mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-11 23:43:15 +00:00
In order to improve timing, the bypass paths now carry the register number being written as well as the tag. The decisions about which bypasses to use for which operands are then made by comparing the register numbers rather than by determining a tag from the register number and then comparing tags. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
761 lines
28 KiB
VHDL
761 lines
28 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.insn_helpers.all;
|
|
|
|
entity decode2 is
|
|
generic (
|
|
EX1_BYPASS : boolean := true;
|
|
HAS_FPU : boolean := true;
|
|
-- Non-zero to enable log data collection
|
|
LOG_LENGTH : natural := 0
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
complete_in : in instr_tag_t;
|
|
busy_in : in std_ulogic;
|
|
stall_out : out std_ulogic;
|
|
|
|
stopped_out : out std_ulogic;
|
|
|
|
flush_in: in std_ulogic;
|
|
|
|
tb_ctrl : timebase_ctrl;
|
|
|
|
d_in : in Decode1ToDecode2Type;
|
|
|
|
e_out : out Decode2ToExecute1Type;
|
|
|
|
r_in : in RegisterFileToDecode2Type;
|
|
r_out : out Decode2ToRegisterFileType;
|
|
|
|
c_in : in CrFileToDecode2Type;
|
|
c_out : out Decode2ToCrFileType;
|
|
|
|
execute_bypass : in bypass_data_t;
|
|
execute_cr_bypass : in cr_bypass_data_t;
|
|
execute2_bypass : in bypass_data_t;
|
|
execute2_cr_bypass : in cr_bypass_data_t;
|
|
writeback_bypass : in bypass_data_t;
|
|
|
|
-- Access to SPRs from core_debug module
|
|
dbg_spr_req : in std_ulogic;
|
|
dbg_spr_addr : in std_ulogic_vector(7 downto 0);
|
|
|
|
log_out : out std_ulogic_vector(9 downto 0)
|
|
);
|
|
end entity decode2;
|
|
|
|
architecture behaviour of decode2 is
|
|
type reg_type is record
|
|
e : Decode2ToExecute1Type;
|
|
repeat : repeat_t;
|
|
busy : std_ulogic;
|
|
sgl_pipe : std_ulogic;
|
|
prev_sgl : std_ulogic;
|
|
input_ov : std_ulogic;
|
|
output_ov : std_ulogic;
|
|
read_rspr : std_ulogic;
|
|
end record;
|
|
constant reg_type_init : reg_type :=
|
|
(e => Decode2ToExecute1Init, repeat => NONE, others => '0');
|
|
|
|
signal dc2, dc2in : reg_type;
|
|
|
|
signal deferred : std_ulogic;
|
|
|
|
type decode_input_reg_t is record
|
|
reg_valid : std_ulogic;
|
|
reg : gspr_index_t;
|
|
end record;
|
|
constant decode_input_reg_init : decode_input_reg_t := ('0', (others => '0'));
|
|
|
|
type decode_output_reg_t is record
|
|
reg_valid : std_ulogic;
|
|
reg : gspr_index_t;
|
|
end record;
|
|
constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0'));
|
|
|
|
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
prefix : std_ulogic_vector(25 downto 0))
|
|
return std_ulogic is
|
|
begin
|
|
if t = RA or ((t = RA_OR_ZERO or t = RA0_OR_CIA) and insn_ra(insn_in) /= "00000") then
|
|
return '1';
|
|
elsif t = CIA or (t = RA0_OR_CIA and insn_prefix_r(prefix) = '1') then
|
|
return '0';
|
|
elsif t = FRA then
|
|
return '1';
|
|
else
|
|
return '0';
|
|
end if;
|
|
end;
|
|
|
|
function decode_a_const (t : input_reg_a_t; prefix : std_ulogic_vector(25 downto 0); ia : std_ulogic_vector(63 downto 0))
|
|
return std_ulogic_vector is
|
|
begin
|
|
if t = CIA or (t = RA0_OR_CIA and insn_prefix_r(prefix) = '1') then
