1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-01-11 23:43:15 +00:00
antonblanchard.microwatt/writeback.vhdl
Paul Mackerras 788f7a1755 core: Improve timing on bypass control paths
In order to improve timing, the bypass paths now carry the register
number being written as well as the tag.  The decisions about which
bypasses to use for which operands are then made by comparing the
register numbers rather than by determining a tag from the register
number and then comparing tags.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2025-09-30 12:37:42 +10:00

211 lines
7.1 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.common.all;
use work.crhelpers.all;
entity writeback is
port (
clk : in std_ulogic;
rst : in std_ulogic;
e_in : in Execute1ToWritebackType;
l_in : in Loadstore1ToWritebackType;
fp_in : in FPUToWritebackType;
w_out : out WritebackToRegisterFileType;
c_out : out WritebackToCrFileType;
f_out : out WritebackToFetch1Type;
wb_bypass : out bypass_data_t;
-- PMU event bus
events : out WritebackEventType;
flush_out : out std_ulogic;
interrupt_out: out WritebackToExecute1Type;
complete_out : out instr_tag_t
);
end entity writeback;
architecture behaviour of writeback is
begin
writeback_0: process(clk)
variable x : std_ulogic_vector(0 downto 0);
variable y : std_ulogic_vector(0 downto 0);
variable w : std_ulogic_vector(0 downto 0);
begin
if rising_edge(clk) then
-- Do consistency checks only on the clock edge
x(0) := e_in.valid;
y(0) := l_in.valid;
w(0) := fp_in.valid;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) +
to_integer(unsigned(w))) <= 1 severity failure;
x(0) := e_in.write_enable;
y(0) := l_in.write_enable;
w(0) := fp_in.write_enable;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) +
to_integer(unsigned(w))) <= 1 severity failure;
w(0) := e_in.write_cr_enable;
x(0) := l_in.rc;
y(0) := fp_in.write_cr_enable;
assert (to_integer(unsigned(w)) + to_integer(unsigned(x)) +
to_integer(unsigned(y))) <= 1 severity failure;
assert (e_in.write_xerc_enable and fp_in.write_xerc) /= '1' severity failure;
assert not (e_in.valid = '1' and e_in.instr_tag.valid = '0') severity failure;
assert not (l_in.valid = '1' and l_in.instr_tag.valid = '0') severity failure;
assert not (fp_in.valid = '1' and fp_in.instr_tag.valid = '0') severity failure;
end if;
end process;
writeback_1: process(all)
variable f : WritebackToFetch1Type;
variable scf : std_ulogic_vector(3 downto 0);
variable vec : integer range 0 to 16#fff#;
variable srr1 : std_ulogic_vector(15 downto 0);
variable intr : std_ulogic;
variable hvi : std_ulogic;
variable scv : std_ulogic;
variable intr_page : std_ulogic_vector(4 downto 0);
variable intr_seg : std_ulogic_vector(1 downto 0);
begin
w_out <= WritebackToRegisterFileInit;
c_out <= WritebackToCrFileInit;
f := WritebackToFetch1Init;
vec := 0;
hvi := '0';
complete_out <= instr_tag_init;
if e_in.valid = '1' then
complete_out <= e_in.instr_tag;
elsif l_in.valid = '1' then
complete_out <= l_in.instr_tag;
elsif fp_in.valid = '1' then
complete_out <= fp_in.instr_tag;
end if;
events.instr_complete <= complete_out.valid;
events.fp_complete <= fp_in.valid;
intr := e_in.interrupt or l_in.interrupt or fp_in.interrupt;
interrupt_out.intr <= intr;
srr1 := (others => '0');
intr_page := 5x"0";
if e_in.alt_intr = '1' then
intr_page := 5x"4";
end if;
intr_seg := e_in.alt_intr & e_in.alt_intr;
scv := '0';
if e_in.interrupt = '1' then
vec := e_in.intr_vec;
srr1 := e_in.srr1;
hvi := e_in.hv_intr;
scv := e_in.is_scv;
if e_in.is_scv = '1' then
if e_in.alt_intr = '0' then
intr_page := 5x"17";
else
intr_page := 5x"3";
end if;
end if;
elsif l_in.interrupt = '1' then
vec := l_in.intr_vec;
srr1 := l_in.srr1;
elsif fp_in.interrupt = '1' then
vec := fp_in.intr_vec;
srr1 := fp_in.srr1;
end if;
interrupt_out.hv_intr <= hvi;
interrupt_out.srr1 <= srr1;
interrupt_out.scv_int <= scv;
interrupt_out.alt_int <= e_in.alt_intr;
if intr = '0' then
if e_in.write_enable = '1' then
w_out.write_reg <= e_in.write_reg;
w_out.write_data <= e_in.write_data;
w_out.write_enable <= '1';
end if;
if e_in.write_cr_enable = '1' then
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= e_in.write_cr_mask;
c_out.write_cr_data <= e_in.write_cr_data;
end if;
if e_in.write_xerc_enable = '1' then
c_out.write_xerc_enable <= '1';
c_out.write_xerc_data <= e_in.xerc;
end if;
if fp_in.write_enable = '1' then
w_out.write_reg <= fp_in.write_reg;
w_out.write_data <= fp_in.write_data;
w_out.write_enable <= '1';
end if;
if fp_in.write_cr_enable = '1' then
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= fp_in.write_cr_mask;
c_out.write_cr_data <= fp_in.write_cr_data;
end if;
if fp_in.write_xerc = '1' then
c_out.write_xerc_enable <= '1';
c_out.write_xerc_data <= fp_in.xerc;
end if;
if l_in.write_enable = '1' then
w_out.write_reg <= l_in.write_reg;
w_out.write_data <= l_in.write_data;
w_out.write_enable <= '1';
end if;
if l_in.rc = '1' then
-- st*cx. instructions
scf(3) := '0';
scf(2) := '0';
scf(1) := l_in.store_done;
scf(0) := l_in.xerc.so;
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= num_to_fxm(0);
c_out.write_cr_data(31 downto 28) <= scf;
end if;
end if;
-- Outputs to fetch1
f.interrupt := intr;
f.alt_intr := e_in.alt_intr;
f.intr_vec := intr_seg & 45x"0" & intr_page & std_ulogic_vector(to_unsigned(vec, 12));
f.redirect := e_in.redirect;
f.redirect_nia := e_in.write_data;
f.br_nia := e_in.last_nia;
f.br_last := e_in.br_last and not intr;
f.br_taken := e_in.br_taken;
-- send MSR[IR], ~MSR[PR], ~MSR[LE] and ~MSR[SF] up to fetch1
f.virt_mode := e_in.redir_mode(3);
f.priv_mode := e_in.redir_mode(2);
f.big_endian := e_in.redir_mode(1);
f.mode_32bit := e_in.redir_mode(0);
f_out <= f;
flush_out <= f_out.redirect or intr;
-- Register write data bypass to decode2
wb_bypass.tag.tag <= complete_out.tag;
wb_bypass.tag.valid <= complete_out.valid and w_out.write_enable;
wb_bypass.reg <= w_out.write_reg;
wb_bypass.data <= w_out.write_data;
end process;
end;