mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-11 23:43:15 +00:00
Instead of a single global timebase register in the SoC, we now have a timebase counter in each core; however, now they are only reset by the soc reset, not the core reset. Thus they stay in sync even when some cores are disabled (via the syscon cpu_ctrl register). This implements mtspr to the TBLW and TBUW SPRs, which write the lower and upper 32 bits of this core's timebase, respectively. In order to fulfil the ISA's requirements that (a) some method for getting the timebases into sync and (b) some method for preventing userspace from reading the timebase be provided by the platform, this adds a syscon register TB_CTRL with two read/write bits implemented; bit 0 freezes all the timebases in the system when set, and bit 1 makes reading the timebase privileged (in all cores). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2266 lines
84 KiB
VHDL
2266 lines
84 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.crhelpers.all;
|
|
use work.insn_helpers.all;
|
|
use work.ppc_fx_insns.all;
|
|
|
|
entity execute1 is
|
|
generic (
|
|
SIM : boolean := false;
|
|
EX1_BYPASS : boolean := true;
|
|
HAS_FPU : boolean := true;
|
|
CPU_INDEX : natural;
|
|
-- Non-zero to enable log data collection
|
|
LOG_LENGTH : natural := 0
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
-- asynchronous
|
|
flush_in : in std_ulogic;
|
|
busy_out : out std_ulogic;
|
|
|
|
e_in : in Decode2ToExecute1Type;
|
|
l_in : in Loadstore1ToExecute1Type;
|
|
fp_in : in FPUToExecute1Type;
|
|
|
|
ext_irq_in : std_ulogic;
|
|
interrupt_in : WritebackToExecute1Type;
|
|
|
|
tb_ctrl : timebase_ctrl;
|
|
|
|
-- asynchronous
|
|
l_out : out Execute1ToLoadstore1Type;
|
|
fp_out : out Execute1ToFPUType;
|
|
|
|
e_out : out Execute1ToWritebackType;
|
|
bypass_data : out bypass_data_t;
|
|
bypass_cr_data : out cr_bypass_data_t;
|
|
bypass2_data : out bypass_data_t;
|
|
bypass2_cr_data : out cr_bypass_data_t;
|
|
|
|
dbg_ctrl_out : out ctrl_t;
|
|
|
|
run_out : out std_ulogic;
|
|
icache_inval : out std_ulogic;
|
|
terminate_out : out std_ulogic;
|
|
|
|
-- PMU event buses
|
|
wb_events : in WritebackEventType;
|
|
ls_events : in Loadstore1EventType;
|
|
dc_events : in DcacheEventType;
|
|
ic_events : in IcacheEventType;
|
|
|
|
-- Access to SPRs from core_debug module
|
|
dbg_spr_req : in std_ulogic;
|
|
dbg_spr_ack : out std_ulogic;
|
|
dbg_spr_addr : in std_ulogic_vector(7 downto 0);
|
|
dbg_spr_data : out std_ulogic_vector(63 downto 0);
|
|
|
|
-- debug
|
|
sim_dump : in std_ulogic;
|
|
sim_dump_done : out std_ulogic;
|
|
|
|
log_out : out std_ulogic_vector(11 downto 0);
|
|
log_rd_addr : out std_ulogic_vector(31 downto 0);
|
|
log_rd_data : in std_ulogic_vector(63 downto 0);
|
|
log_wr_addr : in std_ulogic_vector(31 downto 0)
|
|
);
|
|
end entity execute1;
|
|
|
|
architecture behaviour of execute1 is
|
|
type side_effect_type is record
|
|
terminate : std_ulogic;
|
|
icache_inval : std_ulogic;
|
|
write_msr : std_ulogic;
|
|
write_xerlow : std_ulogic;
|
|
write_dec : std_ulogic;
|
|
write_cfar : std_ulogic;
|
|
set_cfar : std_ulogic;
|
|
write_loga : std_ulogic;
|
|
inc_loga : std_ulogic;
|
|
write_pmuspr : std_ulogic;
|
|
ramspr_write_even : std_ulogic;
|
|
ramspr_write_odd : std_ulogic;
|
|
mult_32s : std_ulogic;
|
|
write_fscr : std_ulogic;
|
|
write_ic : std_ulogic;
|
|
write_hfscr : std_ulogic;
|
|
write_hic : std_ulogic;
|
|
write_heir : std_ulogic;
|
|
set_heir : std_ulogic;
|
|
write_ctrl : std_ulogic;
|
|
write_dscr : std_ulogic;
|
|
write_ciabr : std_ulogic;
|
|
enter_wait : std_ulogic;
|
|
scv_trap : std_ulogic;
|
|
write_tbl : std_ulogic;
|
|
write_tbu : std_ulogic;
|
|
end record;
|
|
constant side_effect_init : side_effect_type := (others => '0');
|
|
|
|
type actions_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
complete : std_ulogic;
|
|
exception : std_ulogic;
|
|
trap : std_ulogic;
|
|
advance_nia : std_ulogic;
|
|
redir_to_next : std_ulogic;
|
|
new_msr : std_ulogic_vector(63 downto 0);
|
|
take_branch : std_ulogic;
|
|
direct_branch : std_ulogic;
|
|
start_mul : std_ulogic;
|
|
start_div : std_ulogic;
|
|
start_bsort : std_ulogic;
|
|
start_bperm : std_ulogic;
|
|
do_trace : std_ulogic;
|
|
ciabr_trace : std_ulogic;
|
|
fp_intr : std_ulogic;
|
|
res2_sel : std_ulogic_vector(1 downto 0);
|
|
bypass_valid : std_ulogic;
|
|
ramspr_odd_data : std_ulogic_vector(63 downto 0);
|
|
ic : std_ulogic_vector(3 downto 0);
|
|
end record;
|
|
constant actions_type_init : actions_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
new_msr => (others => '0'), res2_sel => "00",
|
|
ramspr_odd_data => 64x"0", ic => x"0", others => '0');
|
|
|
|
type reg_stage1_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
busy: std_ulogic;
|
|
fp_exception_next : std_ulogic;
|
|
trace_next : std_ulogic;
|
|
trace_ciabr : std_ulogic;
|
|
prev_op : insn_type_t;
|
|
prev_prefixed : std_ulogic;
|
|
oe : std_ulogic;
|
|
mul_select : std_ulogic_vector(2 downto 0);
|
|
res2_sel : std_ulogic_vector(1 downto 0);
|
|
spr_select : spr_id;
|
|
pmu_spr_num : std_ulogic_vector(4 downto 0);
|
|
redir_to_next : std_ulogic;
|
|
advance_nia : std_ulogic;
|
|
lr_from_next : std_ulogic;
|
|
mul_in_progress : std_ulogic;
|
|
mul_finish : std_ulogic;
|
|
div_in_progress : std_ulogic;
|
|
bsort_in_progress : std_ulogic;
|
|
bperm_in_progress : std_ulogic;
|
|
no_instr_avail : std_ulogic;
|
|
instr_dispatch : std_ulogic;
|
|
ext_interrupt : std_ulogic;
|
|
taken_branch_event : std_ulogic;
|
|
br_mispredict : std_ulogic;
|
|
msr : std_ulogic_vector(63 downto 0);
|
|
xerc : xer_common_t;
|
|
xerc_valid : std_ulogic;
|
|
ramspr_wraddr : ramspr_index;
|
|
ramspr_odd_data : std_ulogic_vector(63 downto 0);
|
|
ic : std_ulogic_vector(3 downto 0);
|
|
prefixed : std_ulogic;
|
|
insn : std_ulogic_vector(31 downto 0);
|
|
prefix : std_ulogic_vector(25 downto 0);
|
|
end record;
|
|
constant reg_stage1_type_init : reg_stage1_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
busy => '0',
|
|
fp_exception_next => '0', trace_next => '0', trace_ciabr => '0',
|
|
prev_op => OP_ILLEGAL, prev_prefixed => '0',
|
|
oe => '0', mul_select => "000", res2_sel => "00",
|
|
spr_select => spr_id_init, pmu_spr_num => 5x"0",
|
|
redir_to_next => '0', advance_nia => '0', lr_from_next => '0',
|
|
mul_in_progress => '0', mul_finish => '0', div_in_progress => '0',
|
|
bsort_in_progress => '0', bperm_in_progress => '0',
|
|
no_instr_avail => '0', instr_dispatch => '0', ext_interrupt => '0',
|
|
taken_branch_event => '0', br_mispredict => '0',
|
|
msr => 64x"0",
|
|
xerc => xerc_init, xerc_valid => '0',
|
|
ramspr_wraddr => (others => '0'), ramspr_odd_data => 64x"0",
|
|
ic => x"0",
|
|
prefixed => '0', insn => 32x"0", prefix => 26x"0");
|
|
|
|
type reg_stage2_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
ext_interrupt : std_ulogic;
|
|
taken_branch_event : std_ulogic;
|
|
br_mispredict : std_ulogic;
|
|
log_addr_spr : std_ulogic_vector(31 downto 0);
|
|
end record;
|
|
constant reg_stage2_type_init : reg_stage2_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
log_addr_spr => 32x"0", others => '0');
|
|
|
|
signal ex1, ex1in : reg_stage1_type;
|
|
signal ex2, ex2in : reg_stage2_type;
|
|
signal actions : actions_type;
|
|
|
|
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
|
|
signal cr_in : std_ulogic_vector(31 downto 0);
|
|
signal xerc_in : xer_common_t;
|
|
|
|
signal valid_in : std_ulogic;
|
|
signal ctrl: ctrl_t := ctrl_t_init;
|
|
signal ctrl_tmp: ctrl_t := ctrl_t_init;
|
|
signal rotator_result: std_ulogic_vector(63 downto 0);
|
|
signal rotator_carry: std_ulogic;
|
|
signal logical_result: std_ulogic_vector(63 downto 0);
|
|
signal countbits_result: std_ulogic_vector(63 downto 0);
|
|
signal alu_result: std_ulogic_vector(63 downto 0);
|
|
signal adder_result: std_ulogic_vector(63 downto 0);
|
|
signal misc_result: std_ulogic_vector(63 downto 0);
|
|
signal multicyc_result: std_ulogic_vector(63 downto 0);
|
|
signal bsort_result: std_ulogic_vector(63 downto 0);
|
|
signal spr_result: std_ulogic_vector(63 downto 0);
|
|
signal next_nia : std_ulogic_vector(63 downto 0);
|
|
signal s1_sel : std_ulogic_vector(2 downto 0);
|
|
|
|
signal carry_32 : std_ulogic;
|
|
signal carry_64 : std_ulogic;
|
|
signal overflow_32 : std_ulogic;
|
|
signal overflow_64 : std_ulogic;
|
|
|
|
signal trapval : std_ulogic_vector(4 downto 0);
|
|
|
|
signal write_cr_mask : std_ulogic_vector(7 downto 0);
|
|
signal write_cr_data : std_ulogic_vector(31 downto 0);
|
|
|
|
-- multiply signals
|
|
signal x_to_multiply: MultiplyInputType;
|
|
signal multiply_to_x: MultiplyOutputType;
|
|
signal x_to_mult_32s: MultiplyInputType;
|
|
signal mult_32s_to_x: MultiplyOutputType;
|
|
|
|
-- divider signals
|
|
signal x_to_divider: Execute1ToDividerType;
|
|
signal divider_to_x: DividerToExecute1Type := DividerToExecute1Init;
|
|
|
|
-- bit-sort unit signals
|
|
signal bsort_start : std_ulogic;
|
|
signal bsort_done : std_ulogic;
|
|
signal bperm_start : std_ulogic;
|
|
signal bperm_done : std_ulogic;
|
|
|
|
-- random number generator signals
|
|
signal random_raw : std_ulogic_vector(63 downto 0);
|
|
