid <= '0';
|
|
msel_1 <= MUL1_A;
|
|
msel_2 <= MUL2_C;
|
|
msel_add <= MULADD_ZERO;
|
|
msel_inv <= '0';
|
|
set_y := '0';
|
|
pshift := '0';
|
|
renorm_sqrt := '0';
|
|
shiftin := '0';
|
|
shiftin0 := '0';
|
|
mult_mask := '0';
|
|
illegal := '0';
|
|
set_reg_ind := '0';
|
|
|
|
re_sel1 <= REXP1_ZERO;
|
|
re_sel2 <= REXP2_CON;
|
|
re_con2 <= RECON2_ZERO;
|
|
re_neg1 <= '0';
|
|
re_neg2 <= '0';
|
|
re_set_result <= '0';
|
|
rs_sel1 <= RSH1_ZERO;
|
|
rs_sel2 <= RSH2_CON;
|
|
rs_con2 <= RSCON2_ZERO;
|
|
rs_neg1 <= '0';
|
|
rs_neg2 <= '0';
|
|
rs_norm <= '0';
|
|
|
|
rsgn_op := RSGN_NOP;
|
|
rcls_op <= RCLS_NOP;
|
|
|
|
case r.state is
|
|
when IDLE =>
|
|
v.invalid := '0';
|
|
if e_in.valid = '1' then
|
|
v.busy := '1';
|
|
v.exec_state := exec_state;
|
|
v.is_nan_inf := is_nan_inf;
|
|
if is_nan_inf = '1' or is_zero_den = '1' then
|
|
v.state := DO_SPECIAL;
|
|
else
|
|
v.state := exec_state;
|
|
end if;
|
|
end if;
|
|
v.x := '0';
|
|
v.old_exc := r.fpscr(FPSCR_OX downto FPSCR_VXVC) & r.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI);
|
|
set_s := '1';
|
|
v.regsel := AIN_ZERO;
|
|
|
|
when DO_SPECIAL =>
|
|
-- At least one floating point operand is NaN, infinity, zero or denormalized
|
|
-- Most of the special cases are handled in the fpu_specialcases process
|
|
-- and in the code below (the scinfo.immed_result = '1' block).
|
|
if r.is_multiply = '1' and r.b.class = ZERO then
|
|
-- This will trigger for fmul as well as fmadd/sub, but
|
|
-- it doesn't matter since r.is_subtract = 0 for fmul.
|
|
rsgn_op := RSGN_SUB;
|
|
end if;
|
|
if r.a.denorm = '1' and (r.is_multiply = '1' or r.is_inverse = '1') then
|
|
v.state := RENORM_A;
|
|
elsif r.c.denorm = '1' then
|
|
v.state := RENORM_C;
|
|
elsif r.b.denorm = '1' and r.do_renorm_b = '1' then
|
|
v.state := RENORM_B;
|
|
elsif r.is_multiply = '1' and r.b.class = ZERO then
|
|
v.state := DO_FMUL;
|
|
else
|
|
v.state := r.exec_state;
|
|
end if;
|
|
|
|
when DO_ILLEGAL =>
|
|
illegal := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_MCRFS =>
|
|
cr_op := CROP_MCRFS;
|
|
set_cr := '1';
|
|
j := to_integer(unsigned(insn_bfa(r.insn)));
|
|
for i in 0 to 7 loop
|
|
if i = j then
|
|
k := (7 - i) * 4;
|
|
fpscr_mask(k + 3 downto k) := "0000";
|
|
end if;
|
|
end loop;
|
|
v.fpscr := r.fpscr and (fpscr_mask or x"6007F0FF");
|
|
v.instr_done := '1';
|
|
|
|
when DO_FTDIV =>
|
|
-- set result_exp to the exponent of B
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
cr_op := CROP_FTDIV;
|
|
if (r.a.class = ZERO or r.a.class = FINITE) and r.b.class = FINITE then
|
|
v.doing_ftdiv := "11";
|
|
v.first := '1';
|
|
v.state := FTDIV_1;
|
|
else
|
|
set_cr := '1';
|
|
v.instr_done := '1';
|
|
end if;
|
|
|
|
when DO_FTSQRT =>
|
|
cr_op := CROP_FTSQRT;
|
|
set_cr := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_FCMP =>
|
|
-- fcmp[uo]
|
|
-- Prepare to subtract mantissas, put B in R
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
update_fx := '1';
|
|
cr_op := CROP_FCMP;
|
|
if r.a.class = NAN or r.b.class = NAN then
|
|
if (r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
|
|
(r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') then
|
|
-- Signalling NAN
|
|
v.fpscr(FPSCR_VXSNAN) := '1';
|
|
if r.insn(6) = '1' and r.fpscr(FPSCR_VE) = '0' then
|
|
v.fpscr(FPSCR_VXVC) := '1';
|
|
end if;
|
|
invalid := '1';
|
|
elsif r.insn(6) = '1' then
|
|
-- fcmpo
|
|
v.fpscr(FPSCR_VXVC) := '1';
|
|
invalid := '1';
|
|
end if;
|
|
end if;
|
|
if r.a.class = FINITE and r.b.class = FINITE and
|
|
r.a.negative = r.b.negative and
|
|
r.a.exponent = r.b.exponent then
|
|
v.state := CMP_1;
|
|
else
|
|
set_cr := '1';
|
|
set_fpcc := '1';
|
|
v.instr_done := '1';
|
|
end if;
|
|
|
|
when DO_MTFSB =>
|
|
-- mtfsb{0,1}
|
|
j := to_integer(unsigned(insn_bt(r.insn)));
|
|
for i in 0 to 31 loop
|
|
if i = j then
|
|
v.fpscr(31 - i) := r.insn(6);
|
|
end if;
|
|
end loop;
|
|
update_fx := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_MTFSFI =>
|
|
-- mtfsfi
|
|
j := to_integer(unsigned(insn_bf(r.insn)));
|
|
if r.insn(16) = '0' then
|
|
for i in 0 to 7 loop
|
|
if i = j then
|
|
k := (7 - i) * 4;
|
|
v.fpscr(k + 3 downto k) := insn_u(r.insn);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
v.instr_done := '1';
|
|
|
|
when DO_FMRG =>
|
|
-- fmrgew, fmrgow
|
|
set_r := '1';
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "100";
|
|
v.writing_fpr := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_MFFS =>
|
|
v.writing_fpr := '1';
|
|
set_r := '1';
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "011";
|
|
case r.insn(20 downto 16) is
|
|
when "00000" =>
|
|
-- mffs
|
|
when "00001" =>
|
|
-- mffsce
|
|
v.fpscr(FPSCR_VE downto FPSCR_XE) := "00000";
|
|
when "10100" | "10101" =>
|
|
-- mffscdrn[i] (but we don't implement DRN)
|
|
fpscr_mask := x"000000FF";
|
|
when "10110" =>
|
|
-- mffscrn
|
|
fpscr_mask := x"000000FF";
|
|
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) :=
|
|
r.b.mantissa(FPSCR_RN+1 downto FPSCR_RN);
|
|
when "10111" =>
|
|
-- mffscrni
|
|
fpscr_mask := x"000000FF";
|
|
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) := r.insn(12 downto 11);
|
|
when "11000" =>
|
|
-- mffsl
|
|
fpscr_mask := x"0007F0FF";
|
|
when others =>
|
|
v.illegal := '1';
|
|
v.writing_fpr := '0';
|
|
end case;
|
|
v.instr_done := '1';
|
|
|
|
when DO_MTFSF =>
|
|
if r.insn(25) = '1' then
|
|
flm := x"FF";
|
|
elsif r.insn(16) = '1' then
|
|
flm := x"00";
|
|
else
|
|
flm := r.insn(24 downto 17);
|
|
end if;
|
|
for i in 0 to 7 loop
|
|
k := i * 4;
|
|
if flm(i) = '1' then
|
|
v.fpscr(k + 3 downto k) := r.b.mantissa(k + 3 downto k);
|
|
end if;
|
|
end loop;
|
|
v.instr_done := '1';
|
|
|
|
when DO_FMR =>
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "111";
|
|
opsel_sel <= AIN_B;
|
|
set_r := '1';
|
|
rcls_op <= RCLS_SEL;
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
v.writing_fpr := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_FRI => -- fri[nzpm]
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
-- set shift to exponent - 52
|
|
rs_sel1 <= RSH1_B;
|
|
rs_con2 <= RSCON2_52;
|
|
rs_neg2 <= '1';
|
|
if r.b.exponent >= to_signed(52, EXP_BITS) then
|
|
-- integer already, no rounding required
|
|
arith_done := '1';
|
|
else
|
|
v.state := FRI_1;
|
|
end if;
|
|
|
|
when DO_FRSP =>
|
|
-- r.shift = 0
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
v.state := FINISH;
|
|
|
|
when DO_FCTI =>
|
|
-- instr bit 9: 1=dword 0=word
|
|
-- instr bit 8: 1=unsigned 0=signed
|
|
-- instr bit 1: 1=round to zero 0=use fpscr[RN]
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg2 <= '1';
|
|
v.single_prec := not r.insn(9);
|
|
|
|
if r.b.exponent >= to_signed(64, EXP_BITS) or
|
|
(r.insn(9) = '0' and r.b.exponent >= to_signed(32, EXP_BITS)) then
|
|
v.state := INT_OFLOW;
|
|
elsif r.b.exponent >= to_signed(52, EXP_BITS) then
|
|
-- integer already, no rounding required,
|
|
-- shift into final position
|
|
-- set shift to exponent - 56
|
|
rs_con2 <= RSCON2_UNIT;
|
|
if r.insn(8) = '1' and r.b.negative = '1' then
|
|
v.state := INT_OFLOW;
|
|
else
|
|
v.state := INT_ISHIFT;
|
|
end if;
|
|
else
|
|
-- set shift to exponent - 52
|
|
rs_con2 <= RSCON2_52;
|
|
v.state := INT_SHIFT;
|
|
end if;
|
|
|
|
when DO_FCFID =>
|
|
opsel_a <= AIN_B;
|
|
opsel_aabs <= '1';
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
opsel_sel <= AIN_B;
|
|
rcls_op <= RCLS_SEL;
|
|
re_con2 <= RECON2_UNIT;
|
|
re_set_result <= '1';
|
|
v.fpscr(FPSCR_FR) := '0';
|
|
v.fpscr(FPSCR_FI) := '0';
|
|
if r.b.class = ZERO then
|
|
arith_done := '1';
|
|
else
|
|
v.state := FINISH;
|
|
end if;
|
|
|
|
when DO_FADD =>
|
|
-- fadd[s] and fsub[s]
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel1 <= REXP1_A;
|
|
re_set_result <= '1';
|
|
-- set shift to a.exp - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
rs_sel2 <= RSH2_A;
|
|
if r.add_bsmall = '1' then
|
|
v.state := ADD_1;
|
|
elsif r.a.exponent = r.b.exponent then
|
|
v.state := ADD_2B;
|
|
elsif v.add_bsmall = '0' then
|
|
v.longmask := '0';
|
|
v.state := ADD_SHIFT;
|
|
end if;
|
|
|
|
when DO_FMUL =>
|
|
-- fmul[s]
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel1 <= REXP1_A;
|
|
re_sel2 <= REXP2_C;
|
|
re_set_result <= '1';
|
|
f_to_multiply.valid <= '1';
|
|
v.state := MULT_1;
|
|
|
|
when DO_FDIV =>
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel1 <= REXP1_A;
|
|
re_sel2 <= REXP2_B;
|
|
re_neg2 <= '1';
|
|
re_set_result <= '1';
|
|
v.count := "00";
|
|
v.first := '1';
|
|
v.state := DIV_2;
|
|
|
|
when DO_FSEL =>
|
|
rsgn_op := RSGN_SEL;
|
|
rcls_op <= RCLS_SEL;
|
|
if r.a.class = ZERO or (r.a.negative = '0' and r.a.class /= NAN) then
|
|
opsel_sel <= AIN_C;
|
|
re_sel2 <= REXP2_C;
|
|
else
|
|
opsel_sel <= AIN_B;
|
|
re_sel2 <= REXP2_B;
|
|
end if;
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "111";
|
|
set_r := '1';
|
|
re_set_result <= '1';
|
|
v.writing_fpr := '1';
|
|
v.instr_done := '1';
|
|
|
|
when DO_FSQRT =>
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
if r.b.exponent(0) = '1' then
|
|
v.state := SQRT_ODD;
|
|
elsif r.is_inverse = '0' then
|
|
v.state := SQRT_1;
|
|
else
|
|
v.state := RSQRT_1;
|
|
end if;
|
|
|
|
when DO_FRE =>
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
v.state := FRE_1;
|
|
|
|
when DO_FMADD =>
|
|
-- fmadd, fmsub, fnmadd, fnmsub
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
-- put a.exp + c.exp into result_exp
|
|
re_sel1 <= REXP1_A;
|
|
re_sel2 <= REXP2_C;
|
|
re_set_result <= '1';
|
|
-- put b.exp into shift
|
|
rs_sel1 <= RSH1_B;
|
|
if (r.a.exponent + r.c.exponent + 2) < r.b.exponent then
|
|
-- addend is definitely bigger, do multiply first
|
|
-- if subtracting, sign is opposite to initial estimate
|
|
f_to_multiply.valid <= '1';
|
|
v.first := '1';
|
|
v.state := FMADD_0;
|
|
else
|
|
-- product may be bigger, or the answer might be
|
|
-- close to 0; shift B first so the multiplier does
|
|
-- the add/subtract operation.
