mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-13 15:18:09 +00:00
This puts all the data formatting (byte rotation based on lowest three bits of the address, byte reversal, sign extension, zero extension) in loadstore1. Writeback now simply sends the data provided to the register files. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
328 lines
12 KiB
VHDL
328 lines
12 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
|
|
-- 2 cycle LSU
|
|
-- We calculate the address in the first cycle
|
|
|
|
entity loadstore1 is
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
l_in : in Execute1ToLoadstore1Type;
|
|
l_out : out Loadstore1ToWritebackType;
|
|
|
|
d_out : out Loadstore1ToDcacheType;
|
|
d_in : in DcacheToLoadstore1Type;
|
|
|
|
dc_stall : in std_ulogic;
|
|
stall_out : out std_ulogic
|
|
);
|
|
end loadstore1;
|
|
|
|
-- Note, we don't currently use the stall output from the dcache because
|
|
-- we know it can take two requests without stalling when idle, we are
|
|
-- its only user, and we know it never stalls when idle.
|
|
|
|
architecture behave of loadstore1 is
|
|
|
|
-- State machine for unaligned loads/stores
|
|
type state_t is (IDLE, -- ready for instruction
|
|
SECOND_REQ, -- send 2nd request of unaligned xfer
|
|
FIRST_ACK_WAIT, -- waiting for 1st ack from dcache
|
|
LAST_ACK_WAIT, -- waiting for last ack from dcache
|
|
LD_UPDATE -- writing rA with computed addr on load
|
|
);
|
|
|
|
type reg_stage_t is record
|
|
-- latch most of the input request
|
|
load : std_ulogic;
|
|
addr : std_ulogic_vector(63 downto 0);
|
|
store_data : std_ulogic_vector(63 downto 0);
|
|
load_data : std_ulogic_vector(63 downto 0);
|
|
write_reg : gpr_index_t;
|
|
length : std_ulogic_vector(3 downto 0);
|
|
byte_reverse : std_ulogic;
|
|
sign_extend : std_ulogic;
|
|
update : std_ulogic;
|
|
update_reg : gpr_index_t;
|
|
xerc : xer_common_t;
|
|
reserve : std_ulogic;
|
|
rc : std_ulogic;
|
|
nc : std_ulogic; -- non-cacheable access
|
|
state : state_t;
|
|
second_bytes : std_ulogic_vector(7 downto 0);
|
|
end record;
|
|
|
|
type byte_sel_t is array(0 to 7) of std_ulogic;
|
|
subtype byte_trim_t is std_ulogic_vector(1 downto 0);
|
|
type trim_ctl_t is array(0 to 7) of byte_trim_t;
|
|
|
|
signal r, rin : reg_stage_t;
|
|
signal lsu_sum : std_ulogic_vector(63 downto 0);
|
|
|
|
-- Generate byte enables from sizes
|
|
function length_to_sel(length : in std_logic_vector(3 downto 0)) return std_ulogic_vector is
|
|
begin
|
|
case length is
|
|
when "0001" =>
|
|
return "00000001";
|
|
when "0010" =>
|
|
return "00000011";
|
|
when "0100" =>
|
|
return "00001111";
|
|
when "1000" =>
|
|
return "11111111";
|
|
when others =>
|
|
return "00000000";
|
|
end case;
|
|
end function length_to_sel;
|
|
|
|
-- Calculate byte enables
|
|
-- This returns 16 bits, giving the select signals for two transfers,
|
|
-- to account for unaligned loads or stores
|
|
function xfer_data_sel(size : in std_logic_vector(3 downto 0);
|
|
address : in std_logic_vector(2 downto 0))
|
|
return std_ulogic_vector is
|
|
variable longsel : std_ulogic_vector(15 downto 0);
|
|
begin
|
|
longsel := "00000000" & length_to_sel(size);
|
|
return std_ulogic_vector(shift_left(unsigned(longsel),
|
|
to_integer(unsigned(address))));
|
|
end function xfer_data_sel;
|
|
|
|
begin
|
|
-- Calculate the address in the first cycle
|
|
lsu_sum <= std_ulogic_vector(unsigned(l_in.addr1) + unsigned(l_in.addr2)) when l_in.valid = '1' else (others => '0');
|
|
|
|
loadstore1_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' then
|
|
r.state <= IDLE;
|
|
else
|
|