signal random_cond : std_ulogic_vector(63 downto 0);
|
|
signal random_err : std_ulogic;
|
|
|
|
-- PMU signals
|
|
signal x_to_pmu : Execute1ToPMUType;
|
|
signal pmu_to_x : PMUToExecute1Type;
|
|
signal pmu_trace : std_ulogic;
|
|
|
|
-- signals for logging
|
|
signal exception_log : std_ulogic;
|
|
signal irq_valid_log : std_ulogic;
|
|
|
|
-- SPR-related signals
|
|
type ramspr_half_t is array(ramspr_index_range) of std_ulogic_vector(63 downto 0);
|
|
signal even_sprs : ramspr_half_t := (others => (others => '0'));
|
|
signal odd_sprs : ramspr_half_t := (others => (others => '0'));
|
|
signal ramspr_even : std_ulogic_vector(63 downto 0);
|
|
signal ramspr_odd : std_ulogic_vector(63 downto 0);
|
|
signal ramspr_result : std_ulogic_vector(63 downto 0);
|
|
signal ramspr_rd_odd : std_ulogic;
|
|
signal ramspr_wr_addr : ramspr_index;
|
|
signal ramspr_even_wr_data : std_ulogic_vector(63 downto 0);
|
|
signal ramspr_even_wr_enab : std_ulogic;
|
|
signal ramspr_odd_wr_data : std_ulogic_vector(63 downto 0);
|
|
signal ramspr_odd_wr_enab : std_ulogic;
|
|
|
|
signal stage2_stall : std_ulogic;
|
|
|
|
signal timebase : std_ulogic_vector(63 downto 0);
|
|
signal tb_next : std_ulogic_vector(63 downto 0);
|
|
signal tb_carry : std_ulogic;
|
|
|
|
type privilege_level is (USER, SUPER);
|
|
type op_privilege_array is array(insn_type_t) of privilege_level;
|
|
constant op_privilege: op_privilege_array := (
|
|
OP_ATTN => SUPER,
|
|
OP_MFMSR => SUPER,
|
|
OP_MTMSRD => SUPER,
|
|
OP_RFID => SUPER,
|
|
OP_TLBIE => SUPER,
|
|
others => USER
|
|
);
|
|
|
|
procedure set_carry(e: inout Execute1ToWritebackType;
|
|
carry32 : in std_ulogic;
|
|
carry : in std_ulogic) is
|
|
begin
|
|
e.xerc.ca32 := carry32;
|
|
e.xerc.ca := carry;
|
|
end;
|
|
|
|
procedure set_ov(e: inout Execute1ToWritebackType;
|
|
ov : in std_ulogic;
|
|
ov32 : in std_ulogic) is
|
|
begin
|
|
e.xerc.ov32 := ov32;
|
|
e.xerc.ov := ov;
|
|
if ov = '1' then
|
|
e.xerc.so := '1';
|
|
end if;
|
|
end;
|
|
|
|
function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
|
|
ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
|
|
begin
|
|
return (ca xor msb_r) and not (msb_a xor msb_b);
|
|
end;
|
|
|
|
function decode_input_carry(ic : carry_in_t;
|
|
xerc : xer_common_t) return std_ulogic is
|
|
begin
|
|
case ic is
|
|
when ZERO =>
|
|
return '0';
|
|
when CA =>
|
|
return xerc.ca;
|
|
when OV =>
|
|
return xerc.ov;
|
|
when ONE =>
|
|
return '1';
|
|
end case;
|
|
end;
|
|
|
|
function msr_copy(msr: std_ulogic_vector(63 downto 0))
|
|
return std_ulogic_vector is
|
|
variable msr_out: std_ulogic_vector(63 downto 0);
|
|
begin
|
|
-- ISA says this:
|
|
-- Defined MSR bits are classified as either full func-
|
|
-- tion or partial function. Full function MSR bits are
|
|
-- saved in SRR1 or HSRR1 when an interrupt other
|
|
-- than a System Call Vectored interrupt occurs and
|
|
-- restored by rfscv, rfid, or hrfid, while partial func-
|
|
-- tion MSR bits are not saved or restored.
|
|
-- Full function MSR bits lie in the range 0:32, 37:41, and
|
|
-- 48:63, and partial function MSR bits lie in the range
|
|
-- 33:36 and 42:47. (Note this is IBM bit numbering).
|
|
msr_out := (others => '0');
|
|
msr_out(MSR_HV) := '1'; -- HV is always set
|
|
msr_out(63 downto 31) := msr(63 downto 31);
|
|
msr_out(26 downto 22) := msr(26 downto 22);
|
|
msr_out(15 downto 0) := msr(15 downto 0);
|
|
return msr_out;
|
|
end;
|
|
|
|
function intr_srr1(msr: std_ulogic_vector; flags: std_ulogic_vector)
|
|
return std_ulogic_vector is
|
|
variable srr1: std_ulogic_vector(63 downto 0);
|
|
begin
|
|
srr1(63 downto 61) := msr(63 downto 61);
|
|
srr1(MSR_HV) := '1';
|
|
srr1(59 downto 31) := msr(59 downto 31);
|
|
srr1(63 downto 31) := msr(63 downto 31);
|
|
srr1(30 downto 27) := flags(14 downto 11);
|
|
srr1(26 downto 22) := msr(26 downto 22);
|
|
srr1(21 downto 16) := flags(5 downto 0);
|
|
srr1(15 downto 0) := msr(15 downto 0);
|
|
return srr1;
|
|
end;
|
|
|
|
-- Work out whether a signed value fits into n bits,
|
|
-- that is, see if it is in the range -2^(n-1) .. 2^(n-1) - 1
|
|
function fits_in_n_bits(val: std_ulogic_vector; n: integer) return boolean is
|
|
variable x, xp1: std_ulogic_vector(val'left downto val'right);
|
|
begin
|
|
x := val;
|
|
if val(val'left) = '0' then
|
|
x := not val;
|
|
end if;
|
|
xp1 := bit_reverse(std_ulogic_vector(unsigned(bit_reverse(x)) + 1));
|
|
x := x and not xp1;
|
|
-- For positive inputs, x has ones at the positions
|
|
-- to the left of the leftmost 1 bit in val.
|
|
-- For negative inputs, x has ones to the left of
|
|
-- the leftmost 0 bit in val.
|
|
return x(n - 1) = '1';
|
|
end;
|
|
|
|
function assemble_xer(xerc: xer_common_t; xer_low: std_ulogic_vector)
|
|
return std_ulogic_vector is
|
|
begin
|
|
return 32x"0" & xerc.so & xerc.ov & xerc.ca & "000000000" &
|
|
xerc.ov32 & xerc.ca32 & xer_low(17 downto 0);
|
|
end;
|
|
|
|
function assemble_fscr(c: ctrl_t) return std_ulogic_vector is
|
|
variable ret : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
ret := (others => '0');
|
|
ret(59 downto 56) := c.fscr_ic;
|
|
ret(FSCR_PREFIX) := c.fscr_pref;
|
|
ret(FSCR_SCV) := c.fscr_scv;
|
|
ret(FSCR_TAR) := c.fscr_tar;
|
|
ret(FSCR_DSCR) := c.fscr_dscr;
|
|
return ret;
|
|
end;
|
|
|
|
function assemble_hfscr(c: ctrl_t) return std_ulogic_vector is
|
|
variable ret : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
ret := (others => '0');
|
|
ret(59 downto 56) := c.hfscr_ic;
|
|
ret(HFSCR_PREFIX) := c.hfscr_pref;
|
|
ret(HFSCR_TAR) := c.hfscr_tar;
|
|
ret(HFSCR_DSCR) := c.hfscr_dscr;
|
|
ret(HFSCR_FP) := c.hfscr_fp;
|
|
return ret;
|
|
end;
|
|
|
|
function assemble_ctrl(c: ctrl_t; msrpr: std_ulogic) return std_ulogic_vector is
|
|
variable ret : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
ret := (others => '0');
|
|
ret(0) := c.run;
|
|
ret(15) := c.run and not msrpr;
|
|
return ret;
|
|
end;
|
|
|
|
-- return contents of DEXCR or HDEXCR
|
|
-- top 32 bits are zeroed for access via non-privileged number
|
|
function assemble_dexcr(c: ctrl_t; insn: std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
variable ret : std_ulogic_vector(63 downto 0);
|
|
variable spr : std_ulogic_vector(9 downto 0);
|
|
variable dexh, dexl : aspect_bits_t;
|
|
begin
|
|
ret := (others => '0');
|
|
spr := insn(15 downto 11) & insn(20 downto 16);
|
|
if spr(9) = '1' then
|
|
dexh := c.dexcr_pnh;
|
|
dexl := c.dexcr_pro;
|
|
else
|
|
dexh := c.hdexcr_hyp;
|
|
dexl := c.hdexcr_enf;
|
|
end if;
|
|
if spr(4) = '0' then
|
|
dexl := (others => '0');
|
|
end if;
|
|
ret := dexh(DEXCR_SBHE) & "00" & dexh(DEXCR_IBRTPD) & dexh(DEXCR_SRAPD) &
|
|
dexh(DEXCR_NPHIE) & dexh(DEXCR_PHIE) & 25x"0" &
|
|
dexl(DEXCR_SBHE) & "00" & dexl(DEXCR_IBRTPD) & dexl(DEXCR_SRAPD) &
|
|
dexl(DEXCR_NPHIE) & dexl(DEXCR_PHIE) & 25x"0";
|
|
return ret;
|
|
end;
|
|
|
|
-- Tell vivado to keep the hierarchy for the random module so that the
|
|
-- net names in the xdc file match.
|
|
attribute keep_hierarchy : string;
|
|
attribute keep_hierarchy of random_0 : label is "yes";
|
|
|
|
begin
|
|
|
|
rotator_0: entity work.rotator
|
|
port map (
|
|
rs => c_in,
|
|
ra => a_in,
|
|
shift => b_in(6 downto 0),
|
|
insn => e_in.insn,
|
|
is_32bit => e_in.is_32bit,
|
|
right_shift => e_in.right_shift,
|
|
arith => e_in.is_signed,
|
|
clear_left => e_in.rot_clear_left,
|
|
clear_right => e_in.rot_clear_right,
|
|
sign_ext_rs => e_in.rot_sign_ext,
|
|
result => rotator_result,
|
|
carry_out => rotator_carry
|
|
);
|
|
|
|
logical_0: entity work.logical
|
|
port map (
|
|
rs => c_in,
|
|
rb => b_in,
|
|
op => e_in.insn_type,
|
|
invert_in => e_in.invert_a,
|
|
invert_out => e_in.invert_out,
|
|
is_signed => e_in.is_signed,
|
|
result => logical_result,
|
|
datalen => e_in.data_len
|
|
);
|
|
|
|
countbits_0: entity work.bit_counter
|
|
port map (
|
|
clk => clk,
|
|
rs => c_in,
|
|
stall => stage2_stall,
|
|
count_right => e_in.insn(10),
|
|
is_32bit => e_in.is_32bit,
|
|
do_popcnt => e_in.do_popcnt,
|
|
datalen => e_in.data_len,
|
|
result => countbits_result
|
|
);
|
|
|
|
multiply_0: entity work.multiply
|
|
port map (
|
|
clk => clk,
|
|
m_in => x_to_multiply,
|
|
m_out => multiply_to_x
|
|
);
|
|
|
|
mult_32s_0: entity work.multiply_32s
|
|
port map (
|
|
clk => clk,
|
|
stall => stage2_stall,
|
|
m_in => x_to_mult_32s,
|
|
m_out => mult_32s_to_x
|
|
);
|
|
|
|
divider_0: if not HAS_FPU generate
|
|
div_0: entity work.divider
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
d_in => x_to_divider,
|
|
d_out => divider_to_x
|
|
);
|
|
end generate;
|
|
|
|
bsort_0: entity work.bit_sorter
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
rs => c_in,
|
|
rb => b_in,
|
|
go => bsort_start,
|
|
opc => e_in.insn(7 downto 6),
|
|
done => bsort_done,
|
|
do_bperm => bperm_start,
|
|
bperm_done => bperm_done,
|
|
result => bsort_result
|
|
);
|
|
|
|
random_0: entity work.random
|
|
port map (
|
|
clk => clk,
|
|
data => random_cond,
|
|
raw => random_raw,
|
|
err => random_err
|
|
);
|
|
|
|
pmu_0: entity work.pmu
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
p_in => x_to_pmu,
|
|
p_out => pmu_to_x
|
|
);
|
|
|
|
-- Timebase just increments at the system clock frequency.
