1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-01-13 15:18:09 +00:00
Paul Mackerras 00efcc2c3b dcache: Make aligned quadword loads and stores actually be atomic
This implements logic in the dcache to make aligned quadword loads and
stores atomic with respect to other mechanisms that access memory.
Such loads and stores are already marked with the atomic_qw bit in
Loadstore1ToDcacheType.

For quadword loads where the first dword access hits in the cache, we
record the fact of the hit and the cache way used (r1.prev_hit and
r1.prev_way).  The second dword access then assumes a hit on the same
way even if the cache line has been invalidated in the mean time by a
snooped store.  This gives the same effect as would loading both
dwords at the time of the first dword load.  For a lqarx, the
reservation is set at the time of the first dword load, so if there is
such a snooped store, the reservation will be invalid by the time the
lqarx completes.

If the first dword load hits on the cache line being refilled, so
should the second, unless the refill finishes.  In that case we set
r1.prev_hit and r1.prev_way so the second load can use the line just
refilled (but only if the first dword hit the line being refilled).

For stores, the req.atomic_more flag is set on the first dword store,
and that causes the STORE_WAIT_ACK state to wait for the next request
without dropping cyc, so it is not possible for another wishbone
master to insert an access between the writes of the two dwords to
memory.

For store-conditionals, DO_STCX state now transitions to
STORE_WAIT_ACK state once the store has been accepted (stall is
false).  This means that the second store for a stqcx can be handled
in the same way as the second store for a stq.  Once the first store
for a stqcx has succeeded, the second store is done unconditionally.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2025-01-04 19:29:19 +11:00

1884 lines
76 KiB
VHDL

--
-- Set associative dcache write-through
--
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.utils.all;
use work.common.all;
use work.helpers.all;
use work.wishbone_types.all;
entity dcache is
generic (
-- Line size in bytes
LINE_SIZE : positive := 64;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
NUM_WAYS : positive := 4;
-- L1 DTLB entries per set
TLB_SET_SIZE : positive := 64;
-- L1 DTLB number of sets
TLB_NUM_WAYS : positive := 2;
-- L1 DTLB log_2(page_size)
TLB_LG_PGSZ : positive := 12;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
d_in : in Loadstore1ToDcacheType;
d_out : out DcacheToLoadstore1Type;
m_in : in MmuToDcacheType;
m_out : out DcacheToMmuType;
snoop_in : in wishbone_master_out := wishbone_master_out_init;
stall_out : out std_ulogic;
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out;
events : out DcacheEventType;
log_out : out std_ulogic_vector(19 downto 0)
);
end entity dcache;
architecture rtl of dcache is
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
constant ROW_SIZE : natural := wishbone_data_bits / 8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- dcache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- Bit fields counts in the address
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
-- INDEX_BITS is the number if bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
-- SET_SIZE_BITS is the log base 2 of the set size
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
-- TAG_WIDTH is the width in bits of each way of the tag RAM
constant TAG_WIDTH : natural := TAG_BITS + 7 - ((TAG_BITS + 7) mod 8);
-- WAY_BITS is the number of bits to select a way
-- Make sure this is at least 1, to avoid 0-element vectors
constant WAY_BITS : natural := maximum(log2(NUM_WAYS), 1);
-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (45)
subtype row_t is unsigned(ROW_BITS-1 downto 0);
subtype index_t is unsigned(INDEX_BITS-1 downto 0);
subtype way_t is unsigned(WAY_BITS-1 downto 0);
subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(wishbone_data_bits-1 downto 0);
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(0 to NUM_LINES-1) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_WIDTH * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(0 to NUM_LINES-1) of cache_tags_set_t;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(0 to NUM_LINES-1) of cache_way_valids_t;
type row_per_line_valid_t is array(0 to ROW_PER_LINE - 1) of std_ulogic;
-- Storage. Hopefully implemented in LUTs
signal cache_tags : cache_tags_array_t;
signal cache_tag_set : cache_tags_set_t;
signal cache_valids : cache_valids_t;
attribute ram_style : string;
attribute ram_style of cache_tags : signal is "distributed";
-- L1 TLB.
constant TLB_SET_BITS : natural := log2(TLB_SET_SIZE);
constant TLB_WAY_BITS : natural := maximum(log2(TLB_NUM_WAYS), 1);
constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_SET_BITS);
constant TLB_TAG_WAY_BITS : natural := TLB_NUM_WAYS * TLB_EA_TAG_BITS;
constant TLB_PTE_BITS : natural := 64;
constant TLB_PTE_WAY_BITS : natural := TLB_NUM_WAYS * TLB_PTE_BITS;
subtype tlb_way_t is integer range 0 to TLB_NUM_WAYS - 1;
subtype tlb_way_sig_t is unsigned(TLB_WAY_BITS-1 downto 0);
subtype tlb_index_t is integer range 0 to TLB_SET_SIZE - 1;
subtype tlb_index_sig_t is unsigned(TLB_SET_BITS-1 downto 0);
subtype tlb_way_valids_t is std_ulogic_vector(TLB_NUM_WAYS-1 downto 0);
type tlb_valids_t is array(tlb_index_t) of tlb_way_valids_t;
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
subtype tlb_way_tags_t is std_ulogic_vector(TLB_TAG_WAY_BITS-1 downto 0);
type tlb_tags_t is array(tlb_index_t) of tlb_way_tags_t;
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
subtype tlb_way_ptes_t is std_ulogic_vector(TLB_PTE_WAY_BITS-1 downto 0);
type tlb_ptes_t is array(tlb_index_t) of tlb_way_ptes_t;
type hit_way_set_t is array(tlb_way_t) of way_t;
signal dtlb_valids : tlb_valids_t;
signal dtlb_tags : tlb_tags_t;
signal dtlb_ptes : tlb_ptes_t;
attribute ram_style of dtlb_tags : signal is "distributed";
attribute ram_style of dtlb_ptes : signal is "distributed";
-- Record for storing permission, attribute, etc. bits from a PTE
type perm_attr_t is record
reference : std_ulogic;
changed : std_ulogic;
nocache : std_ulogic;
priv : std_ulogic;
rd_perm : std_ulogic;
wr_perm : std_ulogic;
end record;
function extract_perm_attr(pte : std_ulogic_vector(TLB_PTE_BITS - 1 downto 0)) return perm_attr_t is
variable pa : perm_attr_t;
begin
pa.reference := pte(8);
pa.changed := pte(7);
pa.nocache := pte(5);
pa.priv := pte(3);
pa.rd_perm := pte(2);
pa.wr_perm := pte(1);
return pa;
end;
constant real_mode_perm_attr : perm_attr_t := (nocache => '0', others => '1');
-- Cache state machine
type state_t is (IDLE, -- Normal load hit processing
RELOAD_WAIT_ACK, -- Cache reload wait ack
STORE_WAIT_ACK, -- Store wait ack
NC_LOAD_WAIT_ACK, -- Non-cachable load wait ack
DO_STCX, -- Check for stcx. validity
FLUSH_CYCLE); -- Cycle for invalidating cache line
--
-- Dcache operations:
--
-- In order to make timing, we use the BRAMs with an output buffer,
-- which means that the BRAM output is delayed by an extra cycle.
--
-- Thus, the dcache has a 2-stage internal pipeline for cache hits
-- with no stalls. Stores also complete in 2 cycles in most
-- circumstances.
--
-- A request proceeds through the pipeline as follows.
--
-- Cycle 0: Request is received from loadstore or mmu if either
-- d_in.valid or m_in.valid is 1 (not both). In this cycle portions
-- of the address are presented to the TLB tag RAM and data RAM
-- and the cache tag RAM and data RAM.
--
-- Clock edge between cycle 0 and cycle 1:
-- Request is stored in r0 (assuming r0_full was 0). TLB tag and
-- data RAMs are read, and the cache tag RAM is read. (Cache data
-- comes out a cycle later due to its output register, giving the
-- whole of cycle 1 to read the cache data RAM.)