|
|
return ia;
|
|
else
|
|
return 64x"0";
|
|
end if;
|
|
end;
|
|
|
|
function decode_b_const (t : const_sel_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
prefix : std_ulogic_vector(25 downto 0))
|
|
return std_ulogic_vector is
|
|
variable ret : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
case t is
|
|
when CONST_UI =>
|
|
ret := std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64));
|
|
when CONST_SI =>
|
|
ret := std_ulogic_vector(resize(signed(insn_si(insn_in)), 64));
|
|
when CONST_PSI =>
|
|
ret := std_ulogic_vector(resize(signed(insn_prefixed_si(prefix, insn_in)), 64));
|
|
when CONST_SI_HI =>
|
|
ret := std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64));
|
|
when CONST_UI_HI =>
|
|
ret := std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64));
|
|
when CONST_LI =>
|
|
ret := std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64));
|
|
when CONST_BD =>
|
|
ret := std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64));
|
|
when CONST_DS =>
|
|
ret := std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64));
|
|
when CONST_DQ =>
|
|
ret := std_ulogic_vector(resize(signed(insn_dq(insn_in)) & "0000", 64));
|
|
when CONST_DXHI4 =>
|
|
ret := std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64));
|
|
when CONST_M1 =>
|
|
ret := x"FFFFFFFFFFFFFFFF";
|
|
when CONST_SH =>
|
|
ret := x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11);
|
|
when CONST_SH32 =>
|
|
ret := x"00000000000000" & "000" & insn_in(15 downto 11);
|
|
when others =>
|
|
ret := (others => '0');
|
|
end case;
|
|
|
|
return ret;
|
|
end;
|
|
|
|
function decode_input_reg_b (t : input_reg_b_t)
|
|
return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RB | FRB =>
|
|
return '1';
|
|
when IMM =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
|
|
function decode_input_reg_c (t : input_reg_c_t)
|
|
return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RS | RCR | FRS | FRC =>
|
|
return '1';
|
|
when NONE =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
|
|
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0))
|
|
return decode_output_reg_t is
|
|
begin
|
|
case t is
|
|
when RT =>
|
|
return ('1', gpr_to_gspr(insn_rt(insn_in)));
|
|
when RA =>
|
|
return ('1', gpr_to_gspr(insn_ra(insn_in)));
|
|
when FRT =>
|
|
if HAS_FPU then
|
|
return ('1', fpr_to_gspr(insn_frt(insn_in)));
|
|
else
|
|
return ('0', "000000");
|
|
end if;
|
|
when NONE =>
|
|
return ('0', "000000");
|
|
end case;
|
|
end;
|
|
|
|
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RC | RCOE =>
|
|
return insn_rc(insn_in);
|
|
when ONE =>
|
|
return '1';
|
|
when NONE =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
|
|
function andor (mask_a : std_ulogic; val_a : std_ulogic_vector(63 downto 0);
|
|
mask_b : std_ulogic; val_b : std_ulogic_vector(63 downto 0);
|
|
mask_c : std_ulogic; val_c : std_ulogic_vector(63 downto 0)) return std_ulogic_vector is
|
|
variable t : std_ulogic_vector(63 downto 0) := (others => '0');
|
|
begin
|
|
if mask_a = '1' then
|
|
t := val_a;
|
|
end if;
|
|
if mask_b = '1' then
|
|
t := t or val_b;
|
|
end if;
|
|
if mask_c = '1' then
|