|
|
-- Ideally it would (appear to) run at 512MHz like IBM POWER systems,
|
|
-- but Linux seems to cope OK with it being 100MHz or whatever.
|
|
tbase: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if tb_ctrl.reset = '1' then
|
|
timebase <= (others => '0');
|
|
tb_carry <= '0';
|
|
else
|
|
timebase <= tb_next;
|
|
tb_carry <= and(tb_next(31 downto 0));
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
tbase_comb: process(all)
|
|
variable thi, tlo : std_ulogic_vector(31 downto 0);
|
|
variable carry : std_ulogic;
|
|
begin
|
|
tlo := timebase(31 downto 0);
|
|
thi := timebase(63 downto 32);
|
|
carry := '0';
|
|
if stage2_stall = '0' and ex1.se.write_tbl = '1' then
|
|
tlo := ex1.e.write_data(31 downto 0);
|
|
elsif tb_ctrl.freeze = '0' then
|
|
tlo := std_ulogic_vector(unsigned(tlo) + 1);
|
|
carry := tb_carry;
|
|
end if;
|
|
if stage2_stall = '0' and ex1.se.write_tbu = '1' then
|
|
thi := ex1.e.write_data(31 downto 0);
|
|
else
|
|
thi := std_ulogic_vector(unsigned(thi) + carry);
|
|
end if;
|
|
tb_next <= thi & tlo;
|
|
end process;
|
|
|
|
dbg_ctrl_out <= ctrl;
|
|
log_rd_addr <= ex2.log_addr_spr;
|
|
|
|
a_in <= e_in.read_data1;
|
|
b_in <= e_in.read_data2;
|
|
c_in <= e_in.read_data3;
|
|
cr_in <= e_in.cr;
|
|
|
|
x_to_pmu.occur <= (instr_complete => wb_events.instr_complete,
|
|
fp_complete => wb_events.fp_complete,
|
|
ld_complete => ls_events.load_complete,
|
|
st_complete => ls_events.store_complete,
|
|
itlb_miss => ls_events.itlb_miss,
|
|
dc_load_miss => dc_events.load_miss,
|
|
dc_ld_miss_resolved => dc_events.dcache_refill,
|
|
dc_store_miss => dc_events.store_miss,
|
|
dtlb_miss => dc_events.dtlb_miss,
|
|
dtlb_miss_resolved => dc_events.dtlb_miss_resolved,
|
|
icache_miss => ic_events.icache_miss,
|
|
itlb_miss_resolved => ic_events.itlb_miss_resolved,
|
|
no_instr_avail => ex1.no_instr_avail,
|
|
dispatch => ex1.instr_dispatch,
|
|
ext_interrupt => ex2.ext_interrupt,
|
|
br_taken_complete => ex2.taken_branch_event,
|
|
br_mispredict => ex2.br_mispredict,
|
|
others => '0');
|
|
x_to_pmu.nia <= e_in.nia;
|
|
x_to_pmu.addr <= l_in.ea_for_pmu;
|
|
x_to_pmu.addr_v <= l_in.ea_valid;
|
|
x_to_pmu.spr_num <= ex1.pmu_spr_num;
|
|
x_to_pmu.spr_val <= ex1.e.write_data;
|
|
x_to_pmu.run <= ctrl.run;
|
|
x_to_pmu.trace <= pmu_trace;
|
|
|
|
-- XER forwarding. The CA and CA32 bits are only modified by instructions
|
|
-- that are handled here, so for them we can just use the result most
|
|
-- recently sent to writeback, unless a pipeline flush has happened in the
|
|
-- meantime.
|
|
-- Hazards for SO/OV/OV32 are handled by control.vhdl as there may be other
|
|
-- units writing to them. No forwarding is done because performance of
|
|
-- instructions that alter them is not considered significant.
|
|
xerc_in.so <= e_in.xerc.so;
|
|
xerc_in.ov <= e_in.xerc.ov;
|
|
xerc_in.ov32 <= e_in.xerc.ov32;
|
|
xerc_in.ca <= ex1.xerc.ca when ex1.xerc_valid = '1' else e_in.xerc.ca;
|
|
xerc_in.ca32 <= ex1.xerc.ca32 when ex1.xerc_valid = '1' else e_in.xerc.ca32;
|
|
|
|
-- N.B. the busy signal from each source includes the
|
|
-- stage2 stall from that source in it.
|
|
busy_out <= l_in.busy or ex1.busy or fp_in.busy or ctrl.wait_state;
|
|
|
|
valid_in <= e_in.valid and not (busy_out or flush_in or ex1.e.redirect or ex1.e.interrupt);
|
|
|
|
-- SPRs stored in two small RAM arrays (two so that we can read and write
|
|
-- two SPRs in each cycle).
|
|
|
|
ramspr_read: process(all)
|
|
variable even_rd_data, odd_rd_data : std_ulogic_vector(63 downto 0);
|
|
variable wr_addr : ramspr_index;
|
|
variable even_wr_enab, odd_wr_enab : std_ulogic;
|
|
variable even_wr_data, odd_wr_data : std_ulogic_vector(63 downto 0);
|
|
variable ramspr_even_data : std_ulogic_vector(63 downto 0);
|
|
variable doit : std_ulogic;
|
|
begin
|
|
-- Read address mux and async RAM reading
|
|
if is_X(e_in.ramspr_even_rdaddr) then
|
|
even_rd_data := (others => 'X');
|
|
else
|
|
even_rd_data := even_sprs(to_integer(e_in.ramspr_even_rdaddr));
|
|
end if;
|
|
if is_X(e_in.ramspr_even_rdaddr) then
|
|
odd_rd_data := (others => 'X');
|
|
else
|
|
odd_rd_data := odd_sprs(to_integer(e_in.ramspr_odd_rdaddr));
|
|
end if;
|
|
|
|
-- Write address and data muxes
|
|
doit := ex1.e.valid and not stage2_stall and not flush_in;
|
|
even_wr_enab := (ex1.se.ramspr_write_even and doit) or interrupt_in.intr;
|
|
odd_wr_enab := (ex1.se.ramspr_write_odd and doit) or interrupt_in.intr;
|
|
if interrupt_in.intr = '1' then
|
|
if interrupt_in.hv_intr = '1' then
|
|
wr_addr := RAMSPR_HSRR0;
|
|
elsif interrupt_in.scv_int = '1' then
|
|
wr_addr := RAMSPR_LR;
|
|
else
|
|
wr_addr := RAMSPR_SRR0;
|
|
end if;
|
|
else
|
|
wr_addr := ex1.ramspr_wraddr;
|
|
end if;
|
|
if ex1.lr_from_next = '1' then
|
|
ramspr_even_data := next_nia;
|
|
else
|
|
ramspr_even_data := ex1.e.write_data;
|
|
end if;
|
|
if interrupt_in.intr = '1' then
|
|
even_wr_data := ex2.e.last_nia;
|
|
odd_wr_data := intr_srr1(ctrl.msr, interrupt_in.srr1);
|
|
else
|
|
even_wr_data := ramspr_even_data;
|
|
odd_wr_data := ex1.ramspr_odd_data;
|
|
end if;
|
|
ramspr_wr_addr <= wr_addr;
|
|
ramspr_even_wr_data <= even_wr_data;
|
|
ramspr_even_wr_enab <= even_wr_enab;
|
|
ramspr_odd_wr_data <= odd_wr_data;
|
|
ramspr_odd_wr_enab <= odd_wr_enab;
|
|
|
|
-- SPR RAM read with write data bypass
|
|
-- We assume no instruction executes in the cycle immediately following
|
|
-- an interrupt, so we don't need to bypass interrupt data
|
|
if ex1.se.ramspr_write_even = '1' and e_in.ramspr_even_rdaddr = ex1.ramspr_wraddr then
|
|
ramspr_even <= ramspr_even_data;
|
|
else
|
|
ramspr_even <= even_rd_data;
|
|
end if;
|
|
if ex1.se.ramspr_write_odd = '1' and e_in.ramspr_odd_rdaddr = ex1.ramspr_wraddr then
|
|
ramspr_odd <= ex1.ramspr_odd_data;
|
|
else
|
|
ramspr_odd <= odd_rd_data;
|
|
end if;
|
|
if e_in.ramspr_rd_odd = '0' then
|
|
ramspr_result <= ramspr_even;
|
|
else
|
|
ramspr_result <= ramspr_odd;
|
|
end if;
|
|
if e_in.ramspr_32bit = '1' then
|
|
ramspr_result(63 downto 32) <= 32x"0";
|
|
end if;
|
|
end process;
|
|
|
|
ramspr_write: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if ramspr_even_wr_enab = '1' then
|
|
assert not is_X(ramspr_wr_addr) report "Writing to unknown address" severity FAILURE;
|
|
even_sprs(to_integer(ramspr_wr_addr)) <= ramspr_even_wr_data;
|
|
report "writing even spr " & integer'image(to_integer(ramspr_wr_addr)) & " data=" &
|
|
to_hstring(ramspr_even_wr_data);
|
|
end if;
|
|
if ramspr_odd_wr_enab = '1' then
|
|
assert not is_X(ramspr_wr_addr) report "Writing to unknown address" severity FAILURE;
|
|
odd_sprs(to_integer(ramspr_wr_addr)) <= ramspr_odd_wr_data;
|
|
report "writing odd spr " & integer'image(to_integer(ramspr_wr_addr)) & " data=" &
|
|
to_hstring(ramspr_odd_wr_data);
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- First stage result mux
|
|
s1_sel <= e_in.result_sel when ex1.busy = '0' else "100";
|
|
with s1_sel select alu_result <=
|
|
adder_result when "000",
|
|
logical_result when "001",
|
|
rotator_result when "010",
|
|
multicyc_result when "100",
|
|
ramspr_result when "101",
|
|
misc_result when others;
|
|
|
|
execute1_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' then
|
|
ex1 <= reg_stage1_type_init;
|
|
ex2 <= reg_stage2_type_init;
|
|
ctrl <= ctrl_t_init;
|
|
ctrl.msr <= (MSR_SF => '1', MSR_HV => '1', MSR_LE => '1', others => '0');
|
|
ex1.msr <= (MSR_SF => '1', MSR_HV => '1', MSR_LE => '1', others => '0');
|
|
else
|
|
ex1 <= ex1in;
|
|
ex2 <= ex2in;
|
|
ctrl <= ctrl_tmp;
|
|
if valid_in = '1' then
|
|
report "CPU " & natural'image(CPU_INDEX) & " execute " & to_hstring(e_in.nia) &
|
|
" op=" & insn_type_t'image(e_in.insn_type) &
|
|
" wr=" & to_hstring(ex1in.e.write_reg) & " we=" & std_ulogic'image(ex1in.e.write_enable) &
|
|
" tag=" & integer'image(ex1in.e.instr_tag.tag) & std_ulogic'image(ex1in.e.instr_tag.valid) &
|
|
" 2nd=" & std_ulogic'image(e_in.second);
|
|
end if;
|
|
-- We mustn't get stalled on a cycle where execute2 is
|
|
-- completing an instruction or generating an interrupt
|
|
if ex2.e.valid = '1' or ex2.e.interrupt = '1' then
|
|
assert stage2_stall = '0' severity failure;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
ex_dbg_spr: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '0' and dbg_spr_req = '1' then
|
|
if e_in.dbg_spr_access = '1' and dbg_spr_ack = '0' then
|
|
if dbg_spr_addr(7) = '1' then
|
|
dbg_spr_data <= ramspr_result;
|
|
else
|
|
case dbg_spr_addr(3 downto 0) is
|
|
when SPRSEL_FSCR =>
|
|
dbg_spr_data <= assemble_fscr(ctrl);