|
|
v.state := FMADD_1;
|
|
end if;
|
|
|
|
when RENORM_A =>
|
|
-- Get A into R
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
v.regsel := AIN_A;
|
|
re_sel1 <= REXP1_A;
|
|
re_set_result <= '1';
|
|
v.a.denorm := '0';
|
|
v.state := RENORM_1;
|
|
|
|
when RENORM_B =>
|
|
-- Get B into R
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
v.regsel := AIN_B;
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
v.b.denorm := '0';
|
|
v.state := RENORM_1;
|
|
|
|
when RENORM_C =>
|
|
-- Get C into R
|
|
opsel_a <= AIN_C;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
v.regsel := AIN_C;
|
|
re_sel2 <= REXP2_C;
|
|
re_set_result <= '1';
|
|
v.c.denorm := '0';
|
|
v.state := RENORM_1;
|
|
|
|
when RENORM_1 =>
|
|
rs_norm <= '1';
|
|
renorm_sqrt := r.is_sqrt;
|
|
v.state := RENORM_2;
|
|
|
|
when RENORM_2 =>
|
|
set_reg_ind := '1';
|
|
if r.c.denorm = '1' then
|
|
-- must be either fmul or fmadd/sub
|
|
v.state := RENORM_C;
|
|
elsif r.b.denorm = '1' and r.do_renorm_b = '1' then
|
|
v.state := RENORM_B;
|
|
elsif r.is_multiply = '1' and r.b.class = ZERO then
|
|
v.state := DO_FMUL;
|
|
else
|
|
v.state := r.exec_state;
|
|
end if;
|
|
|
|
when ADD_1 =>
|
|
-- transferring B to R
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
-- set shift to b.exp - a.exp
|
|
-- (N.B., shift can be 0 if B is denorm and A's exp is -1022)
|
|
rs_sel1 <= RSH1_B;
|
|
rs_sel2 <= RSH2_A;
|
|
rs_neg2 <= '1';
|
|
v.longmask := '0';
|
|
v.state := ADD_SHIFT;
|
|
|
|
when ADD_SHIFT =>
|
|
-- r.shift = - exponent difference, r.longmask = 0
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.x := s_nz;
|
|
set_x := '1';
|
|
set_s := '1';
|
|
v.longmask := r.single_prec;
|
|
if r.add_bsmall = '1' then
|
|
v.state := ADD_2;
|
|
else
|
|
v.state := ADD_2B;
|
|
end if;
|
|
|
|
when ADD_2 =>
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ADDSUBR;
|
|
opsel_c <= CIN_SUBEXT;
|
|
set_r := '1';
|
|
-- set shift to -1
|
|
rs_con2 <= RSCON2_1;
|
|
rs_neg2 <= '1';
|
|
v.state := ADD_3;
|
|
|
|
when ADD_2B =>
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ADDSUBR;
|
|
opsel_c <= CIN_SUBEXT;
|
|
set_r := '1';
|
|
-- set shift to -1
|
|
rs_con2 <= RSCON2_1;
|
|
rs_neg2 <= '1';
|
|
v.state := ADD_3;
|
|
|
|
when ADD_3 =>
|
|
-- check for overflow or negative result (can't get both)
|
|
-- r.shift = -1
|
|
re_sel2 <= REXP2_NE;
|
|
rcls_op <= RCLS_TZERO;
|
|
opsel_a <= AIN_ZERO;
|
|
opsel_b <= BIN_ABSR;
|
|
if r.r(63) = '1' then
|
|
-- result is opposite sign to expected
|
|
rsgn_op := RSGN_INV;
|
|
set_r := '1';
|
|
elsif r.r(UNIT_BIT + 1) = '1' then
|
|
-- sum overflowed, shift right
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_set_result <= '1';
|
|
set_x := '1';
|
|
end if;
|
|
v.state := FINISH;
|
|
|
|
when CMP_1 =>
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_MINUSR;
|
|
set_r := '1';
|
|
v.state := CMP_2;
|
|
|
|
when CMP_2 =>
|
|
cr_op := CROP_FCMP;
|
|
set_cr := '1';
|
|
set_fpcc := '1';
|
|
v.instr_done := '1';
|
|
|
|
when MULT_1 =>
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := FINISH;
|
|
end if;
|
|
|
|
when FMADD_0 =>
|
|
-- r.shift is b.exp, so new_exp is a.exp + c.exp - b.exp
|
|
-- (first time through; subsequent times we preserve v.shift)
|
|
-- Addend is bigger here
|
|
-- set shift to a.exp + c.exp - b.exp
|
|
-- note v.shift is at most -2 here
|
|
if r.first = '1' then
|
|
rs_sel1 <= RSH1_NE;
|
|
else
|
|
rs_sel1 <= RSH1_S;
|
|
end if;
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.longmask := '0';
|
|
v.state := ADD_SHIFT;
|
|
end if;
|
|
|
|
when FMADD_1 =>
|
|
-- shift is b.exp, so new_exp is a.exp + c.exp - b.exp (>= -2)
|
|
-- product may bigger here
|
|
-- shift B right and use it as the addend to the multiplier
|
|
-- for subtract, multiplier does B - A * C
|
|
re_sel2 <= REXP2_B;
|
|
re_set_result <= '1';
|
|
-- set shift to b.exp - result_exp + 64
|
|
rs_sel1 <= RSH1_NE;
|
|
rs_neg1 <= '1';
|
|
rs_con2 <= RSCON2_64;
|
|
v.state := FMADD_2;
|
|
|
|
when FMADD_2 =>
|
|
-- Product is potentially bigger here
|
|
-- r.shift = addend exp - product exp + 64, r.r = r.b.mantissa
|
|
-- R contains B, S contains 0
|
|
set_s := '1';
|
|
opsel_s <= S_SHIFT;
|
|
set_x := '1';
|
|
-- set shift to r.shift - 64
|
|
rs_sel1 <= RSH1_S;
|
|
rs_con2 <= RSCON2_64;
|
|
rs_neg2 <= '1';
|
|
v.state := FMADD_3;
|
|
|
|
when FMADD_3 =>
|
|
-- r.shift = addend exp - product exp
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.first := '1';
|
|
v.state := FMADD_4;
|
|
|
|
when FMADD_4 =>
|
|
msel_add <= MULADD_RS;
|
|
set_r := '1';
|
|
f_to_multiply.valid <= r.first;
|
|
msel_inv <= r.is_subtract;
|
|
opsel_r <= RES_MULT;
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := FMADD_5;
|
|
end if;
|
|
|
|
when FMADD_5 =>
|
|
-- negate R:S:X if negative
|
|
opsel_b <= BIN_ABSR;
|
|
opsel_c <= CIN_ABSEXT;
|
|
if r.r(63) = '1' then
|
|
rsgn_op := RSGN_INV;
|
|
set_r := '1';
|
|
opsel_s <= S_NEG;
|
|
set_s := '1';
|
|
end if;
|
|
-- set shift to UNIT_BIT
|
|
rs_con2 <= RSCON2_UNIT;
|
|
v.state := FMADD_6;
|
|
|
|
when FMADD_6 =>
|
|
-- r.shift = UNIT_BIT
|
|
set_r := '0';
|
|
opsel_r <= RES_SHIFT;
|
|
re_sel2 <= REXP2_NE;
|
|
if (r.r(UNIT_BIT + 2) or r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
|
|
-- R is all zeroes but there may be non-zero bits in S
|
|
-- so shift them into R and set S to 0
|
|
set_r := '1';
|
|
re_set_result <= '1';
|
|
set_s := '1';
|
|
end if;
|
|
v.state := FINISH;
|
|
|
|
when DIV_2 =>
|
|
-- compute Y = inverse_table[B] (when count=0); P = 2 - B * Y
|
|
msel_1 <= MUL1_B;
|
|
msel_add <= MULADD_CONST;
|
|
msel_inv <= '1';
|
|
if r.count = 0 then
|
|
msel_2 <= MUL2_LUT;
|
|
else
|
|
msel_2 <= MUL2_P;
|
|
end if;
|
|
set_y := r.first;
|
|
pshift := '1';
|
|
f_to_multiply.valid <= r.first;
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.count := r.count + 1;
|
|
v.state := DIV_3;
|
|
end if;
|
|
|
|
when DIV_3 =>
|
|
-- compute Y = P = P * Y
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
if r.count = 3 then
|
|
v.state := DIV_4;
|
|
else
|
|
v.state := DIV_2;
|
|
end if;
|
|
end if;
|
|
|
|
when DIV_4 =>
|
|
-- compute R = P = A * Y (quotient)
|
|
msel_1 <= MUL1_A;
|
|
msel_2 <= MUL2_P;
|
|
set_y := r.first;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
mult_mask := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := DIV_5;
|
|
end if;
|
|
|
|
when DIV_5 =>
|
|
-- compute P = A - B * R (remainder)
|
|
msel_1 <= MUL1_B;
|
|
msel_2 <= MUL2_R;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := DIV_6;
|
|
end if;
|
|
|
|
when DIV_6 =>
|
|
-- test if remainder is 0 or >= B
|
|
opsel_a <= AIN_RND_RBIT;
|
|
if pcmpb_lt = '1' then
|
|
-- quotient is correct, set X if remainder non-zero
|
|
set_r := '0';
|
|
v.x := r.p(UNIT_BIT + 2) or px_nz;
|
|
else
|
|
-- quotient needs to be incremented by 1 in R-bit position
|
|
set_r := '1';
|
|
v.x := not pcmpb_eq;
|
|
end if;
|
|
v.state := FINISH;
|
|
|
|
when FRE_1 =>
|
|
re_sel1 <= REXP1_R;
|
|
re_neg1 <= '1';
|
|
re_set_result <= '1';
|
|
opsel_r <= RES_MISC;
|
|
set_r := '1';
|
|
misc_sel <= "101";
|
|
-- set shift to 1
|
|
rs_con2 <= RSCON2_1;
|
|
v.state := NORMALIZE;
|
|
|
|
when FTDIV_1 =>
|
|
-- We go through this state up to two times; the first sees if
|
|
-- B.exponent is in the range [-1021,1020], and the second tests
|
|
-- whether B.exp - A.exp is in the range [-1022,1020].