--
-- Cycle 1: TLB and cache tag matching is done, the real address
-- (RA) for the access is calculated, and the type of operation is
-- determined (the OP_* values above). This gives the TLB way for
-- a TLB hit, and the cache way for a hit or the way to replace
-- for a load miss.
--
-- Clock edge between cycle 1 and cycle 2:
-- Request is stored in r1 (assuming r1.full was 0)
-- The state machine transitions out of IDLE state for a load miss,
-- a store, a dcbz, a flush (dcbf) or a non-cacheable load.
-- r1.full is set to 1 for a load miss, dcbz, flush or
-- non-cacheable load but not a store.
--
-- Cycle 2: Completion signals are asserted for a load hit,
-- a store (excluding dcbz), a TLB operation, a conditional
-- store which failed due to no matching reservation, or an error
-- (cache hit on non-cacheable operation, TLB miss, or protection
-- fault).
--
-- For a load miss, store, or dcbz, the state machine initiates
-- a wishbone cycle, which takes at least 2 cycles. For a store,
-- if another store comes in with the same cache tag (therefore
-- in the same 4k page), it can be added on to the existing cycle,
-- subject to some constraints.
-- While r1.full = 1, no new requests can go from r0 to r1, but
-- requests can come in to r0 and be satisfied if they are
-- cacheable load hits or stores with the same cache tag.
--
-- Writing to the cache data RAM is done at the clock edge
-- at the end of cycle 2 for a store hit (excluding dcbz).
-- Stores that miss are not written to the cache data RAM
-- but just stored through to memory.
-- Dcbz is done like a cache miss, but the wishbone cycle
-- is a write rather than a read, and zeroes are written to
-- the cache data RAM. Thus dcbz will allocate the line in
-- the cache as well as zeroing memory.
--
-- Since stores are written to the cache data RAM at the end of
-- cycle 2, and loads can come in and hit on the data just stored,
-- there is a two-stage bypass from store data to load data to
-- make sure that loads always see previously-stored data even
-- if it has not yet made it to the cache data RAM.
--
-- Load misses read the requested dword of the cache line first in
-- the memory read request and then cycle around through the other
-- dwords. The load is completed on the cycle after the requested
-- dword comes back from memory (using a forwarding path, rather
-- than going via the cache data RAM). We maintain an array of
-- valid bits per dword for the line being refilled so that
-- subsequent load requests to the same line can be completed as
-- soon as the necessary data comes in from memory, without
-- waiting for the whole line to be read.
--
-- Aligned loads and stores of a doubleword or less are atomic
-- because they are done in a single wishbone operation.
-- For quadword atomic loads and stores we rely on the wishbone
-- arbiter not interrupting access to a target once it has first
-- given access; i.e. once we have the main wishbone, no other
-- master gets access until we drop cyc.
--
-- Note on loads potentially hitting the victim line that is
-- currently being replaced: the new tag is available starting
-- with the 3rd cycle of RELOAD_WAIT_ACK state. As long as the
-- first read on the wishbone takes at least one cycle (i.e. the
-- ack doesn't arrive in the same cycle as stb was asserted),
-- r1.full will be true at least until that 3rd cycle and so a load
-- following a load miss can't hit on the old tag of the victim
-- line. As long as ack is not generated combinationally from
-- stb, this will be fine.
-- Stage 0 register, basically contains just the latched request
type reg_stage_0_t is record
req : Loadstore1ToDcacheType;
tlbie : std_ulogic; -- indicates a tlbie request (from MMU)
doall : std_ulogic; -- with tlbie, indicates flush whole TLB
tlbld : std_ulogic; -- indicates a TLB load request (from MMU)
mmu_req : std_ulogic; -- indicates source of request
d_valid : std_ulogic; -- indicates req.data is valid now
end record;
signal r0 : reg_stage_0_t;
signal r0_full : std_ulogic;
type mem_access_request_t is record
op_lmiss : std_ulogic;
op_store : std_ulogic;
op_flush : std_ulogic;
nc : std_ulogic;
valid : std_ulogic;
dcbz : std_ulogic;
flush : std_ulogic;
touch : std_ulogic;
reserve : std_ulogic;
first_dw : std_ulogic;
last_dw : std_ulogic;
real_addr : real_addr_t;
data : std_ulogic_vector(63 downto 0);
byte_sel : std_ulogic_vector(7 downto 0);
is_hit : std_ulogic;
hit_way : way_t;
same_tag : std_ulogic;
mmu_req : std_ulogic;
end record;
-- First stage register, contains state for stage 1 of load hits
-- and for the state machine used by all other operations
--
type reg_stage_1_t is record
-- Info about the request
full : std_ulogic; -- have uncompleted request
mmu_req : std_ulogic; -- request is from MMU
req : mem_access_request_t;
atomic_more : std_ulogic; -- atomic request isn't finished
-- Cache hit state
hit_way : way_t;
hit_load_valid : std_ulogic;
hit_index : index_t;
cache_hit : std_ulogic;
prev_hit : std_ulogic;
prev_way : way_t;
prev_hit_reload : std_ulogic;
-- TLB hit state
tlb_hit : std_ulogic;
tlb_hit_way : tlb_way_sig_t;
tlb_hit_index : tlb_index_sig_t;
tlb_victim : tlb_way_sig_t;
-- data buffer for data forwarded from writes to reads
forward_data : std_ulogic_vector(63 downto 0);
forward_tag : cache_tag_t;
forward_sel : std_ulogic_vector(7 downto 0);
forward_valid : std_ulogic;
forward_row : row_t;
data_out : std_ulogic_vector(63 downto 0);
-- Cache miss state (reload state machine)
state : state_t;
dcbz : std_ulogic;
write_bram : std_ulogic;
write_tag : std_ulogic;
slow_valid : std_ulogic;
wb : wishbone_master_out;
reload_tag : cache_tag_t;
store_way : way_t;
store_row : row_t;
store_index : index_t;
end_row_ix : row_in_line_t;
rows_valid : row_per_line_valid_t;
acks_pending : unsigned(2 downto 0);
stalled : std_ulogic;
dec_acks : std_ulogic;
choose_victim : std_ulogic;
victim_way : way_t;
-- Signals to complete (possibly with error)
ls_valid : std_ulogic;
ls_error : std_ulogic;
mmu_done : std_ulogic;
mmu_error : std_ulogic;
cache_paradox : std_ulogic;
reserve_nc : std_ulogic;
-- Signal to complete a failed stcx.