|
|
when SPRSEL_HFSCR =>
|
|
dbg_spr_data <= assemble_hfscr(ctrl);
|
|
when SPRSEL_HEIR =>
|
|
dbg_spr_data <= ctrl.heir;
|
|
when SPRSEL_CFAR =>
|
|
dbg_spr_data <= ctrl.cfar;
|
|
when others =>
|
|
dbg_spr_data <= assemble_xer(xerc_in, ctrl.xer_low);
|
|
end case;
|
|
end if;
|
|
dbg_spr_ack <= '1';
|
|
end if;
|
|
else
|
|
dbg_spr_ack <= '0';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Data path for integer instructions (first execute stage)
|
|
execute1_dp: process(all)
|
|
variable a_inv : std_ulogic_vector(63 downto 0);
|
|
variable sum_with_carry : std_ulogic_vector(64 downto 0);
|
|
variable sign1, sign2 : std_ulogic;
|
|
variable abs1, abs2 : signed(63 downto 0);
|
|
variable addend : std_ulogic_vector(127 downto 0);
|
|
variable addg6s : std_ulogic_vector(63 downto 0);
|
|
variable crbit : integer range 0 to 31;
|
|
variable isel_result : std_ulogic_vector(63 downto 0);
|
|
variable darn : std_ulogic_vector(63 downto 0);
|
|
variable setb_result : std_ulogic_vector(63 downto 0);
|
|
variable mfcr_result : std_ulogic_vector(63 downto 0);
|
|
variable lo, hi : integer;
|
|
variable l : std_ulogic;
|
|
variable zerohi, zerolo : std_ulogic;
|
|
variable msb_a, msb_b : std_ulogic;
|
|
variable a_lt : std_ulogic;
|
|
variable a_lt_lo : std_ulogic;
|
|
variable a_lt_hi : std_ulogic;
|
|
variable newcrf : std_ulogic_vector(3 downto 0);
|
|
variable bf, bfa : std_ulogic_vector(2 downto 0);
|
|
variable crnum : crnum_t;
|
|
variable scrnum : crnum_t;
|
|
variable cr_operands : std_ulogic_vector(1 downto 0);
|
|
variable crresult : std_ulogic;
|
|
variable bt, ba, bb : std_ulogic_vector(4 downto 0);
|
|
variable btnum : integer range 0 to 3;
|
|
variable banum, bbnum : integer range 0 to 31;
|
|
variable j : integer;
|
|
begin
|
|
-- Main adder
|
|
if e_in.invert_a = '0' then
|
|
a_inv := a_in;
|
|
else
|
|
a_inv := not a_in;
|
|
end if;
|
|
sum_with_carry := ppc_adde(a_inv, b_in,
|
|
decode_input_carry(e_in.input_carry, xerc_in));
|
|
adder_result <= sum_with_carry(63 downto 0);
|
|
carry_32 <= sum_with_carry(32) xor a_inv(32) xor b_in(32);
|
|
carry_64 <= sum_with_carry(64);
|
|
overflow_32 <= calc_ov(a_inv(31), b_in(31), carry_32, sum_with_carry(31));
|
|
overflow_64 <= calc_ov(a_inv(63), b_in(63), carry_64, sum_with_carry(63));
|
|
|
|
-- signals to multiplier
|
|
addend := (others => '0');
|
|
if e_in.reg_valid3 = '1' then
|
|
-- integer multiply-add, major op 4 (if it is a multiply)
|
|
addend(63 downto 0) := c_in;
|
|
if e_in.is_signed = '1' then
|
|
addend(127 downto 64) := (others => c_in(63));
|
|
end if;
|
|
end if;
|
|
x_to_multiply.data1 <= std_ulogic_vector(a_in);
|
|
x_to_multiply.data2 <= std_ulogic_vector(b_in);
|
|
x_to_multiply.is_signed <= e_in.is_signed;
|
|
x_to_multiply.subtract <= '0';
|
|
x_to_multiply.addend <= addend;
|
|
|
|
-- Interface to divide unit
|
|
if not HAS_FPU then
|
|
sign1 := '0';
|
|
sign2 := '0';
|
|
if e_in.is_signed = '1' then
|
|
if e_in.is_32bit = '1' then
|
|
sign1 := a_in(31);
|
|
sign2 := b_in(31);
|
|
else
|
|
sign1 := a_in(63);
|
|
sign2 := b_in(63);
|
|
end if;
|
|
end if;
|
|
-- take absolute values
|
|
if sign1 = '0' then
|
|
abs1 := signed(a_in);
|
|
else
|
|
abs1 := - signed(a_in);
|
|
end if;
|
|
if sign2 = '0' then
|
|
abs2 := signed(b_in);
|
|
else
|
|
abs2 := - signed(b_in);
|
|
end if;
|
|
|
|
x_to_divider.is_signed <= e_in.is_signed;
|
|
x_to_divider.is_32bit <= e_in.is_32bit;
|
|
x_to_divider.is_extended <= '0';
|
|
x_to_divider.is_modulus <= '0';
|
|
if e_in.insn_type = OP_MOD then
|
|
x_to_divider.is_modulus <= '1';
|
|
end if;
|
|
x_to_divider.flush <= flush_in;
|
|
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
|
|
if e_in.is_32bit = '0' then
|
|
-- 64-bit forms
|
|
if e_in.insn_type = OP_DIVE then
|
|
x_to_divider.is_extended <= '1';
|
|
end if;
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1);
|
|
x_to_divider.divisor <= std_ulogic_vector(abs2);
|
|
else
|
|
-- 32-bit forms
|
|
x_to_divider.is_extended <= '0';
|
|
if e_in.insn_type = OP_DIVE then -- extended forms
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
|
|
else
|
|
x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
|
|
end if;
|
|
x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
|
|
end if;
|
|
end if;
|
|
|
|
-- signals to 32-bit multiplier
|
|
x_to_mult_32s.data1 <= 32x"0" & a_in(31 downto 0);
|
|
x_to_mult_32s.data2 <= 32x"0" & b_in(31 downto 0);
|
|
x_to_mult_32s.is_signed <= e_in.is_signed;
|
|
-- The following are unused, but set here to avoid X states
|
|
x_to_mult_32s.subtract <= '0';
|
|
x_to_mult_32s.addend <= (others => '0');
|
|
|
|
if ex1.mul_select(2) = '0' then
|
|
case ex1.mul_select(1 downto 0) is
|
|
when "00" =>
|
|
multicyc_result <= multiply_to_x.result(63 downto 0);
|
|
when "01" =>
|
|
multicyc_result <= multiply_to_x.result(63 downto 32) &
|
|
multiply_to_x.result(63 downto 32);
|
|
when others =>
|
|
multicyc_result <= multiply_to_x.result(127 downto 64);
|
|
end case;
|
|
elsif ex1.mul_select(0) = '1' and not HAS_FPU then
|
|
multicyc_result <= divider_to_x.write_reg_data;
|
|
else
|
|
multicyc_result <= bsort_result;
|
|
end if;
|
|
|
|
-- Compute misc_result
|
|
case e_in.sub_select is
|
|
when "000" =>
|
|
misc_result <= (others => '0');
|
|
when "001" =>
|
|
-- addg6s
|
|
addg6s := (others => '0');
|
|
for i in 0 to 14 loop
|
|
lo := i * 4;
|
|
hi := (i + 1) * 4;
|
|
if (a_in(hi) xor b_in(hi) xor sum_with_carry(hi)) = '0' then
|
|
addg6s(lo + 3 downto lo) := "0110";
|
|
end if;
|
|
end loop;
|
|
if sum_with_carry(64) = '0' then
|
|
addg6s(63 downto 60) := "0110";
|
|
end if;
|
|
misc_result <= addg6s;
|
|
when "010" =>
|
|
-- isel
|
|
crbit := to_integer(unsigned(insn_bc(e_in.insn)));
|
|
if cr_in(31-crbit) = '1' then
|
|
isel_result := a_in;
|
|
else
|
|
isel_result := b_in;
|
|
end if;
|
|
misc_result <= isel_result;
|
|
when "011" =>
|
|
-- darn
|
|
darn := (others => '1');
|
|
if random_err = '0' then
|
|
case e_in.insn(17 downto 16) is
|
|
when "00" =>
|
|
darn := x"00000000" & random_cond(31 downto 0);
|
|
when "10" =>
|
|
darn := random_raw;
|
|
when others =>
|
|
darn := random_cond;
|
|
end case;
|
|
end if;
|
|
misc_result <= darn;
|
|
when "100" =>
|
|
-- mfmsr
|
|
misc_result <= ex1.msr;
|
|
when "101" =>
|
|
if e_in.insn(20) = '0' then
|
|
-- mfcr
|
|
mfcr_result := x"00000000" & cr_in;
|
|
else
|
|
-- mfocrf
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
mfcr_result := (others => '0');
|
|
for i in 0 to 7 loop
|
|
lo := (7-i)*4;
|
|
hi := lo + 3;
|
|
if crnum = i then
|
|
mfcr_result(hi downto lo) := cr_in(hi downto lo);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
misc_result <= mfcr_result;
|
|
when "110" =>
|
|
-- setb and set[n]bc[r]
|
|
setb_result := (others => '0');
|
|
if e_in.insn(9) = '0' then
|
|
-- setb
|
|
bfa := insn_bfa(e_in.insn);
|
|
crbit := to_integer(unsigned(bfa)) * 4;
|
|
if cr_in(31 - crbit) = '1' then
|
|
setb_result := (others => '1');
|
|
elsif cr_in(30 - crbit) = '1' then
|
|
setb_result(0) := '1';
|
|
end if;
|
|
else
|
|
-- set[n]bc[r]
|
|
crbit := to_integer(unsigned(insn_bi(e_in.insn)));
|
|
if (cr_in(31 - crbit) xor e_in.insn(6)) = '1' then
|
|
if e_in.insn(7) = '0' then
|
|
setb_result(0) := '1';
|
|
else
|
|
setb_result := (others => '1');
|
|
end if;
|
|
end if;
|
|
end if;
|
|
misc_result <= setb_result;
|
|
when others =>
|
|
misc_result <= (others => '0');
|
|
end case;
|
|
|
|
-- compute comparison results
|
|
-- Note, we have done RB - RA, not RA - RB
|
|
if e_in.insn_type = OP_CMP then
|
|
l := insn_l(e_in.insn);
|
|
else
|
|
l := not e_in.is_32bit;
|
|
end if;
|
|
zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
|
|
zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
|
|
if zerolo = '1' and (l = '0' or zerohi = '1') then
|
|
-- values are equal
|
|
trapval <= "00100";
|
|
else
|
|
a_lt_lo := '0';
|
|
a_lt_hi := '0';
|
|
if is_X(a_in) or is_X(b_in) then
|
|
a_lt_lo := 'X';
|
|
a_lt_hi := 'X';
|
|
else
|
|
if unsigned(a_in(30 downto 0)) < unsigned(b_in(30 downto 0)) then
|
|
a_lt_lo := '1';
|
|
end if;
|
|
if unsigned(a_in(62 downto 31)) < unsigned(b_in(62 downto 31)) then
|
|
a_lt_hi := '1';
|
|
end if;
|
|
end if;
|
|
if l = '1' then
|
|
-- 64-bit comparison
|
|
msb_a := a_in(63);
|
|
msb_b := b_in(63);
|
|
a_lt := a_lt_hi or (zerohi and (a_in(31) xnor b_in(31)) and a_lt_lo);
|
|
else
|
|
-- 32-bit comparison
|
|
msb_a := a_in(31);
|
|
msb_b := b_in(31);
|
|
a_lt := a_lt_lo;
|
|
end if;
|
|
if msb_a /= msb_b then
|
|
-- Comparison is clear from MSB difference.