|
|
rs_sel2 <= RSH2_A; -- set shift to a.exp
|
|
cr_op := CROP_FTDIV;
|
|
if exp_tiny = '1' or exp_huge = '1' or r.a.class = ZERO or r.first = '0' then
|
|
set_cr := '1';
|
|
v.instr_done := '1';
|
|
else
|
|
v.doing_ftdiv := "10";
|
|
end if;
|
|
|
|
when SQRT_ODD =>
|
|
-- set shift to 1
|
|
rs_con2 <= RSCON2_1;
|
|
v.regsel := AIN_B;
|
|
v.state := RENORM_2;
|
|
|
|
when RSQRT_1 =>
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "101";
|
|
set_r := '1';
|
|
re_sel1 <= REXP1_BHALF;
|
|
re_neg1 <= '1';
|
|
re_set_result <= '1';
|
|
-- set shift to 1
|
|
rs_con2 <= RSCON2_1;
|
|
v.state := NORMALIZE;
|
|
|
|
when SQRT_1 =>
|
|
-- put invsqr[B] in R and compute P = invsqr[B] * B
|
|
-- also transfer B (in R) to A
|
|
set_a := '1';
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "101";
|
|
set_r := '1';
|
|
msel_1 <= MUL1_B;
|
|
msel_2 <= MUL2_LUT;
|
|
f_to_multiply.valid <= '1';
|
|
-- set shift to -1
|
|
rs_con2 <= RSCON2_1;
|
|
rs_neg2 <= '1';
|
|
v.count := "00";
|
|
v.state := SQRT_2;
|
|
|
|
when SQRT_2 =>
|
|
-- shift R right one place
|
|
-- not expecting multiplier result yet
|
|
-- r.shift = -1
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.first := '1';
|
|
v.state := SQRT_3;
|
|
|
|
when SQRT_3 =>
|
|
-- put R into Y, wait for product from multiplier
|
|
msel_2 <= MUL2_R;
|
|
set_y := r.first;
|
|
pshift := '1';
|
|
mult_mask := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := SQRT_4;
|
|
end if;
|
|
|
|
when SQRT_4 =>
|
|
-- compute 1.5 - Y * P
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
msel_add <= MULADD_CONST;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := SQRT_5;
|
|
end if;
|
|
|
|
when SQRT_5 =>
|
|
-- compute Y = Y * P
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
f_to_multiply.valid <= '1';
|
|
v.first := '1';
|
|
v.state := SQRT_6;
|
|
|
|
when SQRT_6 =>
|
|
-- pipeline in R = R * P
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_P;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := SQRT_7;
|
|
end if;
|
|
|
|
when SQRT_7 =>
|
|
-- first multiply is done, put result in Y
|
|
msel_2 <= MUL2_P;
|
|
set_y := r.first;
|
|
-- wait for second multiply (should be here already)
|
|
pshift := '1';
|
|
mult_mask := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.count := r.count + 1;
|
|
if r.count < 2 then
|
|
v.state := SQRT_4;
|
|
else
|
|
v.first := '1';
|
|
v.state := SQRT_8;
|
|
end if;
|
|
end if;
|
|
|
|
when SQRT_8 =>
|
|
-- compute P = A - R * R, which can be +ve or -ve
|
|
-- we arranged for B to be put into A earlier
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_R;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
pshift := '1';
|
|
f_to_multiply.valid <= r.first;
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := SQRT_9;
|
|
end if;
|
|
|
|
when SQRT_9 =>
|
|
-- compute P = P * Y
|
|
-- since Y is an estimate of 1/sqrt(B), this makes P an
|
|
-- estimate of the adjustment needed to R. Since the error
|
|
-- could be negative and we have an unsigned multiplier, the
|
|
-- upper bits can be wrong, but it turns out the lowest 8 bits
|
|
-- are correct and are all we need (given 3 iterations through
|
|
-- SQRT_4 to SQRT_7).
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
pshift := '1';
|
|
f_to_multiply.valid <= r.first;
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := SQRT_10;
|
|
end if;
|
|
|
|
when SQRT_10 =>
|
|
-- Add the bottom 8 bits of P, sign-extended, onto R.
|
|
opsel_a <= AIN_PS8;
|
|
set_r := '1';
|
|
re_sel1 <= REXP1_BHALF;
|
|
re_set_result <= '1';
|
|
-- set shift to 1
|
|
rs_con2 <= RSCON2_1;
|
|
v.first := '1';
|
|
v.state := SQRT_11;
|
|
|
|
when SQRT_11 =>
|
|
-- compute P = A - R * R (remainder)
|
|
-- also put 2 * R + 1 into C for comparison with P
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_R;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
shiftin := '1';
|
|
set_c := r.first;
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := SQRT_12;
|
|
end if;
|
|
|
|
when SQRT_12 =>
|
|
-- test if remainder is 0 or >= C = 2*R + 1
|
|
set_r := '0';
|
|
opsel_c <= CIN_INC;
|
|
if pcmpc_lt = '1' then
|
|
-- square root is correct, set X if remainder non-zero
|
|
v.x := r.p(UNIT_BIT + 2) or px_nz;
|
|
else
|
|
-- square root needs to be incremented by 1
|
|
set_r := '1';
|
|
v.x := not pcmpc_eq;
|
|
end if;
|
|
v.state := FINISH;
|
|
|
|
when INT_SHIFT =>
|
|
-- r.shift = b.exponent - 52
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
set_x := '1';
|
|
v.state := INT_ROUND;
|
|
-- set shift to -4 (== 52 - UNIT_BIT)
|
|
rs_con2 <= RSCON2_UNIT_52;
|
|
rs_neg2 <= '1';
|
|
|
|
when INT_ROUND =>
|
|
-- r.shift = -4 (== 52 - UNIT_BIT)
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
round := fp_rounding(r.r, r.x, '0', r.round_mode, r.result_sign);
|
|
v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
|
|
-- Check for negative values that don't round to 0 for fcti*u*
|
|
if r.insn(8) = '1' and r.result_sign = '1' and
|
|
(r_hi_nz or r_lo_nz or v.fpscr(FPSCR_FR)) = '1' then
|
|
v.state := INT_OFLOW;
|
|
else
|
|
v.state := INT_FINAL;
|
|
end if;
|
|
|
|
when INT_ISHIFT =>
|
|
-- r.shift = b.exponent - UNIT_BIT;
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.state := INT_FINAL;
|
|
|
|
when INT_FINAL =>
|
|
-- Negate if necessary, and increment for rounding if needed
|
|
opsel_b <= BIN_RSIGNR;
|
|
opsel_c <= CIN_ROUND;
|
|
set_r := '1';
|
|
-- Check for possible overflows
|
|
case r.insn(9 downto 8) is
|
|
when "00" => -- fctiw[z]
|
|
-- check bit 32 in case of rounding overflow
|
|
need_check := r.r(31) or (r.r(30) and not r.result_sign);
|
|
when "01" => -- fctiwu[z]
|
|
-- check bit 32 in case of rounding overflow
|
|
need_check := r.r(31) or r.r(31);
|
|
when "10" => -- fctid[z]
|
|
-- can't get rounding overflow for 64-bit conversion
|
|
need_check := r.r(63) or (r.r(62) and not r.result_sign);
|
|
when others => -- fctidu[z]
|
|
need_check := r.r(63);
|
|
end case;
|
|
if need_check = '1' then
|
|
v.state := INT_CHECK;
|
|
else
|
|
if r.fpscr(FPSCR_FI) = '1' then
|
|
v.fpscr(FPSCR_XX) := '1';
|
|
end if;
|
|
arith_done := '1';
|
|
end if;
|
|
|
|
when INT_CHECK =>
|
|
if r.insn(9) = '0' then
|
|
msb := r.r(31);
|
|
else
|
|
msb := r.r(63);
|
|
end if;
|
|
if (r.insn(8) = '0' and msb /= r.result_sign) or
|
|
(r.insn(8) = '1' and msb /= '1') or
|
|
(r.insn(9) = '0' and r.r(32) /= r.result_sign) then
|
|
v.state := INT_OFLOW;
|
|
else
|
|
if r.fpscr(FPSCR_FI) = '1' then
|
|
v.fpscr(FPSCR_XX) := '1';
|
|
end if;
|
|
arith_done := '1';
|
|
end if;
|
|
|
|
when INT_OFLOW =>
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "110";
|
|
set_r := '1';
|
|
v.fpscr(FPSCR_VXCVI) := '1';
|
|
v.fpscr(FPSCR_FR downto FPSCR_FI) := "00";
|
|
invalid := '1';
|
|
arith_done := '1';
|
|
|
|
when FRI_1 =>
|
|
-- r.shift = b.exponent - 52
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
set_x := '1';
|
|
v.state := ROUNDING;
|
|
|
|
when FINISH =>
|
|
-- r.shift = 0
|
|
-- set shift to new_exp - min_exp (N.B. rs_norm overrides this)
|
|
-- assert that if r.r = 0 then r.x = 0 also
|
|
rs_sel1 <= RSH1_NE;
|
|
rs_con2 <= RSCON2_MINEXP;
|
|
rs_neg2 <= '1';
|
|
rcls_op <= RCLS_TZERO;
|
|
if r.r(63 downto UNIT_BIT) /= std_ulogic_vector(to_unsigned(1, 64 - UNIT_BIT)) then
|
|
rs_norm <= '1';
|
|
v.state := NORMALIZE;
|
|
else
|
|
set_x := '1';
|
|
set_xs := r.is_multiply;
|
|
v.tiny := exp_tiny;
|
|
if exp_tiny = '1' and r.fpscr(FPSCR_UE) = '0' then
|
|
v.state := ROUND_UFLOW_DIS;
|
|
elsif exp_huge = '1' and r.fpscr(FPSCR_OE) = '0' then
|
|
v.state := ROUND_OFLOW_DIS;
|
|
else
|
|
v.state := ROUNDING;
|
|
end if;
|
|
end if;
|
|
|
|
when NORMALIZE =>
|
|
-- Shift so we have 9 leading zeroes (we know R is non-zero)
|
|
-- r.shift = clz(r.r) - 7
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
-- set shift to new_exp - min_exp
|
|
rs_sel1 <= RSH1_NE;
|
|
rs_con2 <= RSCON2_MINEXP;
|
|
rs_neg2 <= '1';
|
|
set_x := '1';
|
|
set_xs := r.is_multiply;
|
|
v.tiny := exp_tiny;
|
|
if exp_tiny = '1' and r.fpscr(FPSCR_UE) = '0' then
|
|
v.state := ROUND_UFLOW_DIS;
|
|
elsif exp_huge = '1' and r.fpscr(FPSCR_OE) = '0' then
|
|
v.state := ROUND_OFLOW_DIS;
|
|
else
|
|
v.state := ROUNDING;
|
|
end if;
|
|
|
|
when ROUND_UFLOW_DIS =>
|
|
-- r.shift = - amount by which exponent underflows
|
|
-- disabled underflow exception case
|
|
-- have to denormalize before rounding
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '0';
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
set_x := '1';
|
|
v.state := ROUNDING;
|
|
|
|
when ROUND_OFLOW_DIS =>
|
|
-- disabled overflow exception
|
|
-- result depends on rounding mode
|
|
rcls_op <= RCLS_TINF;
|
|
v.fpscr(FPSCR_OX) := '1';
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "010";
|
|
set_r := '1';
|
|
v.fpscr(FPSCR_XX) := '1';
|
|
v.fpscr(FPSCR_FI) := '1';
|
|
-- construct largest representable number
|
|
re_con2 <= RECON2_MAX;
|
|
re_set_result <= '1';
|
|
arith_done := '1';
|
|
|
|
when ROUNDING =>
|
|
-- r.r can be zero or denorm here for fri* instructions,
|
|
-- and for disabled underflow exception cases.
