1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-01-24 03:07:03 +00:00
antonblanchard.microwatt/writeback.vhdl
Paul Mackerras c0b45e153b core: Track GPR hazards using tags that propagate through the pipelines
This changes the way GPR hazards are detected and tracked.  Instead of
having a model of the pipeline in gpr_hazard.vhdl, which has to mirror
the behaviour of the real pipeline exactly, we now assign a 2-bit tag
to each instruction and record which GSPR the instruction writes.
Subsequent instructions that need to use the GSPR get the tag number
and stall until the value with that tag is being written back to the
register file.

For now, the forwarding paths are disabled.  That gives about a 8%
reduction in coremark performance.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2021-01-19 09:27:29 +11:00

147 lines
5.2 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.common.all;
use work.crhelpers.all;
entity writeback is
port (
clk : in std_ulogic;
e_in : in Execute1ToWritebackType;
l_in : in Loadstore1ToWritebackType;
fp_in : in FPUToWritebackType;
w_out : out WritebackToRegisterFileType;
c_out : out WritebackToCrFileType;
complete_out : out instr_tag_t
);
end entity writeback;
architecture behaviour of writeback is
begin
writeback_0: process(clk)
variable x : std_ulogic_vector(0 downto 0);
variable y : std_ulogic_vector(0 downto 0);
variable w : std_ulogic_vector(0 downto 0);
begin
if rising_edge(clk) then
-- Do consistency checks only on the clock edge
x(0) := e_in.valid;
y(0) := l_in.valid;
w(0) := fp_in.valid;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) +
to_integer(unsigned(w))) <= 1 severity failure;
x(0) := e_in.write_enable or e_in.exc_write_enable;
y(0) := l_in.write_enable;
w(0) := fp_in.write_enable;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) +
to_integer(unsigned(w))) <= 1 severity failure;
w(0) := e_in.write_cr_enable;
x(0) := (e_in.write_enable and e_in.rc);
y(0) := fp_in.write_cr_enable;
assert (to_integer(unsigned(w)) + to_integer(unsigned(x)) +
to_integer(unsigned(y))) <= 1 severity failure;
assert not (e_in.valid = '1' and e_in.instr_tag.valid = '0') severity failure;
assert not (l_in.valid = '1' and l_in.instr_tag.valid = '0') severity failure;
assert not (fp_in.valid = '1' and fp_in.instr_tag.valid = '0') severity failure;
end if;
end process;
writeback_1: process(all)
variable cf: std_ulogic_vector(3 downto 0);
variable zero : std_ulogic;
variable sign : std_ulogic;
variable scf : std_ulogic_vector(3 downto 0);
begin
w_out <= WritebackToRegisterFileInit;
c_out <= WritebackToCrFileInit;
complete_out <= instr_tag_init;
if e_in.valid = '1' then
complete_out <= e_in.instr_tag;
elsif l_in.valid = '1' then
complete_out <= l_in.instr_tag;
elsif fp_in.valid = '1' then
complete_out <= fp_in.instr_tag;
end if;
if e_in.exc_write_enable = '1' then
w_out.write_reg <= e_in.exc_write_reg;
w_out.write_data <= e_in.exc_write_data;
w_out.write_enable <= '1';
else
if e_in.write_enable = '1' then
w_out.write_reg <= e_in.write_reg;
w_out.write_data <= e_in.write_data;
w_out.write_enable <= '1';
end if;
if e_in.write_cr_enable = '1' then
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= e_in.write_cr_mask;
c_out.write_cr_data <= e_in.write_cr_data;
end if;
if e_in.write_xerc_enable = '1' then
c_out.write_xerc_enable <= '1';
c_out.write_xerc_data <= e_in.xerc;
end if;
if fp_in.write_enable = '1' then
w_out.write_reg <= fp_in.write_reg;
w_out.write_data <= fp_in.write_data;
w_out.write_enable <= '1';
end if;
if fp_in.write_cr_enable = '1' then
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= fp_in.write_cr_mask;
c_out.write_cr_data <= fp_in.write_cr_data;
end if;
if l_in.write_enable = '1' then
w_out.write_reg <= l_in.write_reg;
w_out.write_data <= l_in.write_data;
w_out.write_enable <= '1';
end if;
if l_in.rc = '1' then
-- st*cx. instructions
scf(3) := '0';
scf(2) := '0';
scf(1) := l_in.store_done;
scf(0) := l_in.xerc.so;
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= num_to_fxm(0);
c_out.write_cr_data(31 downto 28) <= scf;
end if;
-- Perform CR0 update for RC forms
-- Note that loads never have a form with an RC bit, therefore this can test e_in.write_data
if e_in.rc = '1' and e_in.write_enable = '1' then
zero := not (or e_in.write_data(31 downto 0));
if e_in.mode_32bit = '0' then
sign := e_in.write_data(63);
zero := zero and not (or e_in.write_data(63 downto 32));
else
sign := e_in.write_data(31);
end if;
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= num_to_fxm(0);
cf(3) := sign;
cf(2) := not sign and not zero;
cf(1) := zero;
cf(0) := e_in.xerc.so;
c_out.write_cr_data(31 downto 28) <= cf;
end if;
end if;
end process;
end;