stcx_fail : std_ulogic;
end record;
signal r1 : reg_stage_1_t;
signal ev : DcacheEventType;
-- Reservation information
--
type reservation_t is record
valid : std_ulogic;
addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS);
end record;
signal reservation : reservation_t;
signal kill_rsrv : std_ulogic;
signal kill_rsrv2 : std_ulogic;
-- Async signals on incoming request
signal req_index : index_t;
signal req_hit_way : way_t;
signal req_is_hit : std_ulogic;
signal req_tag : cache_tag_t;
signal req_op_load_hit : std_ulogic;
signal req_op_load_miss : std_ulogic;
signal req_op_store : std_ulogic;
signal req_op_flush : std_ulogic;
signal req_op_bad : std_ulogic;
signal req_op_nop : std_ulogic;
signal req_data : std_ulogic_vector(63 downto 0);
signal req_same_tag : std_ulogic;
signal req_go : std_ulogic;
signal req_nc : std_ulogic;
signal req_hit_reload : std_ulogic;
signal early_req_row : row_t;
signal early_rd_valid : std_ulogic;
signal r0_valid : std_ulogic;
signal r0_stall : std_ulogic;
signal fwd_same_tag : std_ulogic;
signal use_forward_st : std_ulogic;
signal use_forward_rl : std_ulogic;
signal use_forward2 : std_ulogic;
-- Cache RAM interface
type cache_ram_out_t is array(0 to NUM_WAYS-1) of cache_row_t;
signal cache_out : cache_ram_out_t;
signal ram_wr_data : cache_row_t;
signal ram_wr_select : std_ulogic_vector(ROW_SIZE - 1 downto 0);
-- PLRU output interface
signal plru_victim : way_t;
signal replace_way : way_t;
-- Wishbone read/write/cache write formatting signals
signal bus_sel : std_ulogic_vector(7 downto 0);
-- TLB signals
signal tlb_tag_way : tlb_way_tags_t;
signal tlb_pte_way : tlb_way_ptes_t;
signal tlb_valid_way : tlb_way_valids_t;
signal tlb_req_index : tlb_index_sig_t;
signal tlb_read_valid : std_ulogic;
signal tlb_hit : std_ulogic;
signal tlb_hit_way : tlb_way_sig_t;
signal pte : tlb_pte_t;
signal ra : real_addr_t;
signal valid_ra : std_ulogic;
signal perm_attr : perm_attr_t;
signal rc_ok : std_ulogic;
signal perm_ok : std_ulogic;
signal access_ok : std_ulogic;
signal tlb_miss : std_ulogic;
-- TLB PLRU output interface
signal tlb_plru_victim : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
signal snoop_active : std_ulogic;
signal snoop_tag_set : cache_tags_set_t;
signal snoop_valid : std_ulogic;
signal snoop_paddr : real_addr_t;
signal snoop_addr : real_addr_t;
signal snoop_hits : cache_way_valids_t;
signal req_snoop_hit : std_ulogic;
--
-- Helper functions to decode incoming requests
--
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector) return index_t is
begin
return unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS));
end;
-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector) return row_t is
begin
return unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS));
end;
-- Return the index of a row within a line
function get_row_of_line(row: row_t) return row_in_line_t is
begin
return row(ROW_LINEBITS-1 downto 0);
end;
-- Returns whether this is the last row of a line
function is_last_row_wb_addr(addr: wishbone_addr_type; last: row_in_line_t) return boolean is
begin
return unsigned(addr(LINE_OFF_BITS - ROW_OFF_BITS - 1 downto 0)) = last;
end;
-- Returns whether this is the last row of a line
function is_last_row(row: row_t; last: row_in_line_t) return boolean is
begin
return get_row_of_line(row) = last;
end;
-- Return the address of the next row in the current cache line
function next_row_wb_addr(addr: wishbone_addr_type) return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : wishbone_addr_type;
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := addr(ROW_LINEBITS - 1 downto 0);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := addr;
result(ROW_LINEBITS - 1 downto 0) := row_idx;
return result;
end;
-- Return the next row in the current cache line. We use a dedicated
-- function in order to limit the size of the generated adder to be
-- only the bits within a cache line (3 bits with default settings)
--
function next_row(row: row_t) return row_t is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
begin
row_v := std_ulogic_vector(row);
row_idx := row_v(ROW_LINEBITS-1 downto 0);
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
return unsigned(row_v);
end;
-- Get the tag value from the address
function get_tag(addr: std_ulogic_vector) return cache_tag_t is
begin
return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
end;
-- Read a tag from a tag memory row
function read_tag(way: integer; tagset: cache_tags_set_t) return cache_tag_t is
begin
return tagset(way * TAG_WIDTH + TAG_BITS - 1 downto way * TAG_WIDTH);
end;
-- Read a TLB tag from a TLB tag memory row
function read_tlb_tag(way: tlb_way_t; tags: tlb_way_tags_t) return tlb_tag_t is
variable j : integer;
begin
j := way * TLB_EA_TAG_BITS;
return tags(j + TLB_EA_TAG_BITS - 1 downto j);
end;
-- Write a TLB tag to a TLB tag memory row
procedure write_tlb_tag(way: tlb_way_t; tags: inout tlb_way_tags_t;
tag: tlb_tag_t) is
variable j : integer;
begin
j := way * TLB_EA_TAG_BITS;
tags(j + TLB_EA_TAG_BITS - 1 downto j) := tag;
end;
-- Read a PTE from a TLB PTE memory row
function read_tlb_pte(way: tlb_way_t; ptes: tlb_way_ptes_t) return tlb_pte_t is
variable j : integer;
begin
j := way * TLB_PTE_BITS;
return ptes(j + TLB_PTE_BITS - 1 downto j);
end;
procedure write_tlb_pte(way: tlb_way_t; ptes: inout tlb_way_ptes_t; newpte: tlb_pte_t) is
variable j : integer;
begin
j := way * TLB_PTE_BITS;
ptes(j + TLB_PTE_BITS - 1 downto j) := newpte;
end;
begin
assert LINE_SIZE mod ROW_SIZE = 0 report "LINE_SIZE not multiple of ROW_SIZE" severity FAILURE;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) and ROW_PER_LINE > 1
report "ROW_PER_LINE not power of 2 greater than 1" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = wishbone_data_bits)
report "Can't yet handle a wishbone width that isn't 64-bits" severity FAILURE;
assert SET_SIZE_BITS <= TLB_LG_PGSZ report "Set indexed by virtual address" severity FAILURE;
-- Latch the request in r0.req as long as we're not stalling
stage_0 : process(clk)
variable r : reg_stage_0_t;
begin
if rising_edge(clk) then
assert (d_in.valid and m_in.valid) = '0' report
"request collision loadstore vs MMU";
if m_in.valid = '1' then
r.req := Loadstore1ToDcacheInit;
r.req.valid := '1';
r.req.load := not (m_in.tlbie or m_in.tlbld);
r.req.priv_mode := '1';
r.req.addr := m_in.addr;
r.req.data := m_in.pte;
r.req.byte_sel := (others => '1');
r.tlbie := m_in.tlbie;
r.doall := m_in.doall;
r.tlbld := m_in.tlbld;
r.mmu_req := '1';
r.d_valid := '1';
else
r.req := d_in;
r.req.data := (others => '0');
r.tlbie := '0';
r.doall := '0';
r.tlbld := '0';
r.mmu_req := '0';
r.d_valid := '0';
end if;
if r.req.valid = '1' and r.doall = '0' then
assert not is_X(r.req.addr) severity failure;
end if;
if rst = '1' then
r0_full <= '0';
elsif r1.full = '0' and d_in.hold = '0' then
r0 <= r;
r0_full <= r.req.valid;
elsif r0.d_valid = '0' then
-- Sample data the cycle after a request comes in from loadstore1.
-- If this request is already moving into r1 then the data will get
-- put directly into req.data in the dcache_slow process below.
r0.req.data <= d_in.data;
r0.d_valid <= r0.req.valid;
end if;
end if;
end process;
-- we don't yet handle collisions between loadstore1 requests and MMU requests
m_out.stall <= '0';
-- Hold off the request in r0 when r1 has an uncompleted request
r0_stall <= r1.full or d_in.hold;
r0_valid <= r0_full and not r1.full and not d_in.hold;
stall_out <= r1.full;
events <= ev;
-- TLB
-- Operates in the second cycle on the request latched in r0.req.