|
|
opsel_mask <= '1';
|
|
set_r := '1';
|
|
round := fp_rounding(r.r, r.x, r.single_prec, r.round_mode, r.result_sign);
|
|
if r.zero_fri = '0' then
|
|
v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
|
|
else
|
|
v.fpscr(FPSCR_FR downto FPSCR_FI) := "00"; -- for fri* instructions
|
|
end if;
|
|
if round(1) = '1' then
|
|
-- increment the LSB for the precision
|
|
v.state := ROUND_INC;
|
|
elsif r.r(UNIT_BIT) = '0' then
|
|
-- Result after masking could be zero, or could be a
|
|
-- denormalized result that needs to be renormalized,
|
|
-- but only for fri* instructions and for disabled
|
|
-- underflow exception cases.
|
|
-- For fri* instructions, result_exp is 52.
|
|
-- For disabled underflow exception cases for DP operations,
|
|
-- result_exp is -1022 and there is no point renormalizing
|
|
-- since it will just get denormalized again, but we do need
|
|
-- to check for a zero result in a subsequent cycle
|
|
-- after R is masked.
|
|
if r.result_exp > to_signed(-1022, EXP_BITS) then
|
|
rs_norm <= '1';
|
|
end if;
|
|
v.state := ROUNDING_3;
|
|
elsif r.tiny = '1' and r.fpscr(FPSCR_UE) = '1' then
|
|
v.state := ROUND_UFLOW_EN;
|
|
elsif r.result_exp > max_exp then
|
|
v.state := ROUND_OFLOW_EN;
|
|
else
|
|
arith_done := '1';
|
|
end if;
|
|
if round(0) = '1' and r.zero_fri = '0' then
|
|
v.fpscr(FPSCR_XX) := '1';
|
|
end if;
|
|
if round(0) = '1' and r.tiny = '1' then
|
|
v.fpscr(FPSCR_UX) := '1';
|
|
end if;
|
|
|
|
when ROUND_INC =>
|
|
set_r := '1';
|
|
opsel_a <= AIN_RND;
|
|
v.state := ROUNDING_2;
|
|
|
|
when ROUNDING_2 =>
|
|
-- Check for overflow during rounding
|
|
-- r.shift = 0
|
|
if r.r(UNIT_BIT + 1) = '1' then
|
|
-- Do CLZ so we can renormalize the result
|
|
rs_norm <= '1';
|
|
v.state := ROUNDING_3;
|
|
elsif r.r(UNIT_BIT) = '0' then
|
|
-- R is non-zero (we just incremented it)
|
|
-- If result_exp is -1022 here, don't normalize since
|
|
-- we would then need to denormalize again.
|
|
if r.result_exp > to_signed(-1022, EXP_BITS) then
|
|
rs_norm <= '1';
|
|
end if;
|
|
v.state := ROUNDING_3;
|
|
elsif exp_huge = '1' then
|
|
v.state := ROUND_OFLOW_EN;
|
|
elsif r.tiny = '1' and r.fpscr(FPSCR_UE) = '1' then
|
|
v.state := ROUND_UFLOW_EN;
|
|
else
|
|
arith_done := '1';
|
|
end if;
|
|
|
|
when ROUNDING_3 =>
|
|
-- r.shift = clz(r.r) - 7 (or 0, or -7, if r.r is 0)
|
|
-- Note clz may be done on the value before being masked
|
|
-- to the result precision.
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
-- set shift to new_exp - DP min_exp (== -1022)
|
|
rs_sel1 <= RSH1_NE;
|
|
rs_con2 <= RSCON2_DPMINX;
|
|
rs_neg2 <= '1';
|
|
rcls_op <= RCLS_TZERO;
|
|
-- If the result is zero, that's handled below.
|
|
-- Renormalize result after rounding
|
|
v.denorm := exp_tiny;
|
|
re_set_result <= '1';
|
|
if exp_huge = '1' and r.fpscr(FPSCR_OE) = '0' then
|
|
v.state := ROUND_OFLOW_DIS;
|
|
elsif exp_huge = '1' and r.fpscr(FPSCR_OE) = '1' then
|
|
v.state := ROUND_OFLOW_EN;
|
|
elsif r.tiny = '1' and r.fpscr(FPSCR_UE) = '1' then
|
|
v.state := ROUND_UFLOW_EN;
|
|
else
|
|
arith_done := '1';
|
|
end if;
|
|
|
|
when ROUND_OFLOW_EN =>
|
|
-- enabled overflow exception
|
|
-- rounding and normalization has been done
|
|
v.fpscr(FPSCR_OX) := '1';
|
|
re_sel1 <= REXP1_R;
|
|
re_con2 <= RECON2_BIAS;
|
|
re_neg2 <= '1';
|
|
re_set_result <= '1';
|
|
arith_done := '1';
|
|
|
|
when ROUND_UFLOW_EN =>
|
|
-- enabled underflow exception
|
|
-- rounding and normalization has been done
|
|
v.fpscr(FPSCR_UX) := '1';
|
|
re_sel1 <= REXP1_R;
|
|
re_con2 <= RECON2_BIAS;
|
|
re_set_result <= '1';
|
|
arith_done := '1';
|
|
|
|
when DO_IDIVMOD =>
|
|
opsel_a <= AIN_B;
|
|
opsel_aabs <= '1';
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
-- normalize and round up B to 8.56 format, like fcfid[u]
|
|
re_con2 <= RECON2_UNIT;
|
|
re_set_result <= '1';
|
|
if r.b.class = ZERO then
|
|
-- B is zero, signal overflow
|
|
v.int_ovf := '1';
|
|
v.state := IDIV_ZERO;
|
|
elsif r.a.class = ZERO then
|
|
-- A is zero, result is zero (both for div and for mod)
|
|
v.state := IDIV_ZERO;
|
|
else
|
|
v.state := IDIV_NORMB;
|
|
end if;
|
|
when IDIV_NORMB =>
|
|
-- do count-leading-zeroes on B (now in R)
|
|
rs_norm <= '1';
|
|
-- save the original value of B or |B| in C
|
|
set_c := '1';
|
|
v.state := IDIV_NORMB2;
|
|
when IDIV_NORMB2 =>
|
|
-- get B into the range [1, 2) in 8.56 format
|
|
set_x := '1'; -- record if any 1 bits shifted out
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.state := IDIV_NORMB3;
|
|
when IDIV_NORMB3 =>
|
|
-- add the X bit onto R to round up B
|
|
opsel_c <= CIN_RNDX;
|
|
set_r := '1';
|
|
-- prepare to do count-leading-zeroes on A
|
|
v.state := IDIV_CLZA;
|
|
when IDIV_CLZA =>
|
|
set_b := '1'; -- put R back into B
|
|
opsel_a <= AIN_A;
|
|
opsel_aabs <= '1';
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
re_con2 <= RECON2_UNIT;
|
|
re_set_result <= '1';
|
|
v.state := IDIV_CLZA2;
|
|
when IDIV_CLZA2 =>
|
|
rs_norm <= '1';
|
|
-- write the dividend back into A in case we negated it
|
|
set_a_mant := '1';
|
|
-- while doing the count-leading-zeroes on A,
|
|
-- also compute A - B to tell us whether A >= B
|
|
-- (using the original value of B, which is now in C)
|
|
opsel_a <= AIN_C;
|
|
opsel_b <= BIN_R;
|
|
opsel_aneg <= '1';
|
|
set_r := '1';
|
|
v.state := IDIV_CLZA3;
|
|
when IDIV_CLZA3 =>
|
|
-- save the exponent of A (but don't overwrite the mantissa)
|
|
set_a_exp := '1';
|
|
re_sel2 <= REXP2_NE;
|
|
re_set_result <= '1';
|
|
v.div_close := '0';
|
|
if new_exp = r.b.exponent then
|
|
v.div_close := '1';
|
|
end if;
|
|
v.state := IDIV_NR0;
|
|
if new_exp > r.b.exponent or (v.div_close = '1' and r.r(63) = '0') then
|
|
-- A >= B, overflow if extended division
|
|
if r.divext = '1' then
|
|
v.int_ovf := '1';
|
|
-- return 0 in overflow cases
|
|
v.state := IDIV_ZERO;
|
|
end if;
|
|
else
|
|
-- A < B, result is zero for normal division
|
|
if r.divmod = '0' and r.divext = '0' then
|
|
v.state := IDIV_ZERO;
|
|
end if;
|
|
end if;
|
|
when IDIV_NR0 =>
|
|
-- reduce number of Newton-Raphson iterations for small A
|
|
if r.divext = '1' or r.result_exp >= to_signed(32, EXP_BITS) then
|
|
v.count := "00";
|
|
elsif r.result_exp >= to_signed(16, EXP_BITS) then
|
|
v.count := "01";
|
|
else
|
|
v.count := "10";
|
|
end if;
|
|
-- first NR iteration does Y = LUT; P = 2 - B * LUT
|
|
msel_1 <= MUL1_B;
|
|
msel_add <= MULADD_CONST;
|
|
msel_inv <= '1';
|
|
msel_2 <= MUL2_LUT;
|
|
set_y := '1';
|
|
-- Get 0.5 into R in case the inverse estimate turns out to be
|
|
-- less than 0.5, in which case we want to use 0.5, to avoid
|
|
-- infinite loops in some cases.