|
t := t or val_c;
|
|
end if;
|
|
return t;
|
|
end;
|
|
|
|
signal decoded_reg_a : decode_input_reg_t;
|
|
signal decoded_reg_b : decode_input_reg_t;
|
|
signal decoded_reg_c : decode_input_reg_t;
|
|
signal decoded_reg_o : decode_output_reg_t;
|
|
|
|
-- issue control signals
|
|
signal control_valid_in : std_ulogic;
|
|
signal control_valid_out : std_ulogic;
|
|
signal control_serialize : std_logic;
|
|
|
|
signal gpr_write_valid : std_ulogic;
|
|
signal gpr_write : gspr_index_t;
|
|
|
|
signal gpr_a_read_valid : std_ulogic;
|
|
signal gpr_a_read : gspr_index_t;
|
|
signal gpr_a_bypass : std_ulogic_vector(3 downto 0);
|
|
|
|
signal gpr_b_read_valid : std_ulogic;
|
|
signal gpr_b_read : gspr_index_t;
|
|
signal gpr_b_bypass : std_ulogic_vector(3 downto 0);
|
|
|
|
signal gpr_c_read_valid : std_ulogic;
|
|
signal gpr_c_read : gspr_index_t;
|
|
signal gpr_c_bypass : std_ulogic_vector(3 downto 0);
|
|
|
|
signal cr_read_valid : std_ulogic;
|
|
signal cr_write_valid : std_ulogic;
|
|
signal cr_bypass : std_ulogic_vector(1 downto 0);
|
|
|
|
signal ov_read_valid : std_ulogic;
|
|
signal ov_write_valid : std_ulogic;
|
|
|
|
signal instr_tag : instr_tag_t;
|
|
|
|
begin
|
|
control_0: entity work.control
|
|
generic map (
|
|
EX1_BYPASS => EX1_BYPASS
|
|
)
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
|
|
complete_in => complete_in,
|
|
valid_in => control_valid_in,
|
|
deferred => deferred,
|
|
flush_in => flush_in,
|
|
serialize => control_serialize,
|
|
stop_mark_in => d_in.stop_mark,
|
|
|
|
gpr_write_valid_in => gpr_write_valid,
|
|
gpr_write_in => gpr_write,
|
|
|
|
gpr_a_read_valid_in => gpr_a_read_valid,
|
|
gpr_a_read_in => gpr_a_read,
|
|
|
|
gpr_b_read_valid_in => gpr_b_read_valid,
|
|
gpr_b_read_in => gpr_b_read,
|
|
|
|
gpr_c_read_valid_in => gpr_c_read_valid,
|
|
gpr_c_read_in => gpr_c_read,
|
|
|
|
execute_next_bypass => execute_bypass,
|
|
execute_next_cr_tag => execute_cr_bypass.tag,
|
|
execute2_next_bypass => execute2_bypass,
|
|
execute2_next_cr_tag => execute2_cr_bypass.tag,
|
|
writeback_bypass => writeback_bypass,
|
|
|
|
cr_read_in => cr_read_valid,
|
|
cr_write_in => cr_write_valid,
|
|
cr_bypass => cr_bypass,
|
|
|
|
ov_read_in => ov_read_valid,
|
|
ov_write_in => ov_write_valid,
|
|
|
|
valid_out => control_valid_out,
|
|
stopped_out => stopped_out,
|
|
|
|
gpr_bypass_a => gpr_a_bypass,
|
|
gpr_bypass_b => gpr_b_bypass,
|
|
gpr_bypass_c => gpr_c_bypass,
|
|
|
|
instr_tag_out => instr_tag
|
|
);
|
|
|
|
deferred <= dc2.e.valid and busy_in;
|
|
|
|
decode2_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' or flush_in = '1' then
|
|
dc2 <= reg_type_init;
|
|
elsif deferred = '0' then
|
|
if dc2in.e.valid = '1' then
|
|
report "execute " & to_hstring(dc2in.e.nia) &
|
|
" tag=" & integer'image(dc2in.e.instr_tag.tag) & std_ulogic'image(dc2in.e.instr_tag.valid) &
|
|
" rpt=" & std_ulogic'image(dc2in.e.repeat) & " 2nd=" & std_ulogic'image(dc2in.e.second) & " wr=" & to_hstring(dc2in.e.write_reg);
|
|
end if;
|
|
dc2 <= dc2in;
|
|
elsif dc2.read_rspr = '0' then
|
|
-- Update debug SPR access signals even when stalled
|
|
-- if the instruction in dc2.e doesn't read any SPRs.