-- TLB updates write the entry at the end of the second cycle.
tlb_read : process(clk)
variable index : tlb_index_t;
variable addrbits : std_ulogic_vector(TLB_SET_BITS - 1 downto 0);
variable valid : std_ulogic;
begin
if rising_edge(clk) then
if m_in.valid = '1' then
addrbits := m_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
valid := not (m_in.tlbie and m_in.doall);
else
addrbits := d_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
valid := d_in.valid;
end if;
-- If the previous op isn't finished,
-- then keep the same output for next cycle.
if r0_stall = '0' then
assert not (valid = '1' and is_X(addrbits));
if is_X(addrbits) then
tlb_valid_way <= (others => 'X');
tlb_tag_way <= (others => 'X');
tlb_pte_way <= (others => 'X');
else
index := to_integer(unsigned(addrbits));
tlb_valid_way <= dtlb_valids(index);
tlb_tag_way <= dtlb_tags(index);
tlb_pte_way <= dtlb_ptes(index);
end if;
end if;
if rst = '1' then
tlb_read_valid <= '0';
elsif r0_stall = '0' then
tlb_read_valid <= valid;
end if;
end if;
end process;
-- Generate TLB PLRUs
maybe_tlb_plrus : if TLB_NUM_WAYS > 1 generate
type tlb_plru_array is array(tlb_index_t) of std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_ram : tlb_plru_array;
signal tlb_plru_cur : std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_upd : std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_acc : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
signal tlb_plru_out : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
begin
tlb_plru : entity work.plrufn
generic map (
BITS => TLB_WAY_BITS
)
port map (
acc => tlb_plru_acc,
tree_in => tlb_plru_cur,
tree_out => tlb_plru_upd,
lru => tlb_plru_out
);
process(all)
begin
-- Read PLRU bits from array
if is_X(r1.tlb_hit_index) then
tlb_plru_cur <= (others => 'X');
else
tlb_plru_cur <= tlb_plru_ram(to_integer(r1.tlb_hit_index));
end if;
-- PLRU interface
tlb_plru_acc <= std_ulogic_vector(r1.tlb_hit_way);
tlb_plru_victim <= tlb_plru_out;
end process;
-- synchronous writes to TLB PLRU array
process(clk)
begin
if rising_edge(clk) then
if r1.tlb_hit = '1' then
assert not is_X(r1.tlb_hit_index) severity failure;
tlb_plru_ram(to_integer(r1.tlb_hit_index)) <= tlb_plru_upd;
end if;
end if;
end process;
end generate;
tlb_search : process(all)
variable hitway : tlb_way_sig_t;
variable hit : std_ulogic;
variable eatag : tlb_tag_t;
begin
tlb_req_index <= unsigned(r0.req.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1
downto TLB_LG_PGSZ));
hitway := to_unsigned(0, TLB_WAY_BITS);
hit := '0';
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
for i in tlb_way_t loop
if tlb_read_valid = '1' and tlb_valid_way(i) = '1' and
read_tlb_tag(i, tlb_tag_way) = eatag then
hitway := to_unsigned(i, TLB_WAY_BITS);
hit := '1';
end if;
end loop;
tlb_hit <= hit and r0_valid;
tlb_hit_way <= hitway;
if tlb_hit = '1' then
pte <= read_tlb_pte(to_integer(hitway), tlb_pte_way);
else
pte <= (others => '0');
end if;
valid_ra <= tlb_hit or not r0.req.virt_mode;
tlb_miss <= r0_valid and r0.req.virt_mode and not tlb_hit;
if r0.req.virt_mode = '1' then
ra <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
r0.req.addr(TLB_LG_PGSZ - 1 downto ROW_OFF_BITS) &
(ROW_OFF_BITS-1 downto 0 => '0');
perm_attr <= extract_perm_attr(pte);
else
ra <= r0.req.addr(REAL_ADDR_BITS - 1 downto ROW_OFF_BITS) &
(ROW_OFF_BITS-1 downto 0 => '0');
perm_attr <= real_mode_perm_attr;
end if;
end process;
tlb_update : process(clk)
variable tlbie : std_ulogic;
variable tlbwe : std_ulogic;
variable repl_way : tlb_way_sig_t;
variable eatag : tlb_tag_t;
variable tagset : tlb_way_tags_t;
variable pteset : tlb_way_ptes_t;
begin
if rising_edge(clk) then
tlbie := r0_valid and r0.tlbie;
tlbwe := r0_valid and r0.tlbld;
ev.dtlb_miss_resolved <= tlbwe;
if rst = '1' or (tlbie = '1' and r0.doall = '1') then
-- clear all valid bits at once
for i in tlb_index_t loop
dtlb_valids(i) <= (others => '0');
end loop;
elsif tlbie = '1' then
if tlb_hit = '1' then
assert not is_X(tlb_req_index);
assert not is_X(tlb_hit_way);
dtlb_valids(to_integer(tlb_req_index))(to_integer(tlb_hit_way)) <= '0';
end if;
elsif tlbwe = '1' then
assert not is_X(tlb_req_index);
repl_way := to_unsigned(0, TLB_WAY_BITS);
if TLB_NUM_WAYS > 1 then
if tlb_hit = '1' then
repl_way := tlb_hit_way;
else
repl_way := unsigned(r1.tlb_victim);
end if;
assert not is_X(repl_way);
end if;
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
tagset := tlb_tag_way;
write_tlb_tag(to_integer(repl_way), tagset, eatag);
dtlb_tags(to_integer(tlb_req_index)) <= tagset;
pteset := tlb_pte_way;
write_tlb_pte(to_integer(repl_way), pteset, r0.req.data);
dtlb_ptes(to_integer(tlb_req_index)) <= pteset;
dtlb_valids(to_integer(tlb_req_index))(to_integer(repl_way)) <= '1';
end if;
end if;
end process;
-- Generate PLRUs
maybe_plrus : if NUM_WAYS > 1 generate
type plru_array is array(0 to NUM_LINES-1) of std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_ram : plru_array;
signal plru_cur : std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_upd : std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plrufn
generic map (
BITS => WAY_BITS
)
port map (
acc => plru_acc,
tree_in => plru_cur,
tree_out => plru_upd,
lru => plru_out
);
process(all)
begin
-- Read PLRU bits from array
if is_X(r1.hit_index) then
plru_cur <= (others => 'X');
else
plru_cur <= plru_ram(to_integer(r1.hit_index));
end if;
-- PLRU interface
plru_acc <= std_ulogic_vector(r1.hit_way);
plru_victim <= unsigned(plru_out);
end process;
-- synchronous writes to PLRU array
process(clk)
begin
if rising_edge(clk) then
-- We update the PLRU when hitting the cache or when replacing
-- an entry. The PLRU update will be "visible" on the next cycle
-- so the victim selection will correctly see the *old* value.
if r1.cache_hit = '1' or r1.choose_victim = '1' then
report "PLRU update, index=" & to_hstring(r1.hit_index) &
" way=" & to_hstring(r1.hit_way);
assert not is_X(r1.hit_index) severity failure;
plru_ram(to_integer(r1.hit_index)) <= plru_upd;
end if;
end if;
end process;
end generate;
-- Cache tag RAM read port
cache_tag_read : process(clk)
variable index : index_t;
variable valid : std_ulogic;
begin
if rising_edge(clk) then
if r0_stall = '1' then
index := req_index;
valid := r0.req.valid and not (r0.tlbie or r0.tlbld);
elsif m_in.valid = '1' then
index := get_index(m_in.addr);
valid := not (m_in.tlbie or m_in.tlbld);
else
index := get_index(d_in.addr);
valid := d_in.valid;
end if;
if valid = '1' then
cache_tag_set <= cache_tags(to_integer(index));
else
cache_tag_set <= (others => '0');
end if;
end if;
end process;
-- Snoop logic
-- Don't snoop our own cycles
snoop_addr <= addr_to_real(wb_to_addr(snoop_in.adr));
snoop_active <= snoop_in.cyc and snoop_in.stb and snoop_in.we and
not (r1.wb.cyc and not wishbone_in.stall);
kill_rsrv <= '1' when (snoop_active = '1' and reservation.valid = '1' and
snoop_addr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) = reservation.addr)
else '0';
-- Cache tag RAM second read port, for snooping
cache_tag_read_2 : process(clk)
begin
if rising_edge(clk) then
if is_X(snoop_addr) then
snoop_tag_set <= (others => 'X');
else
snoop_tag_set <= cache_tags(to_integer(get_index(snoop_addr)));
end if;
snoop_paddr <= snoop_addr;
snoop_valid <= snoop_active;
end if;
end process;
-- Compare the previous cycle's snooped store address to the reservation,
-- to catch the case where a write happens on cycle 1 of a cached larx
kill_rsrv2 <= '1' when (snoop_valid = '1' and reservation.valid = '1' and
snoop_paddr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) = reservation.addr)
else '0';
snoop_tag_match : process(all)
begin
snoop_hits <= (others => '0');
for i in 0 to NUM_WAYS-1 loop
if snoop_valid = '1' and read_tag(i, snoop_tag_set) = get_tag(snoop_paddr) then
snoop_hits(i) <= '1';
end if;
end loop;
end process;
-- Cache request parsing and hit detection
dcache_request : process(all)
variable req_row : row_t;
variable rindex : index_t;
variable is_hit : std_ulogic;
variable hit_way : way_t;
variable go : std_ulogic;
variable nc : std_ulogic;
variable s_hit : std_ulogic;
variable s_tag : cache_tag_t;
variable s_pte : tlb_pte_t;
variable s_ra : real_addr_t;
variable hit_set : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable hit_way_set : hit_way_set_t;
variable rel_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable rel_match : std_ulogic;
variable fwd_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable fwd_match : std_ulogic;
variable snp_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable snoop_match : std_ulogic;
variable hit_reload : std_ulogic;
begin
-- Extract line, row and tag from request
rindex := get_index(r0.req.addr);
req_index <= rindex;
req_row := get_row(r0.req.addr);
req_tag <= get_tag(ra);
go := r0_valid and not (r0.tlbie or r0.tlbld) and not r1.ls_error;
if is_X(r0.req.addr) then
go := '0';
end if;
if go = '1' then
assert not is_X(r1.forward_tag);
end if;
-- Test if pending request is a hit on any way
-- In order to make timing in virtual mode, when we are using the TLB,
-- we compare each way with each of the real addresses from each way of
-- the TLB, and then decide later which match to use.