|
|
-- for signed, 0 is greater; for unsigned, 1 is greater
|
|
trapval <= msb_a & msb_b & '0' & msb_b & msb_a;
|
|
else
|
|
-- MSBs are equal, so signed and unsigned comparisons give the
|
|
-- same answer.
|
|
trapval <= a_lt & not a_lt & '0' & a_lt & not a_lt;
|
|
end if;
|
|
end if;
|
|
|
|
-- CR result mux
|
|
bf := insn_bf(e_in.insn);
|
|
newcrf := (others => '0');
|
|
case e_in.sub_select is
|
|
when "000" =>
|
|
-- CMP and CMPL instructions
|
|
if e_in.is_signed = '1' then
|
|
newcrf := trapval(4 downto 2) & xerc_in.so;
|
|
else
|
|
newcrf := trapval(1 downto 0) & trapval(2) & xerc_in.so;
|
|
end if;
|
|
when "001" =>
|
|
newcrf := ppc_cmprb(a_in, b_in, insn_l(e_in.insn));
|
|
when "010" =>
|
|
newcrf := ppc_cmpeqb(a_in, b_in);
|
|
when "011" =>
|
|
if is_X(e_in.insn) then
|
|
newcrf := (others => 'X');
|
|
elsif e_in.insn(1) = '1' then
|
|
-- CR logical instructions
|
|
crnum := to_integer(unsigned(bf));
|
|
j := (7 - crnum) * 4;
|
|
newcrf := cr_in(j + 3 downto j);
|
|
bt := insn_bt(e_in.insn);
|
|
ba := insn_ba(e_in.insn);
|
|
bb := insn_bb(e_in.insn);
|
|
btnum := 3 - to_integer(unsigned(bt(1 downto 0)));
|
|
banum := 31 - to_integer(unsigned(ba));
|
|
bbnum := 31 - to_integer(unsigned(bb));
|
|
-- Bits 6-9 of the instruction word give the truth table
|
|
-- of the requested logical operation
|
|
cr_operands := cr_in(banum) & cr_in(bbnum);
|
|
crresult := e_in.insn(6 + to_integer(unsigned(cr_operands)));
|
|
for i in 0 to 3 loop
|
|
if i = btnum then
|
|
newcrf(i) := crresult;
|
|
end if;
|
|
end loop;
|
|
else
|
|
-- MCRF
|
|
bfa := insn_bfa(e_in.insn);
|
|
scrnum := to_integer(unsigned(bfa));
|
|
j := (7 - scrnum) * 4;
|
|
newcrf := cr_in(j + 3 downto j);
|
|
end if;
|
|
when "100" =>
|
|
-- MCRXRX
|
|
newcrf := xerc_in.ov & xerc_in.ov32 & xerc_in.ca & xerc_in.ca32;
|
|
when others =>
|
|
end case;
|
|
if e_in.insn_type = OP_MTCRF then
|
|
if e_in.insn(20) = '0' then
|
|
-- mtcrf
|
|
write_cr_mask <= insn_fxm(e_in.insn);
|
|
else
|
|
-- mtocrf: We require one hot priority encoding here
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
write_cr_mask <= num_to_fxm(crnum);
|
|
end if;
|
|
elsif e_in.output_cr = '1' and not is_X(bf) then
|
|
crnum := to_integer(unsigned(bf));
|
|
write_cr_mask <= num_to_fxm(crnum);
|
|
else
|
|
write_cr_mask <= (others => '0');
|
|
end if;
|
|
for i in 0 to 7 loop
|
|
if write_cr_mask(i) = '0' then
|
|
write_cr_data(i*4 + 3 downto i*4) <= cr_in(i*4 + 3 downto i*4);
|
|
elsif e_in.insn_type = OP_MTCRF then
|
|
write_cr_data(i*4 + 3 downto i*4) <= c_in(i*4 + 3 downto i*4);
|
|
else
|
|
write_cr_data(i*4 + 3 downto i*4) <= newcrf;
|
|
end if;
|
|
end loop;
|
|
|
|
end process;
|
|
|
|
execute1_actions: process(all)
|
|
variable v: actions_type;
|
|
variable bo, bi : std_ulogic_vector(4 downto 0);
|
|
variable illegal : std_ulogic;
|
|
variable privileged : std_ulogic;
|
|
variable misaligned : std_ulogic;
|
|
variable slow_op : std_ulogic;
|
|
variable owait : std_ulogic;
|
|
variable srr1 : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
v := actions_type_init;
|
|
v.e.write_data := alu_result;
|
|
v.e.write_reg := e_in.write_reg;
|
|
v.e.write_enable := e_in.write_reg_enable;
|
|
v.e.rc := e_in.rc;
|
|
v.e.write_cr_data := write_cr_data;
|
|
v.e.write_cr_mask := write_cr_mask;
|
|
v.e.write_cr_enable := e_in.output_cr;
|
|
v.e.write_xerc_enable := e_in.output_xer;
|
|
v.e.xerc := xerc_in;
|
|
v.new_msr := ex1.msr;
|
|
v.e.redir_mode := ex1.msr(MSR_IR) & not ex1.msr(MSR_PR) &
|
|
not ex1.msr(MSR_LE) & not ex1.msr(MSR_SF);
|
|
v.e.intr_vec := 16#700#;
|
|
v.e.mode_32bit := not ex1.msr(MSR_SF);
|
|
v.e.instr_tag := e_in.instr_tag;
|
|
v.e.last_nia := e_in.nia;
|
|
|
|
v.se.ramspr_write_even := e_in.ramspr_write_even;
|
|
v.se.ramspr_write_odd := e_in.ramspr_write_odd;
|
|
v.ramspr_odd_data := c_in;
|
|
if e_in.dec_ctr = '1' then
|
|
v.ramspr_odd_data := std_ulogic_vector(unsigned(ramspr_odd) - 1);
|
|
end if;
|
|
|
|
-- Note the difference between v.exception and v.trap:
|
|
-- v.exception signals a condition that prevents execution of the
|
|
-- instruction, and hence shouldn't depend on operand data, so as to
|
|
-- avoid timing chains through both data and control paths.
|
|
-- v.trap also means we want to generate an interrupt, but doesn't
|
|
-- cancel instruction execution (hence we need to avoid setting any
|
|
-- side-effect flags or write enables when generating a trap).
|
|
-- With v.trap = 1 we will assert both ex1.e.valid and ex1.e.interrupt
|
|
-- to writeback, and it will complete the instruction and take
|
|
-- an interrupt. It is OK for v.trap to depend on operand data.
|
|
|
|
illegal := '0';
|
|
privileged := '0';
|
|
misaligned := e_in.misaligned_prefix;
|
|
slow_op := '0';
|
|
owait := '0';
|
|
|
|
if e_in.illegal_suffix = '1' or e_in.illegal_form = '1' then
|
|
illegal := '1';
|
|
elsif ex1.msr(MSR_PR) = '1' then
|
|
privileged := e_in.privileged;
|
|
end if;
|
|
|
|
v.do_trace := ex1.msr(MSR_SE);
|
|
-- see if we have a CIABR map
|
|
if ctrl.ciabr(0) = '1' and ctrl.ciabr(1) = not ex1.msr(MSR_PR) and
|
|
ctrl.ciabr(63 downto 2) = e_in.nia(63 downto 2) then
|
|
v.ciabr_trace := '1';
|
|
end if;
|
|
|
|
case_0: case e_in.insn_type is
|
|
when OP_ILLEGAL =>
|
|
illegal := '1';
|
|
when OP_SC =>
|
|
-- check bit 1 of the instruction to distinguish sc from scv
|
|
if e_in.insn(1) = '1' then
|
|
-- sc
|
|
v.e.intr_vec := 16#C00#;
|
|
if e_in.valid = '1' then
|
|
report "sc";
|
|
end if;
|
|
else
|
|
-- scv
|
|
v.se.scv_trap := '1';
|
|
v.e.intr_vec := to_integer(unsigned(e_in.insn(11 downto 5))) * 32;
|
|
end if;
|
|
v.trap := '1';
|
|
v.advance_nia := '1';
|
|
when OP_ATTN =>
|
|
-- check bits 1-10 of the instruction to make sure it's attn
|
|
-- if not then it is illegal
|
|
if e_in.insn(10 downto 1) = "0100000000" then
|
|
v.se.terminate := '1';
|
|
if e_in.valid = '1' then
|
|
report "ATTN";
|
|
end if;
|
|
else
|
|
illegal := '1';
|
|
end if;
|
|
when OP_NOP | OP_DCBST | OP_ICBT =>
|
|
-- Do nothing
|
|
when OP_ADD =>
|
|
if e_in.output_carry = '1' then
|
|
if e_in.input_carry /= OV then
|
|
set_carry(v.e, carry_32, carry_64);
|
|
else
|
|
v.e.xerc.ov := carry_64;
|
|
v.e.xerc.ov32 := carry_32;
|
|
end if;
|
|
end if;
|
|
if e_in.oe = '1' then
|
|
set_ov(v.e, overflow_64, overflow_32);
|
|
end if;
|
|
when OP_CMP =>
|
|
when OP_TRAP =>
|
|
-- trap instructions (tw, twi, td, tdi)
|
|
v.e.intr_vec := 16#700#;
|
|
-- set bit 46 to say trap occurred
|
|
v.e.srr1(47 - 46) := '1';
|
|
if or (trapval and insn_to(e_in.insn)) = '1' then
|
|
-- generate trap-type program interrupt
|
|
v.trap := '1';
|
|
if e_in.valid = '1' then
|
|
report "trap";
|
|
end if;
|
|
end if;
|
|
when OP_ADDG6S =>
|
|
when OP_CMPRB =>
|
|
when OP_CMPEQB =>
|
|
when OP_LOGIC | OP_XOR | OP_PRTY | OP_CMPB | OP_EXTS |
|
|
OP_BREV | OP_BCD =>
|
|
|
|
when OP_B =>
|
|
v.take_branch := '1';
|
|
v.direct_branch := '1';
|
|
v.e.br_last := '1';
|
|
v.e.br_taken := '1';
|
|
if e_in.br_pred = '0' then
|
|
-- should never happen
|
|
v.e.redirect := '1';
|
|
end if;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.set_cfar := '1';
|
|
when OP_BC =>
|
|
-- If CTR is being decremented, it is in ramspr_odd.
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
v.take_branch := ppc_bc_taken(bo, bi, cr_in, ramspr_odd);
|
|
-- Mispredicted branches cause a redirect
|
|
if v.take_branch /= e_in.br_pred then
|
|
v.e.redirect := '1';
|
|
end if;
|
|
if v.take_branch = '0' then
|
|
v.redir_to_next := '1';
|
|
end if;
|
|
v.direct_branch := '1';
|
|
v.e.br_last := '1';
|
|
v.e.br_taken := v.take_branch;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.set_cfar := v.take_branch;
|
|
when OP_BCREG =>
|
|
-- If CTR is being decremented, it is in ramspr_odd.
|
|
-- The target address is in ramspr_result (LR, CTR or TAR).