|
|
dc2.e.dbg_spr_access <= dc2in.e.dbg_spr_access;
|
|
dc2.e.ramspr_even_rdaddr <= dc2in.e.ramspr_even_rdaddr;
|
|
dc2.e.ramspr_odd_rdaddr <= dc2in.e.ramspr_odd_rdaddr;
|
|
dc2.e.ramspr_rd_odd <= dc2in.e.ramspr_rd_odd;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
c_out.read <= d_in.decode.input_cr;
|
|
|
|
decode2_addrs: process(all)
|
|
variable dec_a, dec_b, dec_c : decode_input_reg_t;
|
|
variable dec_o : decode_output_reg_t;
|
|
begin
|
|
dec_a.reg_valid := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.prefix);
|
|
dec_a.reg := d_in.reg_a;
|
|
dec_b.reg_valid := decode_input_reg_b (d_in.decode.input_reg_b);
|
|
dec_b.reg := d_in.reg_b;
|
|
dec_c.reg_valid := decode_input_reg_c (d_in.decode.input_reg_c);
|
|
dec_c.reg := d_in.reg_c;
|
|
dec_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn);
|
|
case d_in.decode.repeat is
|
|
when DUPD =>
|
|
if d_in.second = '1' then
|
|
-- update-form loads, 2nd instruction writes RA
|
|
dec_o.reg := dec_a.reg;
|
|
end if;
|
|
when DRSP =>
|
|
-- non-prefixed stq, stqcx do RS|1, RS in LE mode; others do RS, RS|1
|
|
if d_in.second = (d_in.big_endian or d_in.prefixed) then
|
|
dec_c.reg(0) := '1'; -- do RS, RS|1
|
|
end if;
|
|
when DRTP =>
|
|
-- non-prefixed lq, lqarx do RT|1, RT in LE mode; others do RT, RT|1
|
|
if d_in.second = (d_in.big_endian or d_in.prefixed) then
|
|
dec_o.reg(0) := '1';
|
|
end if;
|
|
when others =>
|
|
end case;
|
|
-- For the second instance of a doubled instruction, we ignore the RA
|
|
-- and RB operands, in order to avoid false dependencies on the output
|
|
-- of the first instance.
|
|
if d_in.second = '1' then
|
|
dec_a.reg_valid := '0';
|
|
dec_b.reg_valid := '0';
|
|
end if;
|
|
if d_in.valid = '0' or d_in.illegal_suffix = '1' then
|
|
dec_a.reg_valid := '0';
|
|
dec_b.reg_valid := '0';
|
|
dec_c.reg_valid := '0';
|
|
dec_o.reg_valid := '0';
|
|
end if;
|
|
|
|
decoded_reg_a <= dec_a;
|
|
decoded_reg_b <= dec_b;
|
|
decoded_reg_c <= dec_c;
|
|
decoded_reg_o <= dec_o;
|
|
r_out.read1_enable <= dec_a.reg_valid;
|
|
r_out.read2_enable <= dec_b.reg_valid;
|
|
r_out.read3_enable <= dec_c.reg_valid;
|
|
|
|
end process;
|
|
|
|
decode2_1: process(all)
|
|
variable v : reg_type;
|
|
variable length : std_ulogic_vector(3 downto 0);
|
|
variable op : insn_type_t;
|
|
variable unit : unit_t;
|
|
variable valid_in : std_ulogic;
|
|
variable decctr : std_ulogic;
|
|
variable sprs_busy : std_ulogic;
|
|
begin
|
|
v := dc2;
|
|
|
|
valid_in := d_in.valid or dc2.busy;
|
|
|
|
if dc2.busy = '0' then
|
|
v.e := Decode2ToExecute1Init;
|
|
|
|
sprs_busy := '0';
|
|
unit := d_in.decode.unit;
|
|
|
|
if d_in.valid = '1' then
|
|