|
|
-- It turns out the generated QNaN mantissa is actually what we want
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "001";
|
|
set_r := '1';
|
|
if r.b.mantissa(UNIT_BIT + 1) = '1' then
|
|
-- rounding up of the mantissa caused overflow, meaning the
|
|
-- normalized B is 2.0. Since this is outside the range
|
|
-- of the LUT, just use 0.5 as the estimated inverse.
|
|
v.state := IDIV_USE0_5;
|
|
else
|
|
-- start the first multiply now
|
|
f_to_multiply.valid <= '1';
|
|
-- note we don't set v.first, thus the following IDIV_NR1
|
|
-- state doesn't start a multiply (we already did that)
|
|
v.state := IDIV_NR1;
|
|
end if;
|
|
when IDIV_NR1 =>
|
|
-- subsequent NR iterations do Y = P; P = 2 - B * P
|
|
msel_1 <= MUL1_B;
|
|
msel_add <= MULADD_CONST;
|
|
msel_inv <= '1';
|
|
msel_2 <= MUL2_P;
|
|
set_y := r.first;
|
|
pshift := '1';
|
|
-- set shift to 64
|
|
rs_con2 <= RSCON2_64;
|
|
if r.first = '1' then
|
|
if r.count = "11" then
|
|
if r.p(UNIT_BIT) = '0' and r.p(UNIT_BIT - 1) = '0' then
|
|
-- inverse estimate is < 0.5, so use 0.5
|
|
v.state := IDIV_USE0_5;
|
|
else
|
|
v.state := IDIV_DODIV;
|
|
end if;
|
|
else
|
|
f_to_multiply.valid <= r.first;
|
|
end if;
|
|
end if;
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := IDIV_NR2;
|
|
end if;
|
|
when IDIV_NR2 =>
|
|
-- compute P = Y * P
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
if r.first = '1' then
|
|
v.count := r.count + 1;
|
|
end if;
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := IDIV_NR1;
|
|
end if;
|
|
when IDIV_USE0_5 =>
|
|
-- Put the 0.5 which is in R into Y as the inverse estimate
|
|
set_y := '1';
|
|
msel_2 <= MUL2_R;
|
|
-- set shift to 64
|
|
rs_con2 <= RSCON2_64;
|
|
v.state := IDIV_DODIV;
|
|
when IDIV_DODIV =>
|
|
-- r.shift = 64
|
|
-- inverse estimate is in Y
|
|
-- put A (dividend) into R
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
-- shift_res is 0 because r.shift = 64;
|
|
-- put that into B, which now holds the quotient
|
|
set_b_mant := '1';
|
|
if r.divext = '0' then
|
|
-- set shift to -56
|
|
rs_con2 <= RSCON2_UNIT;
|
|
rs_neg2 <= '1';
|
|
v.first := '1';
|
|
v.state := IDIV_DIV;
|
|
elsif r.single_prec = '1' then
|
|
-- divwe[u][o], shift A left 32 bits
|
|
-- set shift to 32
|
|
rs_con2 <= RSCON2_32;
|
|
v.state := IDIV_SH32;
|
|
elsif r.div_close = '0' then
|
|
-- set shift to 64 - UNIT_BIT (== 8)
|
|
rs_con2 <= RSCON2_64_UNIT;
|
|
v.state := IDIV_EXTDIV;
|
|
else
|
|
-- handle top bit of quotient specially
|
|
-- for this we need the divisor left-justified in B
|
|
v.state := IDIV_EXT_TBH;
|
|
end if;
|
|
when IDIV_SH32 =>
|
|
-- r.shift = 32, R contains the dividend
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
-- set shift to -UNIT_BIT (== -56)
|
|
rs_con2 <= RSCON2_UNIT;
|
|
rs_neg2 <= '1';
|
|
v.first := '1';
|
|
v.state := IDIV_DIV;
|
|
when IDIV_DIV =>
|
|
-- Dividing A by C, r.shift = -56; A is in R
|
|
-- Put A into the bottom 64 bits of Ahi/A/Alo
|
|
set_a_mant := r.first;
|
|
set_a_lo := r.first;
|
|
-- compute R = R * Y (quotient estimate)
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_R;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
-- set shift to - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := IDIV_DIV2;
|
|
end if;
|
|
when IDIV_DIV2 =>
|
|
-- r.shift = - b.exponent
|
|
-- shift the quotient estimate right by b.exponent bits
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_DIV3;
|
|
when IDIV_DIV3 =>
|
|
-- quotient (so far) is in R; multiply by C and subtract from A
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_C;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
-- store the current quotient estimate in B
|
|
set_b_mant := r.first;
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := IDIV_DIV4;
|
|
end if;
|
|
when IDIV_DIV4 =>
|
|
-- remainder is in R/S and P
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
v.inc_quot := not pcmpc_lt and not r.divmod;
|
|
-- if dividing, get B into R for IDIV_DIVADJ state
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := not r.divmod;
|
|
-- set shift to UNIT_BIT (== 56)
|
|
rs_con2 <= RSCON2_UNIT;
|
|
if pcmpc_lt = '1' or pcmpc_eq = '1' then
|
|
if r.divmod = '0' then
|
|
v.state := IDIV_DIVADJ;
|
|
elsif pcmpc_eq = '1' then
|
|
v.state := IDIV_ZERO;
|
|
else
|
|
v.state := IDIV_MODADJ;
|
|
end if;
|
|
else
|
|
-- need to do another iteration, compute P * Y
|
|
f_to_multiply.valid <= '1';
|
|
v.state := IDIV_DIV5;
|
|
end if;
|
|
when IDIV_DIV5 =>
|
|
pshift := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
-- set shift to - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := IDIV_DIV6;
|
|
end if;
|
|
when IDIV_DIV6 =>
|
|
-- r.shift = - b.exponent
|
|
-- shift the quotient estimate right by b.exponent bits
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_DIV7;
|
|
when IDIV_DIV7 =>
|
|
-- add shifted quotient delta onto the total quotient
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_R;
|
|
set_r := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_DIV8;
|
|
when IDIV_DIV8 =>
|
|
-- quotient (so far) is in R; multiply by C and subtract from A
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_C;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
-- store the current quotient estimate in B
|
|
set_b_mant := r.first;
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := IDIV_DIV9;
|
|
end if;
|
|
when IDIV_DIV9 =>
|
|
-- remainder is in R/S and P
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_P;
|
|
v.inc_quot := not pcmpc_lt and not r.divmod;
|
|
-- set shift to UNIT_BIT (== 56)
|
|
rs_con2 <= RSCON2_UNIT;
|
|
-- if dividing, get B into R for IDIV_DIVADJ state
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := not r.divmod;
|
|
if r.divmod = '0' then
|
|
v.state := IDIV_DIVADJ;
|
|
elsif pcmpc_eq = '1' then
|
|
v.state := IDIV_ZERO;
|
|
else
|
|
v.state := IDIV_MODADJ;
|
|
end if;
|
|
when IDIV_EXT_TBH =>
|
|
-- get divisor into R and prepare to shift left
|
|
-- set shift to 63 - b.exp
|
|
opsel_a <= AIN_C;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
rs_con2 <= RSCON2_63;
|
|
v.state := IDIV_EXT_TBH2;
|
|
when IDIV_EXT_TBH2 =>
|
|
-- divisor is in R
|
|
-- r.shift = 63 - b.exponent; shift and put into B
|
|
opsel_a <= AIN_A;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '1';
|
|
set_b_mant := '1';
|
|
-- set shift to 64 - UNIT_BIT (== 8)
|
|
rs_con2 <= RSCON2_64_UNIT;
|
|
v.state := IDIV_EXT_TBH3;
|
|
when IDIV_EXT_TBH3 =>
|
|
-- Dividing (A << 64) by C
|
|
-- r.shift = 8
|
|
-- Put A in the top 64 bits of Ahi/A/Alo
|
|
set_a_hi := '1';
|
|
set_a_mant := '1';
|
|
-- set shift to 64 - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
rs_con2 <= RSCON2_64;
|
|
v.state := IDIV_EXT_TBH4;
|
|
when IDIV_EXT_TBH4 =>
|
|
-- dividend (A) is in R
|
|
-- r.shift = 64 - B.exponent, so is at least 1
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
-- top bit of A gets lost in the shift, so handle it specially
|
|
-- set shift to 63
|
|
rs_con2 <= RSCON2_63;
|
|
v.state := IDIV_EXT_TBH5;
|
|
when IDIV_EXT_TBH5 =>
|
|
-- r.shift = 63
|
|
-- shifted dividend is in R, subtract left-justified divisor
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_R;
|
|
opsel_aneg <= '1';
|
|
set_r := '1';
|
|
-- and put 1<<63 into B as the divisor (S is still 0)
|
|
shiftin0 := '1';
|
|
set_b_mant := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_EXTDIV2;
|
|
when IDIV_EXTDIV =>
|
|
-- Dividing (A << 64) by C
|
|
-- r.shift = 8
|
|
-- Put A in the top 64 bits of Ahi/A/Alo
|
|
set_a_hi := '1';
|
|
set_a_mant := '1';
|
|
-- set shift to 64 - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
rs_con2 <= RSCON2_64;
|
|
v.state := IDIV_EXTDIV1;
|
|
when IDIV_EXTDIV1 =>
|
|
-- dividend is in R
|
|
-- r.shift = 64 - B.exponent
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_EXTDIV2;
|
|
when IDIV_EXTDIV2 =>
|
|
-- shifted remainder is in R; compute R = R * Y (quotient estimate)
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_R;
|
|
f_to_multiply.valid <= r.first;
|
|
pshift := '1';
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
if multiply_to_f.valid = '1' then
|
|
v.first := '1';
|
|
v.state := IDIV_EXTDIV3;
|
|
end if;
|
|
when IDIV_EXTDIV3 =>
|
|
-- delta quotient is in R; add it to B
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_R;
|
|
set_r := '1';
|
|
v.first := '1';
|
|
v.state := IDIV_EXTDIV4;
|
|
when IDIV_EXTDIV4 =>
|
|