r <= rin;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
loadstore1_1: process(all)
|
|
variable v : reg_stage_t;
|
|
variable brev_lenm1 : unsigned(2 downto 0);
|
|
variable byte_offset : unsigned(2 downto 0);
|
|
variable j : integer;
|
|
variable k : unsigned(2 downto 0);
|
|
variable kk : unsigned(3 downto 0);
|
|
variable long_sel : std_ulogic_vector(15 downto 0);
|
|
variable byte_sel : std_ulogic_vector(7 downto 0);
|
|
variable req : std_ulogic;
|
|
variable stall : std_ulogic;
|
|
variable addr : std_ulogic_vector(63 downto 0);
|
|
variable wdata : std_ulogic_vector(63 downto 0);
|
|
variable write_enable : std_ulogic;
|
|
variable do_update : std_ulogic;
|
|
variable two_dwords : std_ulogic;
|
|
variable done : std_ulogic;
|
|
variable data_permuted : std_ulogic_vector(63 downto 0);
|
|
variable data_trimmed : std_ulogic_vector(63 downto 0);
|
|
variable use_second : byte_sel_t;
|
|
variable trim_ctl : trim_ctl_t;
|
|
variable negative : std_ulogic;
|
|
begin
|
|
v := r;
|
|
req := '0';
|
|
stall := '0';
|
|
done := '0';
|
|
byte_sel := (others => '0');
|
|
addr := lsu_sum;
|
|
|
|
write_enable := '0';
|
|
do_update := '0';
|
|
two_dwords := or (r.second_bytes);
|
|
|
|
-- load data formatting
|
|
if r.load = '1' then
|
|
byte_offset := unsigned(r.addr(2 downto 0));
|
|
brev_lenm1 := "000";
|
|
if r.byte_reverse = '1' then
|
|
brev_lenm1 := unsigned(r.length(2 downto 0)) - 1;
|
|
end if;
|
|
|
|
-- shift and byte-reverse data bytes
|
|
for i in 0 to 7 loop
|
|
kk := ('0' & (to_unsigned(i, 3) xor brev_lenm1)) + ('0' & byte_offset);
|
|
use_second(i) := kk(3);
|
|
j := to_integer(kk(2 downto 0)) * 8;
|
|
data_permuted(i * 8 + 7 downto i * 8) := d_in.data(j + 7 downto j);
|
|
end loop;
|
|
|
|
-- Work out the sign bit for sign extension.
|
|
-- Assumes we are not doing both sign extension and byte reversal,
|
|
-- in that for unaligned loads crossing two dwords we end up
|
|
-- using a bit from the second dword, whereas for a byte-reversed
|
|
-- (i.e. big-endian) load the sign bit would be in the first dword.
|
|
negative := (r.length(3) and data_permuted(63)) or
|
|
(r.length(2) and data_permuted(31)) or
|
|
(r.length(1) and data_permuted(15)) or
|
|
(r.length(0) and data_permuted(7));
|
|
|
|
-- trim and sign-extend
|
|
for i in 0 to 7 loop
|
|
if i < to_integer(unsigned(r.length)) then
|
|
if two_dwords = '1' then
|
|
trim_ctl(i) := '1' & not use_second(i);
|
|
else
|
|
trim_ctl(i) := not use_second(i) & '0';
|
|
end if;
|
|
else
|
|
trim_ctl(i) := '0' & (negative and r.sign_extend);
|
|
end if;
|
|
case trim_ctl(i) is
|
|
when "11" =>
|
|
data_trimmed(i * 8 + 7 downto i * 8) := r.load_data(i * 8 + 7 downto i * 8);
|
|
when "10" =>
|
|
data_trimmed(i * 8 + 7 downto i * 8) := data_permuted(i * 8 + 7 downto i * 8);
|
|
when "01" =>
|
|
data_trimmed(i * 8 + 7 downto i * 8) := x"FF";
|
|
when others =>
|
|
data_trimmed(i * 8 + 7 downto i * 8) := x"00";
|
|
end case;
|
|
end loop;
|
|
end if;
|
|
|
|
case r.state is
|
|
when IDLE =>
|
|
if l_in.valid = '1' then
|
|
v.load := l_in.load;
|
|
v.addr := lsu_sum;
|
|
v.write_reg := l_in.write_reg;
|
|
v.length := l_in.length;
|
|
v.byte_reverse := l_in.byte_reverse;
|
|
v.sign_extend := l_in.sign_extend;
|
|
v.update := l_in.update;
|
|
v.update_reg := l_in.update_reg;
|
|
v.xerc := l_in.xerc;
|
|
v.reserve := l_in.reserve;
|
|
v.rc := l_in.rc;
|
|
|
|
-- XXX Temporary hack. Mark the op as non-cachable if the address
|
|
-- is the form 0xc-------
|
|
--
|
|
-- This will have to be replaced by a combination of implementing the
|
|
-- proper HV CI load/store instructions and having an MMU to get the I
|
|
-- bit otherwise.