v.prev_sgl := dc2.sgl_pipe;
|
|
v.sgl_pipe := d_in.decode.sgl_pipe;
|
|
end if;
|
|
|
|
v.e.input_cr := d_in.decode.input_cr;
|
|
v.e.output_cr := d_in.decode.output_cr;
|
|
|
|
v.e.spr_select := d_in.spr_info;
|
|
|
|
-- Work out whether XER SO/OV/OV32 bits are set
|
|
-- or used by this instruction
|
|
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
v.e.output_xer := d_in.decode.output_carry;
|
|
v.input_ov := d_in.decode.output_carry;
|
|
v.output_ov := '0';
|
|
if d_in.decode.input_carry = OV then
|
|
v.input_ov := '1';
|
|
v.output_ov := '1';
|
|
end if;
|
|
if v.e.rc = '1' and d_in.decode.facility /= FPU then
|
|
v.input_ov := '1';
|
|
end if;
|
|
case d_in.decode.insn_type is
|
|
when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
|
|
if d_in.decode.rc = RCOE and insn_oe(d_in.insn) = '1' then
|
|
v.e.oe := '1';
|
|
v.e.output_xer := '1';
|
|
v.output_ov := '1';
|
|
v.input_ov := '1'; -- need SO state if setting OV to 0
|
|
end if;
|
|
when OP_MFSPR =>
|
|
if is_X(d_in.insn) then
|
|
v.input_ov := 'X';
|
|
else
|
|
case decode_spr_num(d_in.insn) is
|
|
when SPR_XER =>
|
|
v.input_ov := '1';
|
|
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR |
|
|
SPR_DAWR0 | SPR_DAWR1 | SPR_DAWRX0 | SPR_DAWRX1 =>
|
|
unit := LDST;
|
|
when SPR_TAR =>
|
|
v.e.uses_tar := '1';
|
|
when SPR_UDSCR =>
|
|
v.e.uses_dscr := '1';
|
|
when others =>
|
|
end case;
|
|
if d_in.spr_info.wonly = '1' then
|
|
v.e.spr_select.valid := '0';
|
|
end if;
|
|
end if;
|
|
when OP_MTSPR =>
|
|
if is_X(d_in.insn) then
|
|
v.e.output_xer := 'X';
|
|
v.output_ov := 'X';
|
|
v.sgl_pipe := 'X';
|
|
else
|
|
case decode_spr_num(d_in.insn) is
|
|
when SPR_XER =>
|
|
v.e.output_xer := '1';
|
|
v.output_ov := '1';
|
|
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR |
|
|
SPR_DAWR0 | SPR_DAWR1 | SPR_DAWRX0 | SPR_DAWRX1 =>
|
|
unit := LDST;
|
|
if d_in.valid = '1' then
|
|
v.sgl_pipe := '1';
|
|
end if;
|
|
when SPR_TAR =>
|
|
v.e.uses_tar := '1';
|
|
when SPR_UDSCR =>
|
|
v.e.uses_dscr := '1';
|
|
when others =>
|
|
end case;
|
|
if d_in.spr_info.ronly = '1' then
|
|
v.e.spr_select.valid := '0';
|
|
elsif d_in.spr_info.valid = '1' and d_in.valid = '1' then
|
|
v.sgl_pipe := '1';
|
|
end if;
|
|
end if;
|
|
when OP_CMP | OP_MCRXRX =>
|
|
v.input_ov := '1';
|
|
when others =>
|
|
end case;
|
|
|
|
if d_in.decode.lr = '1' then
|
|
v.e.lr := insn_lk(d_in.insn);
|
|
-- b and bc have even major opcodes; bcreg is considered absolute
|
|
v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
|
|
end if;
|
|
op := d_in.decode.insn_type;
|
|
|
|
-- Does this instruction decrement CTR?
|
|
-- bc, bclr, bctar with BO(2) = 0 do, but not bcctr.