hit_way := to_unsigned(0, WAY_BITS);
is_hit := '0';
rel_match := '0';
fwd_match := '0';
snoop_match := '0';
if r0.req.virt_mode = '1' then
rel_matches := (others => '0');
fwd_matches := (others => '0');
snp_matches := (others => '0');
for j in tlb_way_t loop
hit_way_set(j) := to_unsigned(0, WAY_BITS);
s_hit := '0';
s_pte := read_tlb_pte(j, tlb_pte_way);
s_ra := s_pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
r0.req.addr(TLB_LG_PGSZ - 1 downto 0);
s_tag := get_tag(s_ra);
if go = '1' then
assert not is_X(s_tag);
end if;
for i in 0 to NUM_WAYS-1 loop
if go = '1' and cache_valids(to_integer(rindex))(i) = '1' and
read_tag(i, cache_tag_set) = s_tag and
tlb_valid_way(j) = '1' then
hit_way_set(j) := to_unsigned(i, WAY_BITS);
s_hit := '1';
if snoop_hits(i) = '1' then
snp_matches(j) := '1';
end if;
end if;
end loop;
hit_set(j) := s_hit;
if go = '1' and not is_X(r1.reload_tag) and s_tag = r1.reload_tag then
rel_matches(j) := '1';
end if;
if go = '1' and s_tag = r1.forward_tag then
fwd_matches(j) := '1';
end if;
end loop;
if tlb_hit = '1' and go = '1' then
assert not is_X(tlb_hit_way);
is_hit := hit_set(to_integer(tlb_hit_way));
hit_way := hit_way_set(to_integer(tlb_hit_way));
rel_match := rel_matches(to_integer(tlb_hit_way));
fwd_match := fwd_matches(to_integer(tlb_hit_way));
snoop_match := snp_matches(to_integer(tlb_hit_way));
end if;
else
s_tag := get_tag(r0.req.addr);
if go = '1' then
assert not is_X(s_tag);
end if;
for i in 0 to NUM_WAYS-1 loop
if go = '1' and cache_valids(to_integer(rindex))(i) = '1' and
read_tag(i, cache_tag_set) = s_tag then
hit_way := to_unsigned(i, WAY_BITS);
is_hit := '1';
if snoop_hits(i) = '1' then
snoop_match := '1';
end if;
end if;
end loop;
if go = '1' and not is_X(r1.reload_tag) and s_tag = r1.reload_tag then
rel_match := '1';
end if;
if go = '1' and s_tag = r1.forward_tag then
fwd_match := '1';
end if;
end if;
req_same_tag <= rel_match;
fwd_same_tag <= fwd_match;
-- This is 1 if the snooped write from the previous cycle hits the same
-- cache line that is being accessed in this cycle.
req_snoop_hit <= '0';
if go = '1' and snoop_match = '1' and get_index(snoop_paddr) = rindex then
req_snoop_hit <= '1';
end if;
-- Whether to use forwarded data for a load or not
use_forward_st <= '0';
use_forward_rl <= '0';
if rel_match = '1' then
assert not is_X(r1.store_row);
assert not is_X(req_row);
end if;
if rel_match = '1' and r1.store_row = req_row then
-- Use the forwarding path if this cycle is a write to this row
use_forward_st <= r1.write_bram;
if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' then
use_forward_rl <= '1';
end if;
end if;
use_forward2 <= '0';
if fwd_match = '1' then
assert not is_X(r1.forward_row);
if is_X(req_row) then
report "req_row=" & to_hstring(req_row) & " addr=" & to_hstring(r0.req.addr) & " go=" & std_ulogic'image(go);
end if;
assert not is_X(req_row);
end if;
if fwd_match = '1' and r1.forward_row = req_row then
use_forward2 <= r1.forward_valid;
end if;
-- The way to replace on a miss
replace_way <= to_unsigned(0, WAY_BITS);
if NUM_WAYS > 1 then
if r1.write_tag = '1' then
if r1.choose_victim = '1' then
replace_way <= plru_victim;
else
-- Cache victim way was chosen earlier,
-- in the cycle after the miss was detected.
replace_way <= r1.victim_way;
end if;
else
replace_way <= r1.store_way;
end if;
end if;
-- See if the request matches the line currently being reloaded
if r1.state = RELOAD_WAIT_ACK and rel_match = '1' then
assert not is_X(rindex);
assert not is_X(r1.store_index);
end if;
hit_reload := '0';
if r1.state = RELOAD_WAIT_ACK and rel_match = '1' and
rindex = r1.store_index then
-- Ignore is_hit from above, because a load miss writes the new tag
-- but doesn't clear the valid bit on the line before refilling it.
-- For a store, consider this a hit even if the row isn't valid
-- since it will be by the time we perform the store.
-- For a load, check the appropriate row valid bit; but also,
-- if use_forward_rl is 1 then we can consider this a hit.
-- For a touch, since the line we want is being reloaded already,
-- consider this a hit.
is_hit := not r0.req.load or r0.req.touch or
r1.rows_valid(to_integer(req_row(ROW_LINEBITS-1 downto 0))) or
use_forward_rl;
hit_way := replace_way;
hit_reload := is_hit;
elsif r0.req.load = '1' and r0.req.atomic_qw = '1' and r0.req.atomic_first = '0' and
r0.req.nc = '0' and perm_attr.nocache = '0' and r1.prev_hit = '1' then
-- For the second half of an atomic quadword load, just use the
-- same way as the first half, without considering whether the line
-- is valid; it is as if we had read the second dword at the same
-- time as the first dword, and the line was valid back then.
-- (Cases where the line is currently being reloaded are handled above.)