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
v.take_branch := ppc_bc_taken(bo, bi, cr_in, ramspr_odd);
|
|
-- Indirect branches are never predicted taken
|
|
v.e.redirect := v.take_branch;
|
|
v.e.br_taken := v.take_branch;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.set_cfar := v.take_branch;
|
|
|
|
when OP_RFID =>
|
|
-- rfid, hrfid and rfscv.
|
|
-- These all act the same given that we don't have
|
|
-- privileged non-hypervisor mode or ultravisor mode.
|
|
srr1 := ramspr_odd;
|
|
v.e.redir_mode := (srr1(MSR_IR) or srr1(MSR_PR)) & not srr1(MSR_PR) &
|
|
not srr1(MSR_LE) & not srr1(MSR_SF);
|
|
-- Can't use msr_copy here because the partial function MSR
|
|
-- bits should be left unchanged, not zeroed.
|
|
v.new_msr(63 downto 61) := srr1(63 downto 61);
|
|
v.new_msr(MSR_HV) := '1';
|
|
v.new_msr(59 downto 31) := srr1(59 downto 31);
|
|
v.new_msr(26 downto 22) := srr1(26 downto 22);
|
|
v.new_msr(15 downto 0) := srr1(15 downto 0);
|
|
if srr1(MSR_PR) = '1' then
|
|
v.new_msr(MSR_EE) := '1';
|
|
v.new_msr(MSR_IR) := '1';
|
|
v.new_msr(MSR_DR) := '1';
|
|
end if;
|
|
v.se.write_msr := '1';
|
|
v.e.redirect := '1';
|
|
v.se.set_cfar := '1';
|
|
if HAS_FPU then
|
|
v.fp_intr := fp_in.exception and
|
|
(srr1(MSR_FE0) or srr1(MSR_FE1));
|
|
end if;
|
|
v.do_trace := '0';
|
|
|
|
when OP_COUNTB =>
|
|
v.res2_sel := "01";
|
|
slow_op := '1';
|
|
when OP_ISEL =>
|
|
when OP_CROP =>
|
|
when OP_MCRXRX =>
|
|
when OP_DARN =>
|
|
when OP_MFMSR =>
|
|
when OP_MFSPR =>
|
|
if e_in.spr_is_ram = '1' or e_in.spr_select.noop = '1' then
|
|
if e_in.valid = '1' and not is_X(e_in.insn) then
|
|
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(alu_result);
|
|
end if;
|
|
elsif e_in.spr_select.valid = '1' then
|
|
if e_in.valid = '1' and not is_X(e_in.insn) then
|
|
report "MFSPR to slow SPR " & integer'image(decode_spr_num(e_in.insn));
|
|
end if;
|
|
slow_op := '1';
|
|
if e_in.spr_select.ispmu = '0' then
|
|
case e_in.spr_select.sel is
|
|
when SPRSEL_LOGD =>
|
|
v.se.inc_loga := '1';
|
|
when others =>
|
|
end case;
|
|
v.res2_sel := "10";
|
|
else
|
|
v.res2_sel := "11";
|
|
end if;
|
|
else
|
|
-- mfspr from unimplemented SPRs should be a nop in
|
|
-- supervisor mode and a program interrupt for user mode
|
|
if e_in.valid = '1' and not is_X(e_in.insn) then
|
|
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
" invalid";
|
|
end if;
|
|
if ex1.msr(MSR_PR) = '1' then
|
|
illegal := '1';
|
|
end if;
|
|
end if;
|
|
|
|
when OP_MFCR =>
|
|
when OP_MTCRF =>
|
|
when OP_MTMSRD =>
|
|
v.se.write_msr := '1';
|
|
if e_in.insn(16) = '1' then
|
|
-- just update EE and RI
|
|
v.new_msr(MSR_EE) := c_in(MSR_EE);
|
|
v.new_msr(MSR_RI) := c_in(MSR_RI);
|
|
else
|
|
-- Architecture says to leave out bits 3 (HV), 51 (ME)
|
|
-- and 63 (LE) (IBM bit numbering)
|
|
if e_in.is_32bit = '0' then
|
|
v.new_msr(63 downto 61) := c_in(63 downto 61);
|
|
v.new_msr(59 downto 32) := c_in(59 downto 32);
|
|
end if;
|
|
v.new_msr(31 downto 13) := c_in(31 downto 13);
|
|
v.new_msr(11 downto 1) := c_in(11 downto 1);
|
|
if c_in(MSR_PR) = '1' then
|
|
v.new_msr(MSR_EE) := '1';
|
|
v.new_msr(MSR_IR) := '1';
|
|
v.new_msr(MSR_DR) := '1';
|
|
end if;
|
|
if HAS_FPU then
|
|
v.fp_intr := fp_in.exception and
|
|
(c_in(MSR_FE0) or c_in(MSR_FE1));
|
|
end if;
|
|
end if;
|
|
when OP_MTSPR =>
|
|
if e_in.valid = '1' and not is_X(e_in.insn) then
|
|
report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(c_in);
|
|
end if;
|
|
v.se.write_pmuspr := e_in.spr_select.ispmu;
|
|
if e_in.spr_select.valid = '1' and e_in.spr_select.ispmu = '0' then
|
|
case e_in.spr_select.sel is
|
|
when SPRSEL_XER =>
|
|
v.e.xerc.so := c_in(63-32);
|
|
v.e.xerc.ov := c_in(63-33);
|
|
v.e.xerc.ca := c_in(63-34);
|
|
v.e.xerc.ov32 := c_in(63-44);
|
|
v.e.xerc.ca32 := c_in(63-45);
|
|
v.se.write_xerlow := '1';
|
|
when SPRSEL_DEC =>
|
|
v.se.write_dec := '1';
|
|
when SPRSEL_LOGA =>
|
|
v.se.write_loga := '1';
|
|
when SPRSEL_CFAR =>
|
|
v.se.write_cfar := '1';
|
|
when SPRSEL_FSCR =>
|
|
v.se.write_fscr := '1';
|
|
when SPRSEL_HFSCR =>
|
|
v.se.write_hfscr := '1';
|
|
when SPRSEL_HEIR =>
|
|
v.se.write_heir := '1';
|
|
when SPRSEL_CTRL =>
|
|
v.se.write_ctrl := '1';
|
|
when SPRSEL_DSCR =>
|
|
v.se.write_dscr := '1';
|
|
when SPRSEL_CIABR =>
|
|
v.se.write_ciabr := '1';
|
|
when SPRSEL_TB =>
|
|
v.se.write_tbl := '1';
|
|
when SPRSEL_TBU =>
|
|
v.se.write_tbu := '1';
|
|
when others =>
|
|
end case;
|
|
end if;
|
|
if e_in.spr_select.valid = '0' and e_in.spr_is_ram = '0' then
|
|
-- mtspr to unimplemented SPRs should be a nop in
|
|
-- supervisor mode and a program interrupt for user mode
|
|
if ex1.msr(MSR_PR) = '1' then
|
|
illegal := '1';
|
|
end if;
|
|
end if;
|
|
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR | OP_EXTSWSLI =>
|
|
if e_in.output_carry = '1' then
|
|
set_carry(v.e, rotator_carry, rotator_carry);
|
|
end if;
|
|
when OP_SETB =>
|
|
|
|
when OP_ISYNC =>
|
|
v.e.redirect := '1';
|
|
v.redir_to_next := '1';
|
|
|
|
when OP_ICBI =>
|
|
v.se.icache_inval := '1';
|
|
|
|
when OP_BSORT =>
|
|
v.start_bsort := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
|
|
when OP_BPERM =>
|
|
v.start_bperm := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
|
|
when OP_MUL_L64 =>
|
|
if e_in.is_32bit = '1' then
|
|
v.se.mult_32s := '1';
|
|
v.res2_sel := "00";
|
|
else
|
|
-- Use standard multiplier
|
|
v.start_mul := '1';
|
|
owait := '1';
|
|
end if;
|
|
slow_op := '1';
|
|
|
|
when OP_MUL_H64 =>
|
|
v.start_mul := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
|
|
when OP_MUL_H32 =>
|
|
v.se.mult_32s := '1';
|
|
v.res2_sel := "01";
|
|
slow_op := '1';
|
|
|
|
when OP_DIV | OP_DIVE | OP_MOD =>
|
|
if not HAS_FPU then
|
|
v.start_div := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
end if;
|
|
|
|
when OP_WAIT =>
|
|
if e_in.insn(22 downto 21) = "00" then
|
|
v.se.enter_wait := '1';
|
|
end if;
|
|
|
|
when OP_FETCH_FAILED =>
|
|
-- Handling an ITLB miss doesn't count as having executed an instruction
|
|
v.do_trace := '0';
|
|
|
|
when others =>
|
|
if e_in.valid = '1' and e_in.unit = ALU then
|
|
report "unhandled insn_type " & insn_type_t'image(e_in.insn_type);
|
|
end if;
|
|
end case;
|
|
|
|
if ex1.msr(MSR_PR) = '1' and e_in.prefixed = '1' and
|
|
(ctrl.hfscr_pref = '0' or ctrl.fscr_pref = '0') then
|
|
-- [Hypervisor] facility unavailable for prefixed instructions,
|
|
-- which has higher priority than the alignment interrupt for
|
|
-- misaligned prefixed instructions, which has higher priority than
|
|
-- other [hypervisor] facility unavailable interrupts (e.g. for
|
|
-- plfs with HFSCR[FP] = 0).
|
|
v.exception := '1';
|
|
v.ic := x"b";
|
|
if ctrl.hfscr_pref = '0' then
|
|
v.e.hv_intr := '1';
|
|
v.e.intr_vec := 16#f80#;
|
|
v.se.write_hic := '1';
|
|
else
|
|
v.e.intr_vec := 16#f60#;
|
|
v.se.write_ic := '1';
|
|
end if;
|
|
|
|
elsif misaligned = '1' then
|
|
-- generate an alignment interrupt
|
|
-- This is higher priority than illegal because a misaligned
|
|
-- prefix will come down as an OP_ILLEGAL instruction.