|
|
decctr := '0';
|
|
if d_in.insn(23) = '0' and
|
|
(op = OP_BC or
|
|
(op = OP_BCREG and not (d_in.insn(10) = '1' and d_in.insn(6) = '0'))) then
|
|
decctr := '1';
|
|
end if;
|
|
v.e.dec_ctr := decctr;
|
|
|
|
if d_in.decode.repeat /= NONE then
|
|
v.e.repeat := '1';
|
|
end if;
|
|
v.e.second := d_in.second;
|
|
|
|
if decctr = '1' then
|
|
-- read and write CTR
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
|
|
v.e.ramspr_wraddr := RAMSPR_CTR;
|
|
v.e.ramspr_write_odd := '1';
|
|
sprs_busy := '1';
|
|
end if;
|
|
if v.e.lr = '1' then
|
|
-- write LR
|
|
v.e.ramspr_wraddr := RAMSPR_LR;
|
|
v.e.ramspr_write_even := '1';
|
|
end if;
|
|
|
|
case op is
|
|
when OP_BCREG =>
|
|
if d_in.insn(10) = '0' then
|
|
v.e.ramspr_even_rdaddr := RAMSPR_LR;
|
|
elsif d_in.insn(6) = '0' then
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
|
|
v.e.ramspr_rd_odd := '1';
|
|
else
|
|
v.e.ramspr_even_rdaddr := RAMSPR_TAR;
|
|
v.e.uses_tar := '1';
|
|
end if;
|
|
sprs_busy := '1';
|
|
when OP_MFSPR =>
|
|
v.e.ramspr_even_rdaddr := d_in.ram_spr.index;
|
|
v.e.ramspr_odd_rdaddr := d_in.ram_spr.index;
|
|
v.e.ramspr_rd_odd := d_in.ram_spr.isodd;
|
|
v.e.ramspr_32bit := d_in.ram_spr.is32b;
|
|
v.e.spr_is_ram := d_in.ram_spr.valid;
|
|
sprs_busy := d_in.ram_spr.valid;
|
|
when OP_MTSPR =>
|
|
v.e.ramspr_wraddr := d_in.ram_spr.index;
|
|
v.e.ramspr_write_even := d_in.ram_spr.valid and not d_in.ram_spr.isodd;
|
|
v.e.ramspr_write_odd := d_in.ram_spr.valid and d_in.ram_spr.isodd;
|
|
v.e.spr_is_ram := d_in.ram_spr.valid;
|
|
when OP_RFID =>
|
|
if d_in.insn(7) = '1' then
|
|
-- rfscv
|
|
v.e.ramspr_even_rdaddr := RAMSPR_LR;
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
|
|
elsif d_in.insn(9) = '0' then
|
|
-- rfid
|
|
v.e.ramspr_even_rdaddr := RAMSPR_SRR0;
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_SRR1;
|
|
else
|
|
-- hrfid
|
|
v.e.ramspr_even_rdaddr := RAMSPR_HSRR0;
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_HSRR1;
|
|
end if;
|
|
sprs_busy := '1';
|
|
when OP_LOAD | OP_STORE =>
|
|
if d_in.decode.is_signed = '1' then
|
|
-- hash{st,chk}[p]
|
|
if d_in.insn(7) = '1' then
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_HASHKY;
|
|
else
|
|
v.e.ramspr_odd_rdaddr := RAMSPR_HASHPK;
|
|
end if;
|
|
v.e.ramspr_rd_odd := '1';
|
|
sprs_busy := '1';
|
|
end if;
|
|
when others =>
|
|
end case;
|
|
v.read_rspr := sprs_busy and d_in.valid;
|
|
|
|
case d_in.decode.length is
|
|
when is1B =>
|
|
length := "0001";
|
|
when is2B =>
|
|
length := "0010";
|
|
when is4B =>
|
|
length := "0100";
|
|
when is8B =>
|
|
length := "1000";
|
|
when NONE =>
|
|
length := "0000";
|
|
end case;
|
|
|
|
-- execute unit
|
|
v.e.nia := d_in.nia;
|
|
v.e.unit := unit;
|
|
v.e.fac := d_in.decode.facility;
|
|
v.e.read_reg1 := d_in.reg_a;
|
|
v.e.read_reg2 := d_in.reg_b;
|
|
v.e.read_reg3 := d_in.reg_c;
|
|
v.e.reg_valid1 := decoded_reg_a.reg_valid;
|
|