-- NB lq to noncacheable isn't required to be atomic per the ISA.
is_hit := '1';
hit_way := r1.prev_way;
end if;
-- The way that matched on a hit
req_hit_way <= hit_way;
req_is_hit <= is_hit;
req_hit_reload <= hit_reload;
-- work out whether we have permission for this access
-- NB we don't yet implement AMR, thus no KUAP
rc_ok <= perm_attr.reference and (r0.req.load or perm_attr.changed);
perm_ok <= (r0.req.priv_mode or not perm_attr.priv) and
(perm_attr.wr_perm or (r0.req.load and perm_attr.rd_perm));
access_ok <= valid_ra and perm_ok and rc_ok;
-- Combine the request and cache hit status to decide what
-- operation needs to be done
--
nc := r0.req.nc or perm_attr.nocache;
req_op_bad <= '0';
req_op_load_hit <= '0';
req_op_load_miss <= '0';
req_op_store <= '0';
req_op_nop <= '0';
req_op_flush <= '0';
if go = '1' then
if r0.req.touch = '1' then
if access_ok = '1' and is_hit = '0' and nc = '0' then
req_op_load_miss <= '1';
elsif access_ok = '1' and is_hit = '1' and nc = '0' then
-- Make this OP_LOAD_HIT so the PLRU gets updated
req_op_load_hit <= '1';
else
req_op_nop <= '1';
end if;
elsif access_ok = '0' then
req_op_bad <= '1';
elsif r0.req.flush = '1' then
if is_hit = '0' then
req_op_nop <= '1';
else
req_op_flush <= '1';
end if;
elsif nc = '1' and (is_hit = '1' or r0.req.reserve = '1') then
req_op_bad <= '1';
elsif r0.req.load = '0' then
req_op_store <= '1'; -- includes dcbz
else
req_op_load_hit <= is_hit;
req_op_load_miss <= not is_hit; -- includes non-cacheable loads
end if;
end if;
req_go <= go;
req_nc <= nc;
-- Version of the row number that is valid one cycle earlier
-- in the cases where we need to read the cache data BRAM.
-- If we're stalling then we need to keep reading the last
-- row requested.
if r0_stall = '0' then
if m_in.valid = '1' then
early_req_row <= get_row(m_in.addr);
early_rd_valid <= not (m_in.tlbie or m_in.tlbld);
else
early_req_row <= get_row(d_in.addr);
early_rd_valid <= d_in.valid and d_in.load;
end if;
else
early_req_row <= req_row;
early_rd_valid <= r0.req.valid and r0.req.load;
end if;
end process;
-- Wire up wishbone request latch out of stage 1
wishbone_out <= r1.wb;
-- Return data for loads & completion control logic
--
writeback_control: process(all)
begin
d_out.valid <= r1.ls_valid;
d_out.data <= r1.data_out;
d_out.store_done <= not r1.stcx_fail;
d_out.error <= r1.ls_error;
d_out.cache_paradox <= r1.cache_paradox;
d_out.reserve_nc <= r1.reserve_nc;
-- Outputs to MMU
m_out.done <= r1.mmu_done;
m_out.err <= r1.mmu_error;
m_out.data <= r1.data_out;
-- We have a valid load or store hit or we just completed a slow
-- op such as a load miss, a NC load or a store
--
-- Note: the load hit is delayed by one cycle. However it can still
-- not collide with r.slow_valid (well unless I miscalculated) because
-- slow_valid can only be set on a subsequent request and not on its
-- first cycle (the state machine must have advanced), which makes
-- slow_valid at least 2 cycles from the previous hit_load_valid.
--
-- Sanity: Only one of these must be set in any given cycle
assert (r1.slow_valid and r1.stcx_fail) /= '1' report
"unexpected slow_valid collision with stcx_fail"
severity FAILURE;
assert ((r1.slow_valid or r1.stcx_fail) and r1.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with slow_valid"
severity FAILURE;
if r1.mmu_req = '0' then
-- Request came from loadstore1...
-- Load hit case is the standard path
if r1.hit_load_valid = '1' then
report "completing load hit data=" & to_hstring(r1.data_out);
end if;
-- error cases complete without stalling
if r1.ls_error = '1' then
report "completing ld/st with error";
end if;
-- Slow ops (load miss, NC, stores)
if r1.slow_valid = '1' then
report "completing store or load miss data=" & to_hstring(r1.data_out);
end if;
else
-- Request came from MMU
if r1.hit_load_valid = '1' then
report "completing load hit to MMU, data=" & to_hstring(m_out.data);
end if;
-- error cases complete without stalling
if r1.mmu_error = '1' then
report "completing MMU ld with error";
end if;
-- Slow ops (i.e. load miss)
if r1.slow_valid = '1' then
report "completing MMU load miss, data=" & to_hstring(m_out.data);
end if;
end if;
end process;
-- RAM write data and select multiplexers
ram_wr_data <= r1.req.data when r1.write_bram = '1' else
wishbone_in.dat when r1.dcbz = '0' else
(others => '0');
ram_wr_select <= r1.req.byte_sel when r1.write_bram = '1' else
(others => '1');
--
-- Generate a cache RAM for each way. This handles the normal
-- reads, writes from reloads and the special store-hit update
-- path as well.
--
-- Note: the BRAMs have an extra read buffer, meaning the output
-- is pipelined an extra cycle. This differs from the
-- icache. The writeback logic needs to take that into
-- account by using 1-cycle delayed signals for load hits.
--
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_data : std_ulogic_vector(wishbone_data_bits-1 downto 0);
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal wr_sel_m : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal dout : cache_row_t;
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => wishbone_data_bits,
ADD_BUF => false
)
port map (
clk => clk,
rd_en => do_read,
rd_addr => rd_addr,
rd_data => dout,
wr_sel => wr_sel_m,
wr_addr => wr_addr,
wr_data => ram_wr_data
);
process(all)
begin
-- Cache hit reads
do_read <= early_rd_valid;
rd_addr <= std_ulogic_vector(early_req_row);
cache_out(i) <= dout;
-- Write mux:
--
-- Defaults to wishbone read responses (cache refill),
--
-- For timing, the mux on wr_data/sel/addr is not dependent on anything
-- other than the current state.
--
wr_addr <= std_ulogic_vector(r1.store_row);
wr_sel_m <= (others => '0');
if r1.write_bram = '1' or
(r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1') then
assert not is_X(replace_way);
if to_unsigned(i, WAY_BITS) = replace_way then
wr_sel_m <= ram_wr_select;
end if;
end if;
end process;
end generate;
--
-- Cache hit synchronous machine for the easy case. This handles load hits.
-- It also handles error cases (TLB miss, cache paradox)
--
dcache_fast_hit : process(clk)
variable j : integer;
variable sel : std_ulogic_vector(1 downto 0);
variable data_out : std_ulogic_vector(63 downto 0);
begin
if rising_edge(clk) then
if r0_valid = '1' then
r1.mmu_req <= r0.mmu_req;
end if;
-- Bypass/forwarding multiplexer for load data.
-- Use the bypass if are reading the row of BRAM that was written 0 or 1
-- cycles ago, including for the slow_valid = 1 cases (i.e. completing a
-- load miss or a non-cacheable load), which are handled via the r1.full case.
for i in 0 to 7 loop
if r1.full = '1' or use_forward_rl = '1' then
sel := '0' & r1.dcbz;
elsif use_forward_st = '1' and r1.req.byte_sel(i) = '1' then
sel := "01";
elsif use_forward2 = '1' and r1.forward_sel(i) = '1' then
sel := "10";
else
sel := "11";
end if;
j := i * 8;
case sel is
when "00" =>
data_out(j + 7 downto j) := wishbone_in.dat(j + 7 downto j);
when "01" =>
data_out(j + 7 downto j) := r1.req.data(j + 7 downto j);
when "10" =>
data_out(j + 7 downto j) := r1.forward_data(j + 7 downto j);
when others =>
if is_X(req_hit_way) then
data_out(j + 7 downto j) := (others => 'X');
else
data_out(j + 7 downto j) := cache_out(to_integer(req_hit_way))(j + 7 downto j);
end if;
end case;
end loop;
r1.data_out <= data_out;
r1.forward_data <= ram_wr_data;
r1.forward_tag <= r1.reload_tag;
r1.forward_row <= r1.store_row;
r1.forward_sel <= ram_wr_select;
r1.forward_valid <= r1.write_bram;
if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' then
r1.forward_valid <= '1';
end if;
r1.hit_load_valid <= req_op_load_hit;
r1.cache_hit <= req_op_load_hit or (req_op_store and req_is_hit); -- causes PLRU update
r1.cache_paradox <= access_ok and req_nc and req_is_hit;
r1.reserve_nc <= access_ok and r0.req.reserve and req_nc;
if req_op_bad = '1' then
report "Signalling ld/st error valid_ra=" & std_ulogic'image(valid_ra) &
" rc_ok=" & std_ulogic'image(rc_ok) & " perm_ok=" & std_ulogic'image(perm_ok);
r1.ls_error <= not r0.mmu_req;
r1.mmu_error <= r0.mmu_req;
else
r1.ls_error <= '0';
r1.mmu_error <= '0';
end if;
-- Record TLB hit information for updating TLB PLRU
r1.tlb_hit <= tlb_hit;
r1.tlb_hit_way <= tlb_hit_way;
r1.tlb_hit_index <= tlb_req_index;
-- determine victim way in the TLB in the cycle after
-- we detect the TLB miss
if r1.ls_error = '1' then
r1.tlb_victim <= unsigned(tlb_plru_victim);
end if;
end if;
end process;
--
-- Memory accesses are handled by this state machine:
--
-- * Cache load miss/reload (in conjunction with "rams")
-- * Load hits for non-cachable forms
-- * Stores (the collision case is handled in "rams")
--
-- All wishbone requests generation is done here. This machine
-- operates at stage 1.
