1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-02-17 04:57:11 +00:00
Files
antonblanchard.microwatt/divider_tb.vhdl
Paul Mackerras 374f4c536d writeback: Do data formatting and condition recording in writeback
This adds code to writeback to format data and test the result
against zero for the purpose of setting CR0.  The data formatter
is able to shift and mask by bytes and do byte reversal and sign
extension.  It can also put together bytes from two input
doublewords to support unaligned loads (including unaligned
byte-reversed loads).

The data formatter starts with an 8:1 multiplexer that is able
to direct any byte of the input to any byte of the output.  This
lets us rotate the data and simultaneously byte-reverse it.
The rotated/reversed data goes to a register for the unaligned
cases that overlap two doublewords.  Then there is per-byte logic
that does trimming, sign extension, and splicing together bytes
from a previous input doubleword (stored in data_latched) and the
current doubleword.  Finally the 64-bit result is tested to set
CR0 if rc = 1.

This removes the RC logic from the execute2, multiply and divide
units, and the shift/mask/byte-reverse/sign-extend logic from
loadstore2.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-10-15 15:23:28 +11:00

550 lines
21 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.glibc_random.all;
use work.ppc_fx_insns.all;
entity divider_tb is
end divider_tb;
architecture behave of divider_tb is
signal clk : std_ulogic;
signal rst : std_ulogic;
constant clk_period : time := 10 ns;
signal d1 : Decode2ToDividerType;
signal d2 : DividerToWritebackType;
begin
divider_0: entity work.divider
port map (clk => clk, rst => rst, d_in => d1, d_out => d2);
clk_process: process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;
stim_process: process
variable ra, rb, rt, behave_rt: std_ulogic_vector(63 downto 0);
variable si: std_ulogic_vector(15 downto 0);
variable d128: std_ulogic_vector(127 downto 0);
variable q128: std_ulogic_vector(127 downto 0);
variable q64: std_ulogic_vector(63 downto 0);
variable rem32: std_ulogic_vector(31 downto 0);
begin
rst <= '1';
wait for clk_period;
rst <= '0';
d1.valid <= '1';
d1.write_reg <= "10001";
d1.dividend <= x"0000000010001000";
d1.divisor <= x"0000000000001111";
d1.is_signed <= '0';
d1.is_32bit <= '0';
d1.is_extended <= '0';
d1.is_modulus <= '0';
d1.rc <= '0';
wait for clk_period;
assert d2.valid = '0';
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
assert d2.write_reg_enable = '1';
assert d2.write_reg_nr = "10001";
assert d2.write_reg_data = x"000000000000f001" report "result " & to_hstring(d2.write_reg_data);
assert d2.rc = '0';
wait for clk_period;
assert d2.valid = '0' report "valid";
d1.valid <= '1';
d1.rc <= '1';
wait for clk_period;
assert d2.valid = '0' report "valid";
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
assert d2.write_reg_enable = '1';
assert d2.write_reg_nr = "10001";
assert d2.write_reg_data = x"000000000000f001" report "result " & to_hstring(d2.write_reg_data);
assert d2.rc = '1';
wait for clk_period;
assert d2.valid = '0';
-- test divd
report "test divd";
divd_loop : for dlength in 1 to 8 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" and (ra /= x"8000000000000000" or rb /= x"ffffffffffffffff") then
behave_rt := ppc_divd(ra, rb);
end if;
assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
report "bad divd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test divdu
report "test divdu";
divdu_loop : for dlength in 1 to 8 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := ppc_divdu(ra, rb);
end if;
assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
report "bad divdu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test divde
report "test divde";
divde_loop : for vlength in 1 to 8 loop
for dlength in 1 to vlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.is_extended <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
d128 := ra & x"0000000000000000";
q128 := std_ulogic_vector(signed(d128) / signed(rb));
if q128(127 downto 63) = x"0000000000000000" & '0' or
q128(127 downto 63) = x"ffffffffffffffff" & '1' then
behave_rt := q128(63 downto 0);
end if;
end if;
assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
report "bad divde expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
end loop;
end loop;
end loop;
-- test divdeu