v.e.reg_valid2 := decoded_reg_b.reg_valid;
|
|
v.e.reg_valid3 := decoded_reg_c.reg_valid;
|
|
v.e.write_reg := decoded_reg_o.reg;
|
|
v.e.write_reg_enable := decoded_reg_o.reg_valid;
|
|
v.e.invert_a := d_in.decode.invert_a;
|
|
v.e.insn_type := op;
|
|
v.e.invert_out := d_in.decode.invert_out;
|
|
v.e.input_carry := d_in.decode.input_carry;
|
|
v.e.output_carry := d_in.decode.output_carry;
|
|
v.e.is_32bit := d_in.decode.is_32bit;
|
|
v.e.is_signed := d_in.decode.is_signed;
|
|
v.e.insn := d_in.insn;
|
|
v.e.data_len := length;
|
|
v.e.byte_reverse := d_in.decode.byte_reverse;
|
|
v.e.sign_extend := d_in.decode.sign_extend;
|
|
v.e.update := d_in.decode.update;
|
|
v.e.reserve := d_in.decode.reserve;
|
|
v.e.br_pred := d_in.br_pred;
|
|
v.e.result_sel := d_in.decode.result;
|
|
v.e.sub_select := d_in.decode.subresult;
|
|
v.e.privileged := d_in.decode.privileged;
|
|
if (op = OP_MFSPR or op = OP_MTSPR) and d_in.insn(20) = '1' then
|
|
v.e.privileged := '1';
|
|
end if;
|
|
-- Reading TB is privileged if syscon_tb_ctrl.rd_protect is 1
|
|
if tb_ctrl.rd_prot = '1' and op = OP_MFSPR and d_in.spr_info.valid = '1' and
|
|
(d_in.spr_info.sel = SPRSEL_TB or d_in.spr_info.sel = SPRSEL_TBU) then
|
|
v.e.privileged := '1';
|
|
end if;
|
|
v.e.prefixed := d_in.prefixed;
|
|
v.e.prefix := d_in.prefix;
|
|
v.e.illegal_suffix := d_in.illegal_suffix;
|
|
v.e.misaligned_prefix := d_in.misaligned_prefix;
|
|
|
|
-- rotator control signals
|
|
v.e.right_shift := d_in.decode.invert_a;
|
|
v.e.rot_clear_left := d_in.decode.subresult(2);
|
|
v.e.rot_clear_right := d_in.decode.subresult(0);
|
|
v.e.rot_sign_ext := d_in.decode.subresult(1);
|
|
|
|
v.e.do_popcnt := '1' when op = OP_COUNTB and d_in.insn(7 downto 6) = "11" else '0';
|
|
|
|
-- check for invalid forms that cause an illegal instruction interrupt
|
|
-- Does RA = RT for a load quadword instr, or RB = RT for lqarx?
|
|
if d_in.decode.repeat = DRTP and
|
|
(insn_ra(d_in.insn) = insn_rt(d_in.insn) or
|
|
(d_in.decode.reserve = '1' and insn_rb(d_in.insn) = insn_rt(d_in.insn))) then
|
|
v.e.illegal_form := '1';
|
|
end if;
|
|
-- Is RS/RT odd for a load/store quadword instruction?
|
|
if (d_in.decode.repeat = DRSP or d_in.decode.repeat = DRTP) and d_in.insn(21) = '1' then
|
|
v.e.illegal_form := '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- issue control
|
|
control_valid_in <= valid_in;
|
|
control_serialize <= v.sgl_pipe or v.prev_sgl;
|
|
|
|
gpr_write_valid <= v.e.write_reg_enable;
|
|
gpr_write <= v.e.write_reg;
|
|
|
|
gpr_a_read_valid <= v.e.reg_valid1;
|
|
gpr_a_read <= v.e.read_reg1;
|
|
|
|
gpr_b_read_valid <= v.e.reg_valid2;
|
|
gpr_b_read <= v.e.read_reg2;
|
|
|
|
gpr_c_read_valid <= v.e.reg_valid3;
|
|
gpr_c_read <= v.e.read_reg3;
|
|
|
|
cr_write_valid <= v.e.output_cr or v.e.rc;
|
|
-- Since ops that write CR only write some of the fields,
|
|
-- any op that writes CR effectively also reads it.