-- quotient is in R; put it in B and compute remainder
|
|
set_b_mant := r.first;
|
|
msel_1 <= MUL1_R;
|
|
msel_2 <= MUL2_C;
|
|
msel_add <= MULADD_A;
|
|
msel_inv <= '1';
|
|
f_to_multiply.valid <= r.first;
|
|
opsel_r <= RES_MULT;
|
|
set_r := '1';
|
|
opsel_s <= S_MULT;
|
|
set_s := '1';
|
|
-- set shift to UNIT_BIT - b.exp
|
|
rs_sel1 <= RSH1_B;
|
|
rs_neg1 <= '1';
|
|
rs_con2 <= RSCON2_UNIT;
|
|
if multiply_to_f.valid = '1' then
|
|
v.state := IDIV_EXTDIV5;
|
|
end if;
|
|
when IDIV_EXTDIV5 =>
|
|
-- r.shift = r.b.exponent - 56
|
|
-- remainder is in R/S; shift it right r.b.exponent bits
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
-- test LS 64b of remainder in P against divisor in C
|
|
v.inc_quot := not pcmpc_lt;
|
|
v.state := IDIV_EXTDIV6;
|
|
when IDIV_EXTDIV6 =>
|
|
-- shifted remainder is in R, see if it is > 1
|
|
-- and compute R = R * Y if so
|
|
opsel_a <= AIN_B;
|
|
opsel_b <= BIN_ZERO;
|
|
set_r := '0';
|
|
msel_1 <= MUL1_Y;
|
|
msel_2 <= MUL2_R;
|
|
pshift := '1';
|
|
if r_gt_1 = '1' then
|
|
f_to_multiply.valid <= '1';
|
|
v.state := IDIV_EXTDIV2;
|
|
else
|
|
-- Put B (quotient) into R for IDIV_DIVADJ state
|
|
set_r := '1';
|
|
v.state := IDIV_DIVADJ;
|
|
end if;
|
|
when IDIV_MODADJ =>
|
|
-- r.shift = 56
|
|
-- result is in R/S
|
|
opsel_r <= RES_SHIFT;
|
|
set_r := '1';
|
|
if pcmpc_lt = '0' then
|
|
v.state := IDIV_MODSUB;
|
|
elsif r.result_sign = '0' then
|
|
v.state := IDIV_DONE;
|
|
else
|
|
v.state := IDIV_MODADJ_NEG;
|
|
end if;
|
|
when IDIV_MODADJ_NEG =>
|
|
-- result (so far) is in R
|
|
-- set carry to increment quotient if needed
|
|
-- and also negate R since the answer is negative
|
|
opsel_b <= BIN_MINUSR;
|
|
set_r := '1';
|
|
v.state := IDIV_OVFCHK;
|
|
when IDIV_MODSUB =>
|
|
-- Subtract divisor from remainder
|
|
opsel_a <= AIN_C;
|
|
opsel_aneg <= '1';
|
|
opsel_b <= BIN_R;
|
|
set_r := '1';
|
|
if r.result_sign = '0' then
|
|
v.state := IDIV_DONE;
|
|
else
|
|
v.state := IDIV_DIVADJ;
|
|
end if;
|
|
when IDIV_DIVADJ =>
|
|
-- result (so far) is in R
|
|
-- set carry to increment quotient if needed
|
|
-- and also negate R if the answer is negative
|
|
opsel_a <= AIN_RND_B32;
|
|
opsel_b <= BIN_RSIGNR;
|
|
opsel_c <= CIN_RNDQ;
|
|
set_r := '1';
|
|
if r.is_signed = '0' then
|
|
v.state := IDIV_DONE;
|
|
else
|
|
v.state := IDIV_OVFCHK;
|
|
end if;
|
|
when IDIV_OVFCHK =>
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "000";
|
|
if r.single_prec = '0' then
|
|
sign_bit := r.r(63);
|
|
else
|
|
sign_bit := r.r(31);
|
|
end if;
|
|
v.int_ovf := sign_bit xor r.result_sign;
|
|
set_r := sign_bit xor r.result_sign;
|
|
v.state := IDIV_DONE;
|
|
when IDIV_DONE =>
|
|
cr_op := CROP_INTRES;
|
|
set_cr := '1';
|
|
v.writing_fpr := '1';
|
|
v.instr_done := '1';
|
|
when IDIV_ZERO =>
|
|
opsel_r <= RES_MISC;
|
|
misc_sel <= "000";
|
|
set_r := '1';
|
|
v.state := IDIV_DONE;
|
|
|
|
end case;
|
|
|
|
-- Handle exceptions and special cases for arithmetic operations
|
|
if r.cycle_1_ar = '1' then
|
|
v.fpscr := r.fpscr or scinfo.new_fpscr;
|
|
v.fpscr(FPSCR_FR) := '0';
|
|
v.fpscr(FPSCR_FI) := '0';
|
|
v.result_class := FINITE;
|
|
invalid := scinfo.invalid;
|
|
zero_divide := scinfo.zero_divide;
|
|
qnan_result := scinfo.qnan_result;
|
|
if scinfo.immed_result = '1' then
|
|
-- state machine is in the DO_SPECIAL or DO_FSQRT state here
|
|
set_r := '1';
|
|
v.is_multiply := '0'; -- P is not valid
|
|
opsel_r <= RES_MISC;
|
|
opsel_sel <= scinfo.result_sel;
|
|
if scinfo.qnan_result = '1' then
|
|
if r.int_result = '0' then
|
|
misc_sel <= "001";
|
|
else
|
|
misc_sel <= "110";
|
|
end if;
|
|
arith_done := '1';
|
|
else
|
|
misc_sel <= "111";
|
|
if scinfo.need_finish = '1' then
|
|
-- we have to do rounding or underflow exception processing on the result
|
|
v.state := FINISH;
|
|
else
|
|
arith_done := '1';
|
|
end if;
|
|
end if;
|
|
rsgn_op := scinfo.rsgn_op;
|
|
v.result_class := scinfo.result_class;
|
|
if scinfo.result_sel = AIN_B then
|
|
re_sel2 <= REXP2_B;
|
|
else
|
|
re_sel1 <= REXP1_A;
|
|
end if;
|
|
re_set_result <= '1';
|
|
end if;
|
|
end if;
|
|
|
|
rsign := r.result_sign;
|
|
case rsgn_op is
|
|
when RSGN_SEL =>
|
|
case opsel_sel is
|
|
when AIN_A =>
|
|
rsign := r.a.negative;
|
|
when AIN_B =>
|
|
rsign := r.b.negative;
|
|
when AIN_C =>
|
|
rsign := r.c.negative;
|
|
when others =>
|
|
end case;
|
|
v.result_sign := rsign;
|
|
when RSGN_SUB =>
|
|
rsign := r.result_sign xor r.is_subtract;
|
|
v.result_sign := rsign;
|
|
when RSGN_INV =>
|
|
rsign := not r.result_sign;
|
|
v.result_sign := rsign;
|
|
when others =>
|
|
end case;
|
|
|
|
case rcls_op is
|
|
when RCLS_SEL =>
|
|
case opsel_sel is
|
|
when AIN_A =>
|
|
v.result_class := r.a.class;
|
|
when AIN_B =>
|
|
v.result_class := r.b.class;
|
|
when AIN_C =>
|
|
v.result_class := r.c.class;
|
|
when others =>
|
|
end case;
|
|
when RCLS_TZERO =>
|
|
if or (r.r) = '0' then
|
|
v.result_class := ZERO;
|
|
arith_done := '1';
|
|
end if;
|
|
when RCLS_TINF =>
|
|
if r.round_mode(1 downto 0) = "00" or
|
|
(r.round_mode(1) = '1' and r.round_mode(0) = r.result_sign) then
|
|
v.result_class := INFINITY;
|
|
v.fpscr(FPSCR_FR) := '1';
|
|
else
|
|
v.fpscr(FPSCR_FR) := '0';
|
|
end if;
|
|
when others =>
|
|
end case;
|
|
|
|
if qnan_result = '1' then
|
|
rsign := '0';
|
|
end if;
|
|
if invalid = '1' then
|
|
v.invalid := '1';
|
|
end if;
|
|
if arith_done = '1' then
|
|
-- Enabled invalid exception doesn't write result or FPRF
|
|
-- Neither does enabled zero-divide exception
|
|
if (v.invalid and r.fpscr(FPSCR_VE)) = '0' and
|
|
(zero_divide and r.fpscr(FPSCR_ZE)) = '0' then
|
|
v.writing_fpr := '1';
|
|
v.update_fprf := '1';
|
|
end if;
|
|
if r.is_subtract = '1' and v.result_class = ZERO and v.fpscr(FPSCR_FI) = '0' then
|
|
rsign := r.round_mode(0) and r.round_mode(1);
|
|
end if;
|
|
if r.negate = '1' and v.result_class /= NAN then
|
|
rsign := not rsign;
|
|
end if;
|
|
v.instr_done := '1';
|
|
update_fx := '1';
|
|
end if;
|
|
|
|
-- Multiplier and divide/square root data path
|
|
case msel_1 is
|
|
when MUL1_A =>
|
|
f_to_multiply.data1 <= r.a.mantissa;
|
|
when MUL1_B =>
|
|
f_to_multiply.data1 <= r.b.mantissa;
|
|
when MUL1_Y =>
|
|
f_to_multiply.data1 <= r.y;
|
|
when others =>
|
|
f_to_multiply.data1 <= r.r;
|
|
end case;
|
|
case msel_2 is
|
|
when MUL2_C =>
|
|
f_to_multiply.data2 <= r.c.mantissa;
|
|
when MUL2_LUT =>
|
|
f_to_multiply.data2 <= std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
|
|
UNIT_BIT - 19));
|
|
when MUL2_P =>
|
|
f_to_multiply.data2 <= r.p;
|
|
when others =>
|
|
f_to_multiply.data2 <= r.r;
|
|
end case;
|
|
maddend := (others => '0');
|
|
case msel_add is
|
|
when MULADD_CONST =>
|
|
-- addend is 2.0 or 1.5 in 16.112 format
|
|
if r.is_sqrt = '0' then
|
|
maddend(2*UNIT_BIT + 1) := '1'; -- 2.0
|
|
else
|
|
maddend(2*UNIT_BIT downto 2*UNIT_BIT - 1) := "11"; -- 1.5
|
|
end if;
|
|
when MULADD_A =>
|
|
-- addend is A in 16.112 format
|
|
maddend(127 downto UNIT_BIT + 64) := r.a_hi;
|
|
maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.a.mantissa;
|
|
maddend(UNIT_BIT - 1 downto 0) := r.a_lo;
|
|
when MULADD_RS =>
|
|
-- addend is concatenation of R and S in 16.112 format
|
|
maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.r;
|
|
maddend(UNIT_BIT - 1 downto 0) := r.s;
|
|
when others =>
|
|
end case;
|
|
f_to_multiply.addend <= maddend;
|
|
f_to_multiply.subtract <= msel_inv;
|
|
if set_y = '1' then
|
|
v.y := f_to_multiply.data2;
|
|
end if;
|
|
if multiply_to_f.valid = '1' then
|
|
if pshift = '0' then
|
|
v.p := multiply_to_f.result(63 downto 0);
|
|
else
|
|
v.p := multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
|
|
end if;
|
|
end if;
|
|
|
|
-- Data path.
|
|
-- This has A and B input multiplexers, an adder, a shifter,
|
|
-- count-leading-zeroes logic, and a result mux.
|
|
|
|
-- If shifting right, test if bits of R will be shifted out of significance
|
|
if r.longmask = '1' then
|
|
mshift := to_signed(SP_RBIT - 1, EXP_BITS);
|
|
else
|
|
mshift := to_signed(-1, EXP_BITS);
|
|
end if;
|
|
mshift := mshift - r.shift;
|
|
if set_x = '1' and not is_X(mshift) and mshift >= to_signed(0, EXP_BITS) then
|
|
-- Instead of computing (R & right_mask(63-mshift)) != 0,
|
|
-- we compute (R | -R), which has the form 111...10...0
|
|
-- where the rightmost 1 is in the same position as the
|
|
-- rightmost 1 in R. Then if bit (mshift) of that value
|
|
-- is 1, there must be a 1 in the rightmost (mshift + 1)
|
|
-- bits of R.