|
|
v.exception := '1';
|
|
v.e.intr_vec := 16#600#;
|
|
v.e.srr1(47 - 35) := '1';
|
|
v.e.srr1(47 - 34) := '1';
|
|
if e_in.valid = '1' then
|
|
report "misaligned prefixed instruction interrupt";
|
|
end if;
|
|
|
|
elsif privileged = '1' then
|
|
-- generate a program interrupt
|
|
v.exception := '1';
|
|
v.e.srr1(47 - 34) := e_in.prefixed;
|
|
-- set bit 45 to indicate privileged instruction type interrupt
|
|
v.e.srr1(47 - 45) := '1';
|
|
if e_in.valid = '1' then
|
|
report "privileged instruction";
|
|
end if;
|
|
|
|
elsif illegal = '1' then
|
|
-- generate hypervisor emulation assistance interrupt (HEAI)
|
|
-- and write the offending instruction into HEIR
|
|
v.exception := '1';
|
|
v.e.srr1(47 - 34) := e_in.prefixed;
|
|
v.e.intr_vec := 16#e40#;
|
|
v.e.hv_intr := '1';
|
|
v.se.set_heir := '1';
|
|
if e_in.valid = '1' then
|
|
report "illegal instruction";
|
|
end if;
|
|
|
|
elsif ex1.msr(MSR_PR) = '1' and v.se.scv_trap = '1' and
|
|
ctrl.fscr_scv = '0' then
|
|
-- Facility unavailable for scv instruction
|
|
v.exception := '1';
|
|
v.ic := x"c";
|
|
v.e.intr_vec := 16#f60#;
|
|
v.se.write_ic := '1';
|
|
|
|
elsif ex1.msr(MSR_PR) = '1' and e_in.uses_tar = '1' and
|
|
(ctrl.hfscr_tar = '0' or ctrl.fscr_tar = '0') then
|
|
-- [Hypervisor] facility unavailable for TAR access
|
|
v.exception := '1';
|
|
v.ic := x"8";
|
|
if ctrl.hfscr_tar = '0' then
|
|
v.e.hv_intr := '1';
|
|
v.e.intr_vec := 16#f80#;
|
|
v.se.write_hic := '1';
|
|
else
|
|
v.e.intr_vec := 16#f60#;
|
|
v.se.write_ic := '1';
|
|
end if;
|
|
|
|
elsif ex1.msr(MSR_PR) = '1' and e_in.uses_dscr = '1' and
|
|
(ctrl.hfscr_dscr = '0' or ctrl.fscr_dscr = '0') then
|
|
-- [Hypervisor] facility unavailable for DSCR access
|
|
v.exception := '1';
|
|
v.ic := x"2";
|
|
if ctrl.hfscr_dscr = '0' then
|
|
v.e.hv_intr := '1';
|
|
v.e.intr_vec := 16#f80#;
|
|
v.se.write_hic := '1';
|
|
else
|
|
v.e.intr_vec := 16#f60#;
|
|
v.se.write_ic := '1';
|
|
end if;
|
|
|
|
elsif HAS_FPU and ex1.msr(MSR_PR) = '1' and e_in.fac = FPU and
|
|
ctrl.hfscr_fp = '0' then
|
|
-- Hypervisor facility unavailable for FP instructions
|
|
v.exception := '1';
|
|
v.ic := x"0";
|
|
v.e.hv_intr := '1';
|
|
v.e.intr_vec := 16#f80#;
|
|
v.se.write_hic := '1';
|
|
|
|
elsif HAS_FPU and ex1.msr(MSR_FP) = '0' and e_in.fac = FPU then
|
|
-- generate a floating-point unavailable interrupt
|
|
v.exception := '1';
|
|
v.e.srr1(47 - 34) := e_in.prefixed;
|
|
v.e.intr_vec := 16#800#;
|
|
if e_in.valid = '1' then
|
|
report "FP unavailable interrupt";
|
|
end if;
|
|
end if;
|
|
|
|
if e_in.unit = ALU then
|
|
v.complete := e_in.valid and not v.exception and not owait;
|
|
v.bypass_valid := e_in.valid and not slow_op;
|
|
end if;
|
|
|
|
actions <= v;
|
|
end process;
|
|
|
|
-- First execute stage
|
|
execute1_1: process(all)
|
|
variable v : reg_stage1_type;
|
|
variable overflow : std_ulogic;
|
|
variable lv : Execute1ToLoadstore1Type;
|
|
variable irq_valid : std_ulogic;
|
|
variable exception : std_ulogic;
|
|
variable fv : Execute1ToFPUType;
|
|
variable go : std_ulogic;
|
|
variable bypass_valid : std_ulogic;
|
|
variable is_scv : std_ulogic;
|
|
variable dex : aspect_bits_t;
|
|
begin
|
|
v := ex1;
|
|
if busy_out = '0' then
|
|
v.e := actions.e;
|
|
v.e.valid := '0';
|
|
v.oe := e_in.oe;
|
|
v.spr_select := e_in.spr_select;
|
|
v.pmu_spr_num := e_in.insn(20 downto 16);
|
|
v.mul_select := e_in.sub_select;
|
|
v.se := side_effect_init;
|
|
v.ramspr_wraddr := e_in.ramspr_wraddr;
|
|
v.lr_from_next := e_in.lr;
|
|
v.ramspr_odd_data := actions.ramspr_odd_data;
|
|
v.ic := actions.ic;
|
|
v.prefixed := e_in.prefixed;
|
|
v.insn := e_in.insn;
|
|
v.prefix := e_in.prefix;
|
|
end if;
|
|
|
|
lv := Execute1ToLoadstore1Init;
|
|
fv := Execute1ToFPUInit;
|
|
|
|
x_to_multiply.valid <= '0';
|
|
x_to_mult_32s.valid <= '0';
|
|
x_to_divider.valid <= '0';
|
|
v.ext_interrupt := '0';
|
|
v.taken_branch_event := '0';
|
|
v.br_mispredict := '0';
|
|
v.busy := '0';
|
|
bypass_valid := actions.bypass_valid;
|
|
|
|
irq_valid := ex1.msr(MSR_EE) and (pmu_to_x.intr or ctrl.dec(63) or ext_irq_in);
|
|
|
|
if valid_in = '1' then
|
|
v.prev_op := e_in.insn_type;
|
|
v.prev_prefixed := e_in.prefixed;
|
|
end if;
|
|
|
|
-- Determine if there is any interrupt to be taken
|
|
-- before/instead of executing this instruction
|
|
exception := valid_in and actions.exception;
|
|
if valid_in = '1' and e_in.second = '0' then
|
|
if HAS_FPU and ex1.fp_exception_next = '1' then
|
|
-- This is used for FP-type program interrupts that
|
|
-- become pending due to MSR[FE0,FE1] changing from 00 to non-zero.
|
|
exception := '1';
|
|
v.e.intr_vec := 16#700#;
|
|
v.e.srr1 := (others => '0');
|
|
v.e.srr1(47 - 43) := '1';
|
|
v.e.srr1(47 - 47) := '1';
|
|
elsif ex1.trace_next = '1' then
|
|
-- Generate a trace interrupt rather than executing the next instruction
|
|
-- or taking any asynchronous interrupt
|
|
exception := '1';
|
|
v.e.intr_vec := 16#d00#;
|
|
v.e.srr1 := (others => '0');
|
|
v.e.srr1(47 - 33) := '1';
|
|
v.e.srr1(47 - 34) := ex1.prev_prefixed;
|
|
if (ex1.prev_op = OP_LOAD or ex1.prev_op = OP_ICBI or ex1.prev_op = OP_ICBT or
|
|
ex1.prev_op = OP_DCBF) and ex1.trace_ciabr = '0' then
|
|
v.e.srr1(47 - 35) := '1';
|
|
elsif (ex1.prev_op = OP_STORE or ex1.prev_op = OP_DCBZ) and
|
|
ex1.trace_ciabr = '0' then
|
|
v.e.srr1(47 - 36) := '1';
|
|
end if;
|
|
v.e.srr1(47 - 43) := ex1.trace_ciabr;
|
|
|
|
elsif irq_valid = '1' then
|
|
-- Don't deliver the interrupt until we have a valid instruction
|
|
-- coming in, so we have a valid NIA to put in SRR0.
|
|
if pmu_to_x.intr = '1' then
|
|
v.e.intr_vec := 16#f00#;
|
|
report "IRQ valid: PMU";
|
|
elsif ctrl.dec(63) = '1' then
|
|
v.e.intr_vec := 16#900#;
|
|
report "IRQ valid: DEC";
|
|
elsif ext_irq_in = '1' then
|
|
v.e.intr_vec := 16#500#;
|
|
report "IRQ valid: External";
|
|
v.ext_interrupt := '1';
|
|
v.e.hv_intr := '1';
|
|
end if;
|
|
v.e.srr1 := (others => '0');
|
|
exception := '1';
|
|
|
|
end if;
|
|
end if;
|
|
|
|
v.no_instr_avail := not (e_in.valid or l_in.busy or ex1.busy or fp_in.busy);
|
|
|
|
go := valid_in and not exception;
|
|
v.instr_dispatch := go;
|
|
|
|
if go = '1' then
|
|
v.se := actions.se;
|
|
v.e.valid := actions.complete;
|
|
v.taken_branch_event := actions.take_branch;
|
|
v.trace_next := actions.do_trace or actions.ciabr_trace;
|
|
v.trace_ciabr := actions.ciabr_trace;
|
|
v.fp_exception_next := actions.fp_intr;
|
|
v.res2_sel := actions.res2_sel;
|
|
v.msr := actions.new_msr;
|
|
x_to_multiply.valid <= actions.start_mul;
|
|
x_to_mult_32s.valid <= actions.se.mult_32s;
|
|
v.mul_in_progress := actions.start_mul;
|
|
x_to_divider.valid <= actions.start_div;
|
|
v.div_in_progress := actions.start_div;
|
|
v.bsort_in_progress := actions.start_bsort;
|
|
v.bperm_in_progress := actions.start_bperm;
|
|
v.br_mispredict := v.e.redirect and actions.direct_branch;
|
|
v.advance_nia := actions.advance_nia;
|
|
v.redir_to_next := actions.redir_to_next;
|
|
exception := actions.trap;
|
|
|
|
-- Go busy while division is happening because the
|
|
-- divider is not pipelined. Also go busy while a
|
|
-- multiply is happening in order to stop following
|
|
-- instructions from using the wrong XER value
|
|
-- (and for simplicity in the OE=0 case).
