mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-15 07:53:57 +00:00
By using 4:1 multiplexers rather than 2:1, this cuts the number of levels of multiplexing from 4 to 2 and also reduces the total number of slice LUTs required. Because we are now handling 4 bits at each level, including the bottom level, the logic to do the priority encoding can be factored out into a function that is used at each level. This rearranges the logic so that the encoding and selection of bits is done whether or not the input operand is zero, and the if statement testing whether the input is zero only affects what is assigned to result. With this we don't get the inferred latches and we can go back to using signals rather than variables. Also add some comments about what is being done. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
115 lines
3.0 KiB
VHDL
115 lines
3.0 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
|
|
entity zero_counter is
|
|
port (
|
|
rs : in std_ulogic_vector(63 downto 0);
|
|
count_right : in std_ulogic;
|
|
is_32bit : in std_ulogic;
|
|
result : out std_ulogic_vector(63 downto 0)
|
|
);
|
|
end entity zero_counter;
|
|
|
|
architecture behaviour of zero_counter is
|
|
signal y, z : std_ulogic_vector(3 downto 0);
|
|
signal v16 : std_ulogic_vector(15 downto 0);
|
|
signal v4 : std_ulogic_vector(3 downto 0);
|
|
signal sel : std_ulogic_vector(5 downto 0);
|
|
|
|
-- Return the index of the leftmost or rightmost 1 in a set of 4 bits.
|
|
-- Assumes v is not "0000"; if it is, return (right ? "11" : "00").
|
|
function encoder(v: std_ulogic_vector(3 downto 0); right: std_ulogic) return std_ulogic_vector is
|
|
begin
|
|
if right = '0' then
|
|
if v(3) = '1' then
|
|
return "11";
|
|
elsif v(2) = '1' then
|
|
return "10";
|
|
elsif v(1) = '1' then
|
|
return "01";
|
|
else
|
|
return "00";
|
|
end if;
|
|
else
|
|
if v(0) = '1' then
|
|
return "00";
|
|
elsif v(1) = '1' then
|
|
return "01";
|
|
elsif v(2) = '1' then
|
|
return "10";
|
|
else
|
|
return "11";
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
begin
|
|
zerocounter0: process(all)
|
|
begin
|
|
-- Test 4 groups of 16 bits each.
|
|
-- The top 2 groups are considered to be zero in 32-bit mode.
|
|
z(0) <= or (rs(15 downto 0));
|
|
z(1) <= or (rs(31 downto 16));
|
|
z(2) <= or (rs(47 downto 32));
|
|
z(3) <= or (rs(63 downto 48));
|
|
if is_32bit = '0' then
|
|
sel(5 downto 4) <= encoder(z, count_right);
|
|
else
|
|
sel(5) <= '0';
|
|
if count_right = '0' then
|
|
sel(4) <= z(1);
|
|
else
|
|
sel(4) <= not z(0);
|
|
end if;
|
|
end if;
|
|
|
|
-- Select the leftmost/rightmost non-zero group of 16 bits
|
|
case sel(5 downto 4) is
|
|
when "00" =>
|
|
v16 <= rs(15 downto 0);
|
|
when "01" =>
|
|
v16 <= rs(31 downto 16);
|
|
when "10" =>
|
|
v16 <= rs(47 downto 32);
|
|
when others =>
|
|
v16 <= rs(63 downto 48);
|
|
end case;
|
|
|
|
-- Test 4 groups of 4 bits
|
|
y(0) <= or (v16(3 downto 0));
|
|
y(1) <= or (v16(7 downto 4));
|
|
y(2) <= or (v16(11 downto 8));
|
|
y(3) <= or (v16(15 downto 12));
|
|
sel(3 downto 2) <= encoder(y, count_right);
|
|
|
|
-- Select the leftmost/rightmost non-zero group of 4 bits
|
|
case sel(3 downto 2) is
|
|
when "00" =>
|
|
v4 <= v16(3 downto 0);
|
|
when "01" =>
|
|
v4 <= v16(7 downto 4);
|
|
when "10" =>
|
|
v4 <= v16(11 downto 8);
|
|
when others =>
|
|
v4 <= v16(15 downto 12);
|
|
end case;
|
|
|
|
sel(1 downto 0) <= encoder(v4, count_right);
|
|
|
|
-- sel is now the index of the leftmost/rightmost 1 bit in rs
|
|
if v4 = "0000" then
|
|
-- operand is zero, return 32 for 32-bit, else 64
|
|
result <= x"00000000000000" & '0' & not is_32bit & is_32bit & "00000";
|
|
elsif count_right = '0' then
|
|
-- return (63 - sel), trimmed to 5 bits in 32-bit mode
|
|
result <= x"00000000000000" & "00" & (not sel(5) and not is_32bit) & not sel(4 downto 0);
|
|
else
|
|
result <= x"00000000000000" & "00" & sel;
|
|
end if;
|
|
|
|
end process;
|
|
end behaviour;
|