--
dcache_slow : process(clk)
variable stbs_done : boolean;
variable req : mem_access_request_t;
variable acks : unsigned(2 downto 0);
begin
if rising_edge(clk) then
ev.dcache_refill <= '0';
ev.load_miss <= '0';
ev.store_miss <= '0';
ev.dtlb_miss <= tlb_miss;
r1.choose_victim <= '0';
-- On reset, clear all valid bits to force misses
if rst = '1' then
for i in 0 to NUM_LINES-1 loop
cache_valids(i) <= (others => '0');
end loop;
r1.state <= IDLE;
r1.full <= '0';
r1.slow_valid <= '0';
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
r1.ls_valid <= '0';
r1.mmu_done <= '0';
r1.acks_pending <= to_unsigned(0, 3);
r1.stalled <= '0';
r1.dec_acks <= '0';
r1.prev_hit <= '0';
r1.prev_hit_reload <= '0';
reservation.valid <= '0';
reservation.addr <= (others => '0');
-- Not useful normally but helps avoiding tons of sim warnings
r1.wb.adr <= (others => '0');
else
-- One cycle pulses reset
r1.slow_valid <= '0';
r1.write_bram <= '0';
r1.stcx_fail <= '0';
r1.ls_valid <= (req_op_load_hit or req_op_nop) and not r0.mmu_req;
-- complete tlbies and TLB loads in the third cycle
r1.mmu_done <= (r0_valid and (r0.tlbie or r0.tlbld)) or
(req_op_load_hit and r0.mmu_req);
-- The kill_rsrv2 term covers the case where the reservation
-- address was set at the beginning of this cycle, and a store
-- to that address happened in the previous cycle.
if kill_rsrv = '1' or kill_rsrv2 = '1' then
reservation.valid <= '0';
end if;
if req_go = '1' and access_ok = '1' and r0.req.load = '1' and
r0.req.reserve = '1' and r0.req.atomic_first = '1' then
reservation.addr <= ra(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS);
reservation.valid <= req_is_hit and not req_snoop_hit;
end if;
-- Do invalidations from snooped stores to memory
if snoop_valid = '1' then
assert not is_X(snoop_paddr);
assert not is_X(snoop_hits);
end if;
for i in 0 to NUM_WAYS-1 loop
if snoop_hits(i) = '1' then
cache_valids(to_integer(get_index(snoop_paddr)))(i) <= '0';
end if;
end loop;
if r1.write_tag = '1' then
-- Store new tag in selected way
assert not is_X(r1.store_index);
assert not is_X(replace_way);
for i in 0 to NUM_WAYS-1 loop
if to_unsigned(i, WAY_BITS) = replace_way then
cache_tags(to_integer(r1.store_index))((i + 1) * TAG_WIDTH - 1 downto i * TAG_WIDTH) <=
(TAG_WIDTH - 1 downto TAG_BITS => '0') & r1.reload_tag;
end if;
end loop;
r1.store_way <= replace_way;
r1.write_tag <= '0';
end if;
-- Take request from r1.req if there is one there,
-- else from req_op_*, ra, etc.
if r1.full = '1' then
req := r1.req;
else
req.op_lmiss := req_op_load_miss;
req.op_store := req_op_store;
req.op_flush := req_op_flush;
req.nc := req_nc;
req.valid := req_go;
req.mmu_req := r0.mmu_req;
req.dcbz := r0.req.dcbz;
req.flush := r0.req.flush;
req.touch := r0.req.touch;
req.reserve := r0.req.reserve;
req.first_dw := not r0.req.atomic_qw or r0.req.atomic_first;
req.last_dw := not r0.req.atomic_qw or r0.req.atomic_last;
req.real_addr := ra;
-- Force data to 0 for dcbz
if r0.req.dcbz = '1' then
req.data := (others => '0');
elsif r0.d_valid = '1' then
req.data := r0.req.data;
else
req.data := d_in.data;
end if;
-- Select all bytes for dcbz and for cacheable loads
if r0.req.dcbz = '1' or (r0.req.load = '1' and r0.req.nc = '0' and perm_attr.nocache = '0') then
req.byte_sel := (others => '1');
else
req.byte_sel := r0.req.byte_sel;
end if;
req.hit_way := req_hit_way;
req.is_hit := req_is_hit;
req.same_tag := req_same_tag;
-- Store the incoming request from r0, if it is a slow request
-- Note that r1.full = 1 implies none of the req_op_* are 1
if req_op_load_miss = '1' or req_op_store = '1' or req_op_flush = '1' then
r1.req <= req;
r1.full <= '1';
end if;
end if;
-- Signals for PLRU update and victim selection
r1.hit_way <= req_hit_way;
r1.hit_index <= req_index;
-- Record victim way in the cycle after we see a load or dcbz miss
if r1.choose_victim = '1' then
r1.victim_way <= plru_victim;
report "victim way:" & to_hstring(plru_victim);
end if;
if req_op_load_miss = '1' or (r0.req.dcbz = '1' and req_is_hit = '0') then
r1.choose_victim <= '1';
end if;
if req_go = '1' then
r1.prev_hit <= req_is_hit;
r1.prev_way <= req_hit_way;
r1.prev_hit_reload <= req_hit_reload;
end if;
-- Update count of pending acks
acks := r1.acks_pending;
if r1.wb.cyc = '0' then
acks := to_unsigned(0, 3);
elsif r1.wb.stb = '1' and r1.stalled = '0' and r1.dec_acks = '0' then
acks := acks + 1;
elsif (r1.wb.stb = '0' or r1.stalled = '1') and r1.dec_acks = '1' then
acks := acks - 1;
end if;
r1.acks_pending <= acks;
r1.stalled <= wishbone_in.stall and r1.wb.cyc;
r1.dec_acks <= wishbone_in.ack and r1.wb.cyc;
-- Main state machine
case r1.state is
when IDLE =>
r1.wb.adr <= addr_to_wb(req.real_addr);
r1.wb.sel <= req.byte_sel;
r1.wb.dat <= req.data;
r1.dcbz <= req.dcbz;
r1.atomic_more <= not req.last_dw;
-- Keep track of our index and way for subsequent stores.