report "test divdeu";
divdeu_loop : for vlength in 1 to 8 loop
for dlength in 1 to vlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.is_extended <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if unsigned(rb) > unsigned(ra) then
d128 := ra & x"0000000000000000";
q128 := std_ulogic_vector(unsigned(d128) / unsigned(rb));
behave_rt := q128(63 downto 0);
end if;
assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
report "bad divdeu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
end loop;
end loop;
end loop;
-- test divw
report "test divw";
divw_loop : for dlength in 1 to 4 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" and (ra /= x"ffffffff80000000" or rb /= x"ffffffffffffffff") then
behave_rt := ppc_divw(ra, rb);
end if;
assert behave_rt = d2.write_reg_data
report "bad divw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test divwu
report "test divwu";
divwu_loop : for dlength in 1 to 4 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := ppc_divwu(ra, rb);
end if;
assert behave_rt = d2.write_reg_data
report "bad divwu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test divwe
report "test divwe";
divwe_loop : for vlength in 1 to 4 loop
for dlength in 1 to vlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 32)) & x"00000000";
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
q64 := std_ulogic_vector(signed(ra) / signed(rb));
if q64(63 downto 31) = x"00000000" & '0' or
q64(63 downto 31) = x"ffffffff" & '1' then
behave_rt := x"00000000" & q64(31 downto 0);
end if;
assert behave_rt = d2.write_reg_data
report "bad divwe expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
end if;
end loop;
end loop;
end loop;
-- test divweu
report "test divweu";
divweu_loop : for vlength in 1 to 4 loop
for dlength in 1 to vlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 32)) & x"00000000";
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if unsigned(rb(31 downto 0)) > unsigned(ra(63 downto 32)) then
behave_rt := std_ulogic_vector(unsigned(ra) / unsigned(rb));
end if;
assert behave_rt = d2.write_reg_data
report "bad divweu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
end loop;
end loop;
end loop;
-- test modsd
report "test modsd";
modsd_loop : for dlength in 1 to 8 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.is_extended <= '0';
d1.is_32bit <= '0';
d1.is_modulus <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := std_ulogic_vector(signed(ra) rem signed(rb));
end if;
assert behave_rt = d2.write_reg_data
report "bad modsd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test modud
report "test modud";
modud_loop : for dlength in 1 to 8 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.is_extended <= '0';
d1.is_32bit <= '0';
d1.is_modulus <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := std_ulogic_vector(unsigned(ra) rem unsigned(rb));
end if;
assert behave_rt = d2.write_reg_data
report "bad modud expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test modsw
report "test modsw";
modsw_loop : for dlength in 1 to 4 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '1';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.is_modulus <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
rem32 := std_ulogic_vector(signed(ra(31 downto 0)) rem signed(rb(31 downto 0)));
if rem32(31) = '0' then
behave_rt := x"00000000" & rem32;
else
behave_rt := x"ffffffff" & rem32;
end if;
end if;
assert behave_rt = d2.write_reg_data
report "bad modsw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
-- test moduw
report "test moduw";
moduw_loop : for dlength in 1 to 4 loop
for vlength in 1 to dlength loop
for i in 0 to 100 loop
ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
d1.dividend <= ra;
d1.divisor <= rb;
d1.is_signed <= '0';
d1.is_extended <= '0';
d1.is_32bit <= '1';
d1.is_modulus <= '1';
d1.valid <= '1';
wait for clk_period;
d1.valid <= '0';
for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end if;
end loop;
assert d2.valid = '1';
behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := x"00000000" & std_ulogic_vector(unsigned(ra(31 downto 0)) rem unsigned(rb(31 downto 0)));
end if;
assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
report "bad moduw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
end loop;
end loop;
end loop;
assert false report "end of test" severity failure;
wait;
end process;
end behave;