|
|
cr_read_valid <= cr_write_valid or v.e.input_cr;
|
|
|
|
ov_read_valid <= v.input_ov;
|
|
ov_write_valid <= v.output_ov;
|
|
|
|
-- See if any of the operands can get their value via the bypass path.
|
|
if gpr_a_bypass(0) = '1' then
|
|
v.e.read_data1 := andor(gpr_a_bypass(1), execute_bypass.data,
|
|
gpr_a_bypass(2), execute2_bypass.data,
|
|
gpr_a_bypass(3), writeback_bypass.data);
|
|
elsif dc2.busy = '0' then
|
|
if decoded_reg_a.reg_valid = '1' then
|
|
v.e.read_data1 := r_in.read1_data;
|
|
else
|
|
v.e.read_data1 := decode_a_const(d_in.decode.input_reg_a, d_in.prefix, d_in.nia);
|
|
end if;
|
|
end if;
|
|
if gpr_b_bypass(0) = '1' then
|
|
v.e.read_data2 := andor(gpr_b_bypass(1), execute_bypass.data,
|
|
gpr_b_bypass(2), execute2_bypass.data,
|
|
gpr_b_bypass(3), writeback_bypass.data);
|
|
elsif dc2.busy = '0' then
|
|
if decoded_reg_b.reg_valid = '1' then
|
|
v.e.read_data2 := r_in.read2_data;
|
|
else
|
|
v.e.read_data2 := decode_b_const(d_in.decode.const_sel, d_in.insn, d_in.prefix);
|
|
end if;
|
|
end if;
|
|
if gpr_c_bypass(0) = '1' then
|
|
v.e.read_data3 := andor(gpr_c_bypass(1), execute_bypass.data,
|
|
gpr_c_bypass(2), execute2_bypass.data,
|
|
gpr_c_bypass(3), writeback_bypass.data);
|
|
elsif dc2.busy = '0' then
|
|
if decoded_reg_c.reg_valid = '1' then
|
|
v.e.read_data3 := r_in.read3_data;
|
|
else
|
|
v.e.read_data3 := (others => '0');
|
|
end if;
|
|
end if;
|
|
|
|
case cr_bypass is
|
|
when "10" =>
|
|
v.e.cr := execute_cr_bypass.data;
|
|
when "11" =>
|
|
v.e.cr := execute2_cr_bypass.data;
|
|
when others =>
|
|
v.e.cr := c_in.read_cr_data;
|
|
end case;
|
|
v.e.xerc := c_in.read_xerc_data;
|
|
|
|
v.e.valid := control_valid_out;
|
|
v.e.instr_tag := instr_tag;
|
|
v.busy := valid_in and not control_valid_out;
|
|
|
|
stall_out <= dc2.busy or deferred;
|
|
|
|
v.e.dbg_spr_access := dbg_spr_req and not v.read_rspr;
|
|
if v.e.dbg_spr_access = '1' then
|
|
v.e.ramspr_even_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
|
|
v.e.ramspr_odd_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
|
|
v.e.ramspr_rd_odd := dbg_spr_addr(0);
|
|
end if;
|
|
|
|
-- Update registers
|
|
dc2in <= v;
|
|
|
|
-- Update outputs
|
|
e_out <= dc2.e;
|
|
end process;
|
|
|
|
d2_log: if LOG_LENGTH > 0 generate
|
|
signal log_data : std_ulogic_vector(9 downto 0);
|
|
begin
|
|
dec2_log : process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
log_data <= dc2.e.nia(5 downto 2) &
|
|
dc2.e.valid &
|
|
stopped_out &
|
|
stall_out &
|
|
(gpr_a_bypass(1) xor gpr_a_bypass(0)) &
|
|
(gpr_b_bypass(1) xor gpr_b_bypass(0)) &
|
|
(gpr_c_bypass(1) xor gpr_c_bypass(0));
|
|
end if;
|
|
end process;
|
|
log_out <= log_data;
|
|
end generate;
|
|
|
|
end architecture behaviour;
|