1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-01-13 15:18:09 +00:00
Paul Mackerras 45cd8f4fc3 core: Add support for floating-point loads and stores
This extends the register file so it can hold FPR values, and
implements the FP loads and stores that do not require conversion
between single and double precision.

We now have the FP, FE0 and FE1 bits in MSR.  FP loads and stores
cause a FP unavailable interrupt if MSR[FP] = 0.

The FPU facilities are optional and their presence is controlled by
the HAS_FPU generic passed down from the top-level board file.  It
defaults to true for all except the A7-35 boards.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-09-03 15:14:17 +10:00

280 lines
9.2 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.common.all;
entity control is
generic (
PIPELINE_DEPTH : natural := 2
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in std_ulogic;
valid_in : in std_ulogic;
flush_in : in std_ulogic;
busy_in : in std_ulogic;
deferred : in std_ulogic;
sgl_pipe_in : in std_ulogic;
stop_mark_in : in std_ulogic;
gpr_write_valid_in : in std_ulogic;
gpr_write_in : in gspr_index_t;
gpr_bypassable : in std_ulogic;
update_gpr_write_valid : in std_ulogic;
update_gpr_write_reg : in gspr_index_t;
gpr_a_read_valid_in : in std_ulogic;
gpr_a_read_in : in gspr_index_t;
gpr_b_read_valid_in : in std_ulogic;
gpr_b_read_in : in gspr_index_t;
gpr_c_read_valid_in : in std_ulogic;
gpr_c_read_in : in gspr_index_t;
cr_read_in : in std_ulogic;
cr_write_in : in std_ulogic;
cr_bypassable : in std_ulogic;
valid_out : out std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
gpr_bypass_a : out std_ulogic;
gpr_bypass_b : out std_ulogic;
gpr_bypass_c : out std_ulogic;
cr_bypass : out std_ulogic
);
end entity control;
architecture rtl of control is
type state_type is (IDLE, WAIT_FOR_PREV_TO_COMPLETE, WAIT_FOR_CURR_TO_COMPLETE);
type reg_internal_type is record
state : state_type;
outstanding : integer range -1 to PIPELINE_DEPTH+2;
end record;
constant reg_internal_init : reg_internal_type := (state => IDLE, outstanding => 0);
signal r_int, rin_int : reg_internal_type := reg_internal_init;
signal stall_a_out : std_ulogic;
signal stall_b_out : std_ulogic;
signal stall_c_out : std_ulogic;
signal cr_stall_out : std_ulogic;
signal gpr_write_valid : std_ulogic := '0';
signal cr_write_valid : std_ulogic := '0';
begin
gpr_hazard0: entity work.gpr_hazard
generic map (
PIPELINE_DEPTH => PIPELINE_DEPTH
)
port map (
clk => clk,
busy_in => busy_in,
deferred => deferred,
complete_in => complete_in,
flush_in => flush_in,
issuing => valid_out,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
bypass_avail => gpr_bypassable,
gpr_read_valid_in => gpr_a_read_valid_in,
gpr_read_in => gpr_a_read_in,
ugpr_write_valid => update_gpr_write_valid,
ugpr_write_reg => update_gpr_write_reg,
stall_out => stall_a_out,
use_bypass => gpr_bypass_a
);
gpr_hazard1: entity work.gpr_hazard
generic map (
PIPELINE_DEPTH => PIPELINE_DEPTH
)
port map (
clk => clk,
busy_in => busy_in,
deferred => deferred,
complete_in => complete_in,
flush_in => flush_in,
issuing => valid_out,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
bypass_avail => gpr_bypassable,
gpr_read_valid_in => gpr_b_read_valid_in,
gpr_read_in => gpr_b_read_in,
ugpr_write_valid => update_gpr_write_valid,
ugpr_write_reg => update_gpr_write_reg,
stall_out => stall_b_out,
use_bypass => gpr_bypass_b
);
gpr_hazard2: entity work.gpr_hazard
generic map (
PIPELINE_DEPTH => PIPELINE_DEPTH
)
port map (
clk => clk,
busy_in => busy_in,
deferred => deferred,
complete_in => complete_in,
flush_in => flush_in,
issuing => valid_out,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
bypass_avail => gpr_bypassable,
gpr_read_valid_in => gpr_c_read_valid_in,
gpr_read_in => gpr_c_read_in,
ugpr_write_valid => update_gpr_write_valid,
ugpr_write_reg => update_gpr_write_reg,
stall_out => stall_c_out,
use_bypass => gpr_bypass_c
);
cr_hazard0: entity work.cr_hazard
generic map (
PIPELINE_DEPTH => PIPELINE_DEPTH
)
port map (
clk => clk,
busy_in => busy_in,
deferred => deferred,
complete_in => complete_in,
flush_in => flush_in,
issuing => valid_out,
cr_read_in => cr_read_in,
cr_write_in => cr_write_valid,
bypassable => cr_bypassable,
stall_out => cr_stall_out,
use_bypass => cr_bypass
);
control0: process(clk)
begin
if rising_edge(clk) then
assert rin_int.outstanding >= 0 and rin_int.outstanding <= (PIPELINE_DEPTH+1)
report "Outstanding bad " & integer'image(rin_int.outstanding) severity failure;
r_int <= rin_int;
end if;
end process;
control1 : process(all)
variable v_int : reg_internal_type;
variable valid_tmp : std_ulogic;
variable stall_tmp : std_ulogic;
begin
v_int := r_int;
-- asynchronous
valid_tmp := valid_in and not flush_in;
stall_tmp := '0';
if flush_in = '1' then
-- expect to see complete_in next cycle
v_int.outstanding := 1;
elsif complete_in = '1' then
v_int.outstanding := r_int.outstanding - 1;
end if;
if rst = '1' then
v_int := reg_internal_init;
valid_tmp := '0';
end if;
-- Handle debugger stop
stopped_out <= '0';
if stop_mark_in = '1' and v_int.outstanding = 0 then
stopped_out <= '1';
end if;
-- state machine to handle instructions that must be single
-- through the pipeline.
case r_int.state is
when IDLE =>
if valid_tmp = '1' then
if (sgl_pipe_in = '1') then
if v_int.outstanding /= 0 then
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
stall_tmp := '1';
else
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
end if;
else
-- let it go out if there are no GPR hazards
stall_tmp := stall_a_out or stall_b_out or stall_c_out or cr_stall_out;
end if;
end if;
when WAIT_FOR_PREV_TO_COMPLETE =>
if v_int.outstanding = 0 then
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
else
stall_tmp := '1';
end if;
when WAIT_FOR_CURR_TO_COMPLETE =>
if v_int.outstanding = 0 then
v_int.state := IDLE;
-- XXX Don't replicate this
if valid_tmp = '1' then
if (sgl_pipe_in = '1') then
if v_int.outstanding /= 0 then
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
stall_tmp := '1';
else
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
end if;
else
-- let it go out if there are no GPR hazards
stall_tmp := stall_a_out or stall_b_out or stall_c_out or cr_stall_out;
end if;
end if;
else
stall_tmp := '1';
end if;
end case;
if stall_tmp = '1' then
valid_tmp := '0';
end if;
if valid_tmp = '1' then
if deferred = '0' then
v_int.outstanding := v_int.outstanding + 1;
end if;
gpr_write_valid <= gpr_write_valid_in;
cr_write_valid <= cr_write_in;
else
gpr_write_valid <= '0';
cr_write_valid <= '0';
end if;
-- update outputs
valid_out <= valid_tmp;
stall_out <= stall_tmp or deferred;
-- update registers
rin_int <= v_int;
end process;
end;