|
|
if lsu_sum(31 downto 28) = "1100" then
|
|
v.nc := '1';
|
|
else
|
|
v.nc := '0';
|
|
end if;
|
|
|
|
-- Do length_to_sel and work out if we are doing 2 dwords
|
|
long_sel := xfer_data_sel(l_in.length, v.addr(2 downto 0));
|
|
byte_sel := long_sel(7 downto 0);
|
|
v.second_bytes := long_sel(15 downto 8);
|
|
|
|
v.addr := lsu_sum;
|
|
|
|
-- Do byte reversing and rotating for stores in the first cycle
|
|
if v.load = '0' then
|
|
byte_offset := unsigned(lsu_sum(2 downto 0));
|
|
brev_lenm1 := "000";
|
|
if l_in.byte_reverse = '1' then
|
|
brev_lenm1 := unsigned(l_in.length(2 downto 0)) - 1;
|
|
end if;
|
|
for i in 0 to 7 loop
|
|
k := (to_unsigned(i, 3) xor brev_lenm1) + byte_offset;
|
|
j := to_integer(k) * 8;
|
|
v.store_data(j + 7 downto j) := l_in.data(i * 8 + 7 downto i * 8);
|
|
end loop;
|
|
end if;
|
|
|
|
req := '1';
|
|
stall := '1';
|
|
if long_sel(15 downto 8) = "00000000" then
|
|
v.state := LAST_ACK_WAIT;
|
|
else
|
|
v.state := SECOND_REQ;
|
|
end if;
|
|
end if;
|
|
|
|
when SECOND_REQ =>
|
|
-- compute (addr + 8) & ~7 for the second doubleword when unaligned
|
|
addr := std_ulogic_vector(unsigned(r.addr(63 downto 3)) + 1) & "000";
|
|
byte_sel := r.second_bytes;
|
|
req := '1';
|
|
stall := '1';
|
|
v.state := FIRST_ACK_WAIT;
|
|
|
|
when FIRST_ACK_WAIT =>
|
|
stall := '1';
|
|
if d_in.valid = '1' then
|
|
v.state := LAST_ACK_WAIT;
|
|
if r.load = '1' then
|
|
v.load_data := data_permuted;
|
|
end if;
|
|
end if;
|
|
|
|
when LAST_ACK_WAIT =>
|
|
stall := '1';
|
|
if d_in.valid = '1' then
|
|
write_enable := r.load;
|
|
if r.load = '1' and r.update = '1' then
|
|
-- loads with rA update need an extra cycle
|
|
v.state := LD_UPDATE;
|
|
else
|
|
-- stores write back rA update in this cycle
|
|
do_update := r.update;
|
|
stall := '0';
|
|
done := '1';
|
|
v.state := IDLE;
|
|
end if;
|
|
end if;
|
|
|
|
when LD_UPDATE =>
|
|
do_update := '1';
|
|
v.state := IDLE;
|
|
done := '1';
|
|
end case;
|
|
|
|
-- Update outputs to dcache
|
|
d_out.valid <= req;
|
|
d_out.load <= v.load;
|
|
d_out.nc <= v.nc;
|
|
d_out.reserve <= v.reserve;
|
|
d_out.addr <= addr;
|
|
d_out.data <= v.store_data;
|
|
d_out.byte_sel <= byte_sel;
|
|
|
|
-- Update outputs to writeback
|
|
-- Multiplex either cache data to the destination GPR or
|
|
-- the address for the rA update.
|
|
l_out.valid <= done;
|
|
if do_update = '1' then
|
|
l_out.write_enable <= '1';
|
|
l_out.write_reg <= r.update_reg;
|
|
l_out.write_data <= r.addr;
|
|
else
|
|
l_out.write_enable <= write_enable;
|
|
l_out.write_reg <= r.write_reg;
|
|
l_out.write_data <= data_trimmed;
|
|
end if;
|
|
l_out.xerc <= r.xerc;
|
|
l_out.rc <= r.rc and done;
|
|
l_out.store_done <= d_in.store_done;
|
|
|
|
stall_out <= stall;
|
|
|
|
-- Update registers
|
|
rin <= v;
|
|
|
|
end process;
|
|
|
|
end;
|