r1.store_index <= get_index(req.real_addr);
r1.store_row <= get_row(req.real_addr);
r1.end_row_ix <= get_row_of_line(get_row(req.real_addr)) - 1;
r1.reload_tag <= get_tag(req.real_addr);
r1.req.same_tag <= '1';
if req.is_hit = '1' then
r1.store_way <= req.hit_way;
end if;
-- Reset per-row valid bits, ready for handling the next load miss
for i in 0 to ROW_PER_LINE - 1 loop
r1.rows_valid(i) <= '0';
end loop;
if req.op_lmiss = '1' then
-- Normal load cache miss, start the reload machine
-- Or non-cacheable load
if req.nc = '0' then
report "cache miss real addr:" & to_hstring(req.real_addr) &
" idx:" & to_hstring(get_index(req.real_addr)) &
" tag:" & to_hstring(get_tag(req.real_addr));
end if;
-- Start the wishbone cycle
r1.wb.we <= '0';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
if req.nc = '0' then
-- Track that we had one request sent
r1.state <= RELOAD_WAIT_ACK;
r1.write_tag <= '1';
ev.load_miss <= '1';
-- If this is a touch, complete the instruction
if req.touch = '1' then
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
end if;
else
r1.state <= NC_LOAD_WAIT_ACK;
end if;
end if;
if req.op_store = '1' then
if req.reserve = '1' then
-- stcx needs to wait until next cycle
-- for the reservation address check
r1.state <= DO_STCX;
elsif req.dcbz = '0' then
r1.state <= STORE_WAIT_ACK;
r1.full <= '0';
r1.slow_valid <= '1';
if req.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
r1.write_bram <= req.is_hit;
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
else
-- dcbz is handled much like a load miss except
-- that we are writing to memory instead of reading
r1.state <= RELOAD_WAIT_ACK;
r1.write_tag <= not req.is_hit;
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
end if;
ev.store_miss <= not req.is_hit;
end if;
if req.op_flush = '1' then
r1.state <= FLUSH_CYCLE;
end if;
when RELOAD_WAIT_ACK =>
-- If we are still sending requests, was one accepted ?
if wishbone_in.stall = '0' and r1.wb.stb = '1' then
-- That was the last word ? We are done sending. Clear stb.
assert not is_X(r1.wb.adr);
assert not is_X(r1.end_row_ix);
if is_last_row_wb_addr(r1.wb.adr, r1.end_row_ix) then
r1.wb.stb <= '0';
end if;
-- Calculate the next row address
r1.wb.adr <= next_row_wb_addr(r1.wb.adr);
end if;
-- Incoming acks processing
if wishbone_in.ack = '1' then
r1.rows_valid(to_integer(r1.store_row(ROW_LINEBITS-1 downto 0))) <= '1';
-- If this is the data we were looking for, we can
-- complete the request next cycle.
-- Compare the whole address in case the request in
-- r1.req is not the one that started this refill.
-- (Cases where req comes from r0 are handled as a load
-- hit.)
if r1.full = '1' then
assert not is_X(r1.store_row);
assert not is_X(r1.req.real_addr);
end if;
if r1.full = '1' and r1.req.same_tag = '1' and
((r1.dcbz = '1' and r1.req.dcbz = '1') or r1.req.op_lmiss = '1') and
r1.store_row = get_row(r1.req.real_addr) then
r1.full <= '0';
r1.slow_valid <= '1';
if r1.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
-- NB: for lqarx, set the reservation on the first dword
if r1.req.reserve = '1' and r1.req.first_dw = '1' then
reservation.valid <= '1';
end if;
end if;
-- Check for completion
assert not is_X(r1.store_row);
assert not is_X(r1.end_row_ix);
if is_last_row(r1.store_row, r1.end_row_ix) then
-- Complete wishbone cycle
r1.wb.cyc <= '0';
-- Cache line is now valid
assert not is_X(r1.store_index);
assert not is_X(r1.store_way);
cache_valids(to_integer(r1.store_index))(to_integer(r1.store_way)) <= '1';
ev.dcache_refill <= not r1.dcbz;
-- Second half of a lq/lqarx can assume a hit on this line now
-- if the first half hit this line.
r1.prev_hit <= r1.prev_hit_reload;
r1.prev_way <= r1.store_way;
r1.state <= IDLE;
end if;
-- Increment store row counter
r1.store_row <= next_row(r1.store_row);
end if;
when STORE_WAIT_ACK =>
stbs_done := r1.wb.stb = '0';
-- Clear stb when slave accepted request
if wishbone_in.stall = '0' then
-- See if there is another store waiting to be done
-- which is in the same real page.
-- This could be either in r1.req or in r0.
-- Ignore store-conditionals, they have to go through
-- DO_STCX state, unless they are the second half of a
-- successful stqcx, which is handled here.
if req.valid = '1' then
r1.wb.adr(SET_SIZE_BITS - ROW_OFF_BITS - 1 downto 0) <=
req.real_addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS);
r1.wb.dat <= req.data;
r1.wb.sel <= req.byte_sel;
end if;
assert not is_X(acks);
r1.wb.stb <= '0';
if req.op_store = '1' and req.same_tag = '1' and req.dcbz = '0' and
(req.reserve = '0' or r1.atomic_more = '1') then
if acks < 7 then
r1.wb.stb <= '1';
stbs_done := false;
r1.store_way <= req.hit_way;
r1.store_row <= get_row(req.real_addr);
r1.write_bram <= req.is_hit;
r1.atomic_more <= not req.last_dw;
r1.full <= '0';
r1.slow_valid <= '1';
-- Store requests never come from the MMU
r1.ls_valid <= '1';
end if;
else
stbs_done := true;
if req.valid = '1' then
r1.atomic_more <= '0';
end if;
end if;
end if;
-- Got ack ? See if complete.
if stbs_done and r1.atomic_more = '0' then
assert not is_X(acks);
if acks = 0 or (wishbone_in.ack = '1' and acks = 1) then
r1.state <= IDLE;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
end if;
end if;
when NC_LOAD_WAIT_ACK =>
-- Clear stb when slave accepted request
if wishbone_in.stall = '0' then
r1.wb.stb <= '0';
end if;
-- Got ack ? complete.
if wishbone_in.ack = '1' then
r1.state <= IDLE;
r1.full <= '0';
r1.slow_valid <= '1';
if r1.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
end if;
when DO_STCX =>
if reservation.valid = '0' or kill_rsrv = '1' or
r1.req.real_addr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) /= reservation.addr then
-- Wrong address, didn't have reservation, or lost reservation
-- Abandon the wishbone cycle if started and fail the stcx.
r1.stcx_fail <= '1';
r1.full <= '0';
r1.ls_valid <= '1';
r1.state <= IDLE;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
reservation.valid <= '0';
-- If this is the first half of a stqcx., the second half
-- will fail also because the reservation is not valid.
r1.state <= IDLE;
elsif r1.wb.cyc = '0' then
-- Right address and have reservation, so start the
-- wishbone cycle
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
elsif r1.wb.stb = '1' and wishbone_in.stall = '0' then
-- Store has been accepted, so now we can write the
-- cache data RAM and complete the request
r1.write_bram <= r1.req.is_hit;
r1.wb.stb <= '0';
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
reservation.valid <= '0';
-- For a stqcx, STORE_WAIT_ACK will issue the second half
-- without checking the reservation, which is what we want
-- given that the first half has gone out.
-- With r1.atomic_more set, STORE_WAIT_ACK won't exit to
-- IDLE state until it sees the second half.
r1.state <= STORE_WAIT_ACK;
end if;
when FLUSH_CYCLE =>
cache_valids(to_integer(r1.store_index))(to_integer(r1.store_way)) <= '0';
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
r1.state <= IDLE;
end case;
end if;
end if;
end process;
dc_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(19 downto 0);
begin
dcache_log: process(clk)
begin
if rising_edge(clk) then
log_data <= r1.wb.adr(2 downto 0) &
wishbone_in.stall &
wishbone_in.ack &
r1.wb.stb & r1.wb.cyc &
d_out.error &
d_out.valid &
req_op_load_miss & req_op_store & req_op_bad &
stall_out &
std_ulogic_vector(resize(tlb_hit_way, 3)) &
valid_ra &
std_ulogic_vector(to_unsigned(state_t'pos(r1.state), 3));
end if;
end process;
log_out <= log_data;
end generate;
end;