|
|
rormr := r.r or std_ulogic_vector(- signed(r.r));
|
|
if mshift >= to_signed(64, EXP_BITS) then
|
|
mshift := to_signed(63, EXP_BITS);
|
|
end if;
|
|
v.x := v.x or rormr(to_integer(unsigned(mshift(5 downto 0))));
|
|
end if;
|
|
-- Test if there are non-zero bits in S which won't get shifted into R
|
|
if set_xs = '1' and not is_X(r.shift) and r.shift < to_signed(56, EXP_BITS) then
|
|
if r.shift > to_signed(0, EXP_BITS) then
|
|
mshift := to_signed(55, EXP_BITS) - r.shift;
|
|
else
|
|
mshift := to_signed(55, EXP_BITS);
|
|
end if;
|
|
sorms := r.s or std_ulogic_vector(- signed(r.s));
|
|
v.x := v.x or sorms(to_integer(unsigned(mshift(5 downto 0))));
|
|
end if;
|
|
asign := '0';
|
|
case opsel_a is
|
|
when AIN_A =>
|
|
in_a0 := r.a.mantissa;
|
|
asign := r.a.negative;
|
|
when AIN_B =>
|
|
in_a0 := r.b.mantissa;
|
|
asign := r.b.negative;
|
|
when AIN_C =>
|
|
in_a0 := r.c.mantissa;
|
|
when AIN_PS8 => -- 8 LSBs of P sign-extended to 64
|
|
in_a0 := std_ulogic_vector(resize(signed(r.p(7 downto 0)), 64));
|
|
when AIN_RND_B32 =>
|
|
in_a0 := (32 => r.result_sign and r.single_prec, others => '0');
|
|
when AIN_RND_RBIT =>
|
|
in_a0 := (DP_RBIT => '1', others => '0');
|
|
when AIN_RND =>
|
|
in_a0 := (SP_LSB => r.single_prec, DP_LSB => not r.single_prec, others => '0');
|
|
when others =>
|
|
in_a0 := (others => '0');
|
|
end case;
|
|
ci := '0';
|
|
case opsel_c is
|
|
when CIN_SUBEXT =>
|
|
-- Used with opsel_b = BIN_ADDSUBR, which will invert it if
|
|
-- r.subtract = 1, hence we use r.x here, rather than not r.x.
|
|
ci := r.is_subtract and r.x;
|
|
when CIN_ABSEXT =>
|
|
ci := r.r(63) and (s_nz or r.x);
|
|
when CIN_INC =>
|
|
ci := '1';
|
|
when CIN_ROUND =>
|
|
ci := r.fpscr(FPSCR_FR);
|
|
when CIN_RNDX =>
|
|
ci := r.x;
|
|
when CIN_RNDQ =>
|
|
ci := r.inc_quot;
|
|
when others =>
|
|
end case;
|
|
if opsel_aneg = '1' or (opsel_aabs = '1' and r.is_signed = '1' and asign = '1') then
|
|
in_a0 := not in_a0;
|
|
ci := not ci;
|
|
end if;
|
|
in_a <= in_a0;
|
|
in_b0 := r.r;
|
|
bneg := '0';
|
|
case opsel_b is
|
|
when BIN_R =>
|
|
when BIN_MINUSR =>
|
|
bneg := '1';
|
|
when BIN_ABSR =>
|
|
bneg := r.r(63);
|
|
when BIN_ADDSUBR =>
|
|
bneg := r.is_subtract;
|
|
when BIN_RSIGNR =>
|
|
bneg := r.result_sign;
|
|
when others =>
|
|
in_b0 := (others => '0');
|
|
end case;
|
|
if bneg = '1' then
|
|
in_b0 := not in_b0;
|
|
ci := not ci;
|
|
end if;
|
|
in_b <= in_b0;
|
|
if is_X(r.shift) then
|
|
shift_res := (others => 'X');
|
|
elsif r.shift >= to_signed(-64, EXP_BITS) and r.shift <= to_signed(63, EXP_BITS) then
|
|
shift_res := shifter_64(r.r(63 downto 1) & (shiftin0 or r.r(0)) &
|
|
(shiftin or r.s(55)) & r.s(54 downto 0),
|
|
std_ulogic_vector(r.shift(6 downto 0)));
|
|
else
|
|
shift_res := (others => '0');
|
|
end if;
|
|
sum := std_ulogic_vector(unsigned(in_a) + unsigned(in_b) + ci);
|
|
if opsel_mask = '1' then
|
|
sum(DP_LSB - 1 downto 0) := "0000";
|
|
if r.single_prec = '1' then
|
|
sum(SP_LSB - 1 downto DP_LSB) := (others => '0');
|
|
end if;
|
|
end if;
|
|
case opsel_r is
|
|
when RES_SUM =>
|
|
result <= sum;
|
|
when RES_SHIFT =>
|
|
result <= shift_res;
|
|
when RES_MULT =>
|
|
result <= multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
|
|
if mult_mask = '1' then
|
|
-- trim to 54 fraction bits if mult_mask = 1, for quotient when dividing
|
|
result(UNIT_BIT - 55 downto 0) <= (others => '0');
|
|
end if;
|
|
when others =>
|
|
misc := (others => '0');
|
|
case misc_sel is
|
|
when "000" =>
|
|
-- zero result, used in idiv logic
|
|
when "001" =>
|
|
-- generated QNaN mantissa; also used for 0.5 in idiv logic
|
|
misc(QNAN_BIT) := '1';
|
|
when "010" =>
|
|
-- mantissa of max representable number, DP or SP
|
|
misc(UNIT_BIT downto SP_LSB) := (others => '1');
|
|
misc(SP_LSB-1 downto DP_LSB) := (others => not r.single_prec);
|
|
when "011" =>
|
|
-- read FPSCR
|
|
misc := x"00000000" & (r.fpscr and fpscr_mask);
|
|
when "100" =>
|
|
-- fmrgow/fmrgew result
|
|
if r.insn(8) = '0' then
|
|
misc := r.a.mantissa(31 downto 0) & r.b.mantissa(31 downto 0);
|
|
else
|
|
misc := r.a.mantissa(63 downto 32) & r.b.mantissa(63 downto 32);
|
|
end if;
|
|
when "101" =>
|
|
-- LUT value
|
|
misc := std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
|
|
UNIT_BIT - 19));
|
|
when "110" =>
|
|
-- max positive or negative result for fcti*
|
|
if r.result_sign = '0' and r.b.class /= NAN then
|
|
misc := x"000000007fffffff";
|
|
misc(31) := r.insn(8) or r.insn(9); -- unsigned or dword
|
|
misc(62 downto 32) := (others => r.insn(9)); -- dword
|
|
misc(63) := r.insn(8) and r.insn(8);
|
|
elsif r.insn(8) = '0' then
|
|
misc(63) := '1';
|
|
if r.insn(9) = '0' then
|
|
misc(62 downto 31) := (others => '1');
|
|
end if;
|
|
end if;
|
|
when others =>
|
|
-- A, B or C, according to opsel_sel
|
|
case opsel_sel is
|
|
when AIN_A =>
|
|
misc := r.a.mantissa;
|
|
when AIN_B =>
|
|
misc := r.b.mantissa;
|
|
when AIN_C =>
|
|
misc := r.c.mantissa;
|
|
when others =>
|
|
end case;
|
|
end case;
|
|
result <= misc;
|
|
end case;
|
|
if set_r = '1' then
|
|
v.r := result;
|
|
end if;
|
|
if set_s = '1' then
|
|
case opsel_s is
|
|
when S_NEG =>
|
|
v.s := std_ulogic_vector(unsigned(not r.s) + (not r.x));
|
|
when S_MULT =>
|
|
v.s := multiply_to_f.result(55 downto 0);
|
|
when S_SHIFT =>
|
|
v.s := shift_res(63 downto 8);
|
|
if shift_res(7 downto 0) /= x"00" then
|
|
v.x := '1';
|
|
end if;
|
|
when others =>
|
|
v.s := (others => '0');
|
|
end case;
|
|
end if;
|
|
|
|
if set_reg_ind = '1' then
|
|
case r.regsel is
|
|
when AIN_A =>
|
|
set_a := '1';
|
|
when AIN_B =>
|
|
set_b := '1';
|
|
when AIN_C =>
|
|
set_c := '1';
|
|
when others =>
|
|
end case;
|
|
end if;
|
|
if set_a = '1' or set_a_exp = '1' then
|
|
v.a.exponent := new_exp;
|
|
end if;
|
|
if set_a = '1' or set_a_mant = '1' then
|
|
v.a.mantissa := shift_res;
|
|
end if;
|
|
if e_in.valid = '1' then
|
|
v.a_hi := (others => '0');
|
|
v.a_lo := (others => '0');
|
|
else
|
|
if set_a_hi = '1' then
|
|
v.a_hi := r.r(63 downto 56);
|
|
end if;
|
|
if set_a_lo = '1' then
|
|
v.a_lo := r.r(55 downto 0);
|
|
end if;
|
|
end if;
|
|
if set_b = '1' then
|
|
v.b.exponent := new_exp;
|
|
end if;
|
|
if set_b = '1' or set_b_mant = '1' then
|
|
v.b.mantissa := shift_res;
|
|
end if;
|
|
if set_c = '1' then
|
|
v.c.exponent := new_exp;
|
|
v.c.mantissa := shift_res;
|
|
end if;
|
|
|
|
-- exponent data path
|
|
case re_sel1 is
|
|
when REXP1_R =>
|
|
rexp_in1 := r.result_exp;
|
|
when REXP1_A =>
|
|
rexp_in1 := r.a.exponent;
|
|
when REXP1_BHALF =>
|
|
rexp_in1 := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
|
|
when others =>
|
|
rexp_in1 := to_signed(0, EXP_BITS);
|
|
end case;
|
|
if re_neg1 = '1' then
|
|
rexp_in1 := not rexp_in1;
|
|
end if;
|
|
case re_sel2 is
|
|
when REXP2_NE =>
|
|
rexp_in2 := new_exp;
|
|
when REXP2_C =>
|
|
rexp_in2 := r.c.exponent;
|
|
when REXP2_B =>
|
|
rexp_in2 := r.b.exponent;
|
|
when others =>
|
|
case re_con2 is
|
|
when RECON2_UNIT =>
|
|
rexp_in2 := to_signed(UNIT_BIT, EXP_BITS);
|
|
when RECON2_MAX =>
|
|
rexp_in2 := max_exp;
|
|
when RECON2_BIAS =>
|
|
rexp_in2 := bias_exp;
|
|
when others =>
|
|
rexp_in2 := to_signed(0, EXP_BITS);
|
|
end case;
|
|
end case;
|
|
if re_neg2 = '1' then
|
|
rexp_in2 := not rexp_in2;
|
|
end if;
|
|
rexp_cin := re_neg1 or re_neg2;
|
|
rexp_sum := rexp_in1 + rexp_in2 + rexp_cin;
|
|
if re_set_result = '1' then
|
|
v.result_exp := rexp_sum;
|
|
end if;
|
|
case rs_sel1 is
|
|
when RSH1_B =>
|
|
rsh_in1 := r.b.exponent;
|
|
when RSH1_NE =>
|
|
rsh_in1 := new_exp;
|
|
when RSH1_S =>
|
|
rsh_in1 := r.shift;
|
|
when others =>
|
|
rsh_in1 := to_signed(0, EXP_BITS);
|
|
end case;
|
|
if rs_neg1 = '1' then
|
|
rsh_in1 := not rsh_in1;
|
|
end if;
|
|
case rs_sel2 is
|
|
when RSH2_A =>
|
|
rsh_in2 := r.a.exponent;
|
|
when others =>
|
|
case rs_con2 is
|
|
when RSCON2_1 =>
|
|
rsh_in2 := to_signed(1, EXP_BITS);
|
|
when RSCON2_UNIT_52 =>
|
|
rsh_in2 := to_signed(UNIT_BIT - 52, EXP_BITS);
|
|
when RSCON2_64_UNIT =>
|
|
rsh_in2 := to_signed(64 - UNIT_BIT, EXP_BITS);
|
|
when RSCON2_32 =>
|
|
rsh_in2 := to_signed(32, EXP_BITS);
|
|
when RSCON2_52 =>
|
|
rsh_in2 := to_signed(52, EXP_BITS);
|
|
when RSCON2_UNIT =>
|
|
rsh_in2 := to_signed(UNIT_BIT, EXP_BITS);
|
|
when RSCON2_63 =>
|
|
rsh_in2 := to_signed(63, EXP_BITS);
|
|
when RSCON2_64 =>
|
|
rsh_in2 := to_signed(64, EXP_BITS);
|
|
when RSCON2_MINEXP =>
|
|
rsh_in2 := min_exp;
|
|
when RSCON2_DPMINX =>
|
|
rsh_in2 := to_signed(-1022, EXP_BITS);
|
|
when others =>
|
|
rsh_in2 := to_signed(0, EXP_BITS);
|
|
end case;
|
|
end case;
|
|
if rs_neg2 = '1' then
|
|
rsh_in2 := not rsh_in2;
|
|
end if;
|
|
if rs_norm = '1' then
|
|
clz := count_left_zeroes(r.r);
|
|
if renorm_sqrt = '1' then
|
|
-- make denormalized value end up with even exponent
|
|
clz(0) := '1';
|
|
end if;
|
|
-- do this as a separate dedicated 7-bit adder for timing reasons
|
|
v.shift := resize(signed('0' & clz) - (63 - UNIT_BIT), EXP_BITS);
|
|
else
|
|
v.shift := rsh_in1 + rsh_in2 + (rs_neg1 or rs_neg2);
|
|
end if;
|
|
|
|
-- Condition register data path
|
|
cr_result := "0000";
|
|
case cr_op is
|
|
when CROP_FCMP =>
|
|
if r.a.class = NAN or r.b.class = NAN then
|
|
cr_result := "0001"; -- unordered
|
|
elsif r.a.class = ZERO and r.b.class = ZERO then
|
|
cr_result := "0010"; -- equal
|
|
elsif r.a.negative /= r.b.negative then
|
|
cr_result := r.a.negative & r.b.negative & "00";
|
|
elsif r.a.class = INFINITY and r.b.class = INFINITY then
|
|
-- A and B are the same sign from here down
|
|
cr_result := "0010";
|
|
elsif r.a.class = ZERO then
|
|
cr_result := not r.b.negative & r.b.negative & "00";
|
|
elsif r.a.class = INFINITY then
|
|
cr_result := r.a.negative & not r.a.negative & "00";
|
|
elsif r.b.class = ZERO then
|
|
-- A is finite from here down
|
|
cr_result := r.a.negative & not r.a.negative & "00";
|
|
elsif r.b.class = INFINITY then
|
|
cr_result := not r.b.negative & r.b.negative & "00";
|
|
elsif r.a.exponent > r.b.exponent then
|
|
-- A and B are both finite from here down
|
|
cr_result := r.a.negative & not r.a.negative & "00";
|
|
elsif r.a.exponent /= r.b.exponent then
|
|
-- A exponent is smaller than B
|
|
cr_result := not r.a.negative & r.a.negative & "00";
|
|
elsif r.r(63) = '1' then
|
|
-- A is smaller in magnitude
|
|
cr_result := not r.a.negative & r.a.negative & "00";
|
|
elsif (r_hi_nz or r_lo_nz) = '0' then
|
|
cr_result := "0010";
|
|
else
|
|
cr_result := r.a.negative & not r.a.negative & "00";
|
|
end if;
|
|
when CROP_MCRFS =>
|
|
j := to_integer(unsigned(insn_bfa(r.insn)));
|
|
for i in 0 to 7 loop
|
|
if i = j then
|
|
k := (7 - i) * 4;
|
|
cr_result := r.fpscr(k + 3 downto k);
|
|
end if;
|
|
end loop;
|
|
when CROP_FTDIV =>
|
|
if r.a.class = INFINITY or r.b.class = ZERO or r.b.class = INFINITY or
|
|
(r.b.class = FINITE and r.b.denorm = '1') then
|
|
cr_result(2) := '1';
|
|
end if;
|
|
if r.a.class = NAN or r.a.class = INFINITY or
|
|
r.b.class = NAN or r.b.class = ZERO or r.b.class = INFINITY or
|
|
(r.a.class = FINITE and r.a.exponent <= to_signed(-970, EXP_BITS)) or
|
|
(r.doing_ftdiv(1) = '1' and (exp_tiny or exp_huge) = '1') then
|
|
cr_result(1) := '1';
|
|
end if;
|
|
when CROP_FTSQRT =>
|
|
if r.b.class = ZERO or r.b.class = INFINITY or
|
|
(r.b.class = FINITE and r.b.denorm = '1') then
|
|
cr_result(2) := '1';
|
|
end if;
|
|
if r.b.class = NAN or r.b.class = INFINITY or r.b.class = ZERO
|
|
or r.b.negative = '1' or r.b.exponent <= to_signed(-970, EXP_BITS) then
|
|
cr_result(1) := '1';
|
|
end if;
|
|
when CROP_INTRES =>
|
|
v.xerc_result := v.xerc;
|
|
if r.oe = '1' then
|
|
v.xerc_result.ov := r.int_ovf;
|
|
v.xerc_result.ov32 := r.int_ovf;
|
|
v.xerc_result.so := r.xerc.so or r.int_ovf;
|
|
v.writing_xer := '1';
|
|
end if;
|
|
if r.m32b = '0' then
|
|
cr_result(3) := r.r(63);
|
|
if r.r = 64x"0" then
|
|
cr_result(1) := '1';
|
|
else
|
|
cr_result(2) := not r.r(63);
|
|
end if;
|
|
else
|
|
cr_result(3) := r.r(31);
|
|
if r.r(31 downto 0) = 32x"0" then
|
|
cr_result(1) := '1';
|
|
else
|
|
cr_result(2) := not r.r(31);
|
|
end if;
|
|
end if;
|
|
cr_result(0) := v.xerc_result.so;
|
|
when others =>
|
|
end case;
|
|
if set_cr = '1' then
|
|
v.cr_result := cr_result;
|
|
end if;
|
|
if set_fpcc = '1' then
|
|
v.fpscr(FPSCR_FL downto FPSCR_FU) := cr_result;
|
|
end if;
|
|
|
|
if r.update_fprf = '1' then
|
|
v.fpscr(FPSCR_C downto FPSCR_FU) := result_flags(r.res_sign, r.result_class, r.int_result,
|
|
r.r(UNIT_BIT) and not r.denorm);
|
|
end if;
|
|
|
|
v.fpscr(FPSCR_VX) := (or (v.fpscr(FPSCR_VXSNAN downto FPSCR_VXVC))) or
|
|
(or (v.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI)));
|
|
v.fpscr(FPSCR_FEX) := or (v.fpscr(FPSCR_VX downto FPSCR_XX) and
|
|
v.fpscr(FPSCR_VE downto FPSCR_XE));
|
|
if update_fx = '1' and
|
|
((v.fpscr(FPSCR_OX downto FPSCR_VXVC) & v.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI)) and
|
|
not r.old_exc) /= 13x"0" then
|
|
v.fpscr(FPSCR_FX) := '1';
|
|
end if;
|
|
|
|
if r.complete = '1' or r.do_intr = '1' then
|
|
v.comm_fpscr := v.fpscr;
|
|
end if;
|
|
|
|
if v.instr_done = '1' then
|
|
if r.state /= IDLE then
|
|
v.state := IDLE;
|
|
v.busy := '0';
|
|
v.f2stall := '0';
|
|
if r.fp_rc = '1' then
|
|
v.cr_result := v.fpscr(FPSCR_FX downto FPSCR_OX);
|
|
end if;
|
|
-- set sp_result for fctiw*
|
|
v.sp_result := r.single_prec and not r.integer_op;
|
|
v.res_int := r.int_result or r.integer_op;
|
|
v.illegal := illegal;
|
|
v.nsnan_result := r.quieten_nan;
|
|
v.res_sign := rsign;
|
|
if r.integer_op = '1' then
|
|
v.cr_mask := num_to_fxm(0);
|
|
elsif r.is_cmp = '0' then
|
|
v.cr_mask := num_to_fxm(1);
|
|
elsif is_X(insn_bf(r.insn)) then
|
|
v.cr_mask := (others => 'X');
|
|
else
|
|
v.cr_mask := num_to_fxm(to_integer(unsigned(insn_bf(r.insn))));
|
|
end if;
|
|
v.writing_cr := r.is_cmp or r.rc;
|
|
v.write_reg := r.dest_fpr;
|
|
v.complete_tag := r.instr_tag;
|
|
end if;
|
|
if e_in.stall = '0' then
|
|
v.complete := not v.illegal;
|
|
v.do_intr := (v.fpscr(FPSCR_FEX) and r.fe_mode) or v.illegal;
|
|
end if;
|
|
-- N.B. We rely on execute1 to prevent any new instruction
|
|
-- coming in while e_in.stall = 1, without us needing to
|
|
-- have busy asserted.
|
|
else
|
|
if r.state /= IDLE and e_in.stall = '0' then
|
|
v.f2stall := '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- This mustn't depend on any fields of r that are modified in IDLE state.
|
|
if r.res_int = '1' then
|
|
fp_result <= r.r;
|
|
if r.sp_result = '1' then
|
|
fp_result(63 downto 32) <= r.r(31 downto 0);
|
|
end if;
|
|
else
|
|
fp_result <= pack_dp(r.res_sign, r.result_class, r.result_exp, r.r,
|
|
r.sp_result, r.nsnan_result);
|
|
end if;
|
|
|
|
-- Make sure the reserved bit 11 (52) of FPSCR can never be set
|
|
v.fpscr(11) := '0';
|
|
|
|
rin <= v;
|
|
end process;
|
|
|
|
end architecture behaviour;
|