|
|
v.busy := actions.start_div or actions.start_mul or
|
|
actions.start_bsort or actions.start_bperm;
|
|
|
|
-- instruction for other units, i.e. LDST
|
|
if e_in.unit = LDST then
|
|
lv.valid := '1';
|
|
end if;
|
|
if HAS_FPU and e_in.unit = FPU then
|
|
fv.valid := '1';
|
|
end if;
|
|
end if;
|
|
is_scv := go and actions.se.scv_trap;
|
|
bsort_start <= go and actions.start_bsort;
|
|
bperm_start <= go and actions.start_bperm;
|
|
pmu_trace <= go and actions.do_trace;
|
|
|
|
-- evaluate DEXCR/HDEXCR bits that apply at present
|
|
if ex1.msr(MSR_PR) = '0' then
|
|
dex := ctrl.hdexcr_hyp;
|
|
else
|
|
dex := ctrl.dexcr_pro or ctrl.hdexcr_enf;
|
|
end if;
|
|
|
|
if not HAS_FPU and ex1.div_in_progress = '1' then
|
|
v.div_in_progress := not divider_to_x.valid;
|
|
v.busy := not divider_to_x.valid;
|
|
if divider_to_x.valid = '1' and ex1.oe = '1' then
|
|
v.e.xerc.ov := divider_to_x.overflow;
|
|
v.e.xerc.ov32 := divider_to_x.overflow;
|
|
if divider_to_x.overflow = '1' then
|
|
v.e.xerc.so := '1';
|
|
end if;
|
|
end if;
|
|
v.e.valid := divider_to_x.valid;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := v.e.valid;
|
|
end if;
|
|
if ex1.mul_in_progress = '1' then
|
|
v.mul_in_progress := not multiply_to_x.valid;
|
|
v.mul_finish := multiply_to_x.valid and ex1.oe;
|
|
v.e.valid := multiply_to_x.valid and not ex1.oe;
|
|
v.busy := not v.e.valid;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := v.e.valid;
|
|
end if;
|
|
if ex1.mul_finish = '1' then
|
|
v.mul_finish := '0';
|
|
v.e.xerc.ov := multiply_to_x.overflow;
|
|
v.e.xerc.ov32 := multiply_to_x.overflow;
|
|
if multiply_to_x.overflow = '1' then
|
|
v.e.xerc.so := '1';
|
|
end if;
|
|
v.e.valid := '1';
|
|
end if;
|
|
if ex1.bsort_in_progress = '1' then
|
|
v.bsort_in_progress := not bsort_done;
|
|
v.e.valid := bsort_done;
|
|
v.busy := not bsort_done;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := bsort_done;
|
|
end if;
|
|
if ex1.bperm_in_progress = '1' then
|
|
v.bperm_in_progress := not bperm_done;
|
|
v.e.valid := bperm_done;
|
|
v.busy := not bperm_done;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := bperm_done;
|
|
end if;
|
|
|
|
if v.e.write_xerc_enable = '1' and v.e.valid = '1' then
|
|
v.xerc := v.e.xerc;
|
|
v.xerc_valid := '1';
|
|
end if;
|
|
|
|
if (ex1.busy or l_in.busy or fp_in.busy) = '0' then
|
|
v.e.interrupt := exception;
|
|
v.e.is_scv := is_scv;
|
|
end if;
|
|
if v.e.valid = '0' then
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
end if;
|
|
if flush_in = '1' then
|
|
v.e.valid := '0';
|
|
v.e.interrupt := '0';
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
v.busy := '0';
|
|
v.div_in_progress := '0';
|
|
v.mul_in_progress := '0';
|
|
v.mul_finish := '0';
|
|
v.xerc_valid := '0';
|
|
end if;
|
|
if flush_in = '1' or interrupt_in.intr = '1' then
|
|
v.msr := ctrl_tmp.msr;
|
|
end if;
|
|
if interrupt_in.intr = '1' then
|
|
v.trace_next := '0';
|
|
v.fp_exception_next := '0';
|
|
end if;
|
|
|
|
bypass_data.tag.valid <= e_in.write_reg_enable and bypass_valid;
|
|
bypass_data.tag.tag <= e_in.instr_tag.tag;
|
|
bypass_data.data <= alu_result;
|
|
|
|
bypass_cr_data.tag.valid <= e_in.output_cr and bypass_valid;
|
|
bypass_cr_data.tag.tag <= e_in.instr_tag.tag;
|
|
bypass_cr_data.data <= write_cr_data;
|
|
|
|
-- Outputs to loadstore1 (async)
|
|
lv.op := e_in.insn_type;
|
|
lv.instr_tag := e_in.instr_tag;
|
|
lv.addr1 := a_in;
|
|
lv.addr2 := b_in;
|
|
lv.data := c_in;
|
|
lv.write_reg := e_in.write_reg;
|
|
lv.length := e_in.data_len;
|
|
lv.byte_reverse := e_in.byte_reverse xnor ex1.msr(MSR_LE);
|
|
lv.sign_extend := e_in.sign_extend;
|
|
lv.update := e_in.update;
|
|
-- abuse e_in.is_signed to indicate hash store/check instructions
|
|
lv.hash := e_in.is_signed;
|
|
lv.xerc := xerc_in;
|
|
lv.reserve := e_in.reserve;
|
|
lv.rc := e_in.rc;
|
|
lv.insn := e_in.insn;
|
|
-- invert_a field is overloaded for load/store instructions
|
|
-- to mark l*cix and st*cix
|
|
lv.ci := e_in.invert_a;
|
|
lv.virt_mode := ex1.msr(MSR_DR);
|
|
lv.priv_mode := not ex1.msr(MSR_PR);
|
|
lv.mode_32bit := not ex1.msr(MSR_SF);
|
|
lv.is_32bit := e_in.is_32bit;
|
|
lv.prefixed := e_in.prefixed;
|
|
lv.repeat := e_in.repeat;
|
|
lv.second := e_in.second;
|
|
lv.e2stall := fp_in.f2stall;
|
|
lv.hashkey := ramspr_odd;
|
|
if e_in.insn(7) = '0' then
|
|
lv.hash_enable := dex(DEXCR_PHIE);
|
|
else
|
|
lv.hash_enable := dex(DEXCR_NPHIE);
|
|
end if;
|
|
|
|
-- Outputs to FPU
|
|
fv.op := e_in.insn_type;
|
|
fv.insn := e_in.insn;
|
|
fv.itag := e_in.instr_tag;
|
|
fv.single := e_in.is_32bit;
|
|
fv.is_signed := e_in.is_signed;
|
|
fv.fe_mode := ex1.msr(MSR_FE0) & ex1.msr(MSR_FE1);
|
|
fv.fra := a_in;
|
|
fv.frb := b_in;
|
|
fv.frc := c_in;
|
|
fv.valid_a := e_in.reg_valid1;
|
|
fv.valid_b := e_in.reg_valid2;
|
|
fv.valid_c := e_in.reg_valid3;
|
|
fv.frt := e_in.write_reg;
|
|
fv.rc := e_in.rc;
|
|
fv.out_cr := e_in.output_cr;
|
|
fv.m32b := not ex1.msr(MSR_SF);
|
|
fv.oe := e_in.oe;
|
|
fv.xerc := xerc_in;
|
|
fv.stall := l_in.l2stall;
|
|
|
|
-- Update registers
|
|
ex1in <= v;
|
|
|
|
-- update outputs
|
|
l_out <= lv;
|
|
fp_out <= fv;
|
|
irq_valid_log <= irq_valid;
|
|
end process;
|
|
|
|
-- Slow SPR read mux
|
|
with ex1.spr_select.sel select spr_result <=
|
|
timebase when SPRSEL_TB,
|
|
32x"0" & timebase(63 downto 32) when SPRSEL_TBU,
|
|
ctrl.dec when SPRSEL_DEC,
|
|
32x"0" & PVR_MICROWATT when SPRSEL_PVR,
|
|
log_wr_addr & ex2.log_addr_spr when SPRSEL_LOGA,
|
|
log_rd_data when SPRSEL_LOGD,
|
|
ctrl.cfar when SPRSEL_CFAR,
|
|
assemble_fscr(ctrl) when SPRSEL_FSCR,
|
|
assemble_hfscr(ctrl) when SPRSEL_HFSCR,
|
|
ctrl.heir when SPRSEL_HEIR,
|
|
assemble_ctrl(ctrl, ex1.msr(MSR_PR)) when SPRSEL_CTRL,
|
|
39x"0" & ctrl.dscr when SPRSEL_DSCR,
|
|
56x"0" & std_ulogic_vector(to_unsigned(CPU_INDEX, 8)) when SPRSEL_PIR,
|
|
ctrl.ciabr when SPRSEL_CIABR,
|
|
assemble_dexcr(ctrl, ex1.insn) when SPRSEL_DEXCR,
|
|
assemble_xer(ex1.e.xerc, ctrl.xer_low) when others;
|
|
|
|
stage2_stall <= l_in.l2stall or fp_in.f2stall;
|
|
|
|
-- Second execute stage control
|
|
execute2_1: process(all)
|
|
variable v : reg_stage2_type;
|
|
variable bypass_valid : std_ulogic;
|
|
variable rcresult : std_ulogic_vector(63 downto 0);
|
|
variable sprres : std_ulogic_vector(63 downto 0);
|
|
variable ex_result : std_ulogic_vector(63 downto 0);
|
|
variable cr_res : std_ulogic_vector(31 downto 0);
|
|
variable cr_mask : std_ulogic_vector(7 downto 0);
|
|
variable sign, zero : std_ulogic;
|
|
variable rcnz_hi, rcnz_lo : std_ulogic;
|
|
variable irq_exc : std_ulogic;
|
|
begin
|
|
-- Next insn adder used in a couple of places
|
|
next_nia <= std_ulogic_vector(unsigned(ex1.e.last_nia) + 4);
|
|
|
|
v := ex2;
|
|
if stage2_stall = '0' then
|
|
v.e := ex1.e;
|
|
v.se := ex1.se;
|
|
v.ext_interrupt := ex1.ext_interrupt;
|
|
v.taken_branch_event := ex1.taken_branch_event;
|
|
v.br_mispredict := ex1.br_mispredict;
|
|
if ex1.advance_nia = '1' then
|
|
v.e.last_nia := next_nia;
|
|
end if;
|
|
end if;
|
|
|
|
if ex1.se.mult_32s = '1' and ex1.oe = '1' then
|
|
v.e.xerc.ov := mult_32s_to_x.overflow;
|
|
v.e.xerc.ov32 := mult_32s_to_x.overflow;
|
|
if mult_32s_to_x.overflow = '1' then
|
|
v.e.xerc.so := '1';
|
|
end if;
|
|
end if;
|
|
|
|
ctrl_tmp <= ctrl;
|
|
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
|
|
|
|
x_to_pmu.mfspr <= '0';
|
|
x_to_pmu.mtspr <= '0';
|
|
x_to_pmu.tbbits(3) <= timebase(63 - 47);
|
|
x_to_pmu.tbbits(2) <= timebase(63 - 51);
|
|
x_to_pmu.tbbits(1) <= timebase(63 - 55);
|
|
x_to_pmu.tbbits(0) <= timebase(63 - 63);
|
|
x_to_pmu.pmm_msr <= ctrl.msr(MSR_PMM);
|
|
x_to_pmu.pr_msr <= ctrl.msr(MSR_PR);
|
|
|
|
if v.e.valid = '0' or flush_in = '1' then
|
|
v.e.write_enable := '0';
|
|
v.e.write_cr_enable := '0';
|
|
v.e.write_xerc_enable := '0';
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
v.taken_branch_event := '0';
|
|
v.br_mispredict := '0';
|
|
end if;
|
|
if flush_in = '1' then
|
|
v.e.valid := '0';
|
|
v.e.interrupt := '0';
|
|
v.se := side_effect_init;
|
|
v.ext_interrupt := '0';
|
|
end if;
|
|
|
|
-- This is split like this because mfspr doesn't have an Rc bit,
|
|
-- and we don't want the zero-detect logic to be after the
|
|
-- SPR mux for timing reasons.
|
|
if ex1.se.mult_32s = '1' then
|
|
if ex1.res2_sel(0) = '0' then
|
|
rcresult := mult_32s_to_x.result(63 downto 0);
|
|
else
|
|
rcresult := mult_32s_to_x.result(63 downto 32) &
|
|
mult_32s_to_x.result(63 downto 32);
|
|
end if;
|
|
elsif ex1.res2_sel(0) = '0' then
|
|
rcresult := ex1.e.write_data;
|
|
else
|
|
rcresult := countbits_result;
|
|
end if;
|
|
if ex1.res2_sel(0) = '0' then
|
|
sprres := spr_result;
|
|
else
|
|
sprres := pmu_to_x.spr_val;
|
|
end if;
|
|
if ex1.res2_sel(1) = '1' then
|
|
ex_result := sprres;
|
|
elsif ex1.redir_to_next = '1' then
|
|
ex_result := next_nia;
|
|
else
|
|
ex_result := rcresult;
|
|
end if;
|
|
|
|
cr_res := ex1.e.write_cr_data;
|
|
cr_mask := ex1.e.write_cr_mask;
|
|
if ex1.e.rc = '1' and ex1.e.write_enable = '1' then
|
|
rcnz_lo := or (rcresult(31 downto 0));
|
|
if ex1.e.mode_32bit = '0' then
|
|
rcnz_hi := or (rcresult(63 downto 32));
|
|
zero := not (rcnz_hi or rcnz_lo);
|
|
sign := ex_result(63);
|
|
else
|
|
zero := not rcnz_lo;
|
|
sign := ex_result(31);
|
|
end if;
|
|
cr_res(31) := sign;
|
|
cr_res(30) := not (sign or zero);
|
|
cr_res(29) := zero;
|
|
cr_res(28) := v.e.xerc.so;
|
|
cr_mask(7) := '1';
|
|
end if;
|
|
|
|
if stage2_stall = '0' then
|
|
v.e.write_data := ex_result;
|
|
v.e.write_cr_data := cr_res;
|
|
v.e.write_cr_mask := cr_mask;
|
|
if ex1.e.rc = '1' and ex1.e.write_enable = '1' and v.e.valid = '1' then
|
|
v.e.write_cr_enable := '1';
|
|
end if;
|
|
|
|
if ex1.se.write_msr = '1' then
|
|
ctrl_tmp.msr <= ex1.msr;
|
|
end if;
|
|
if ex1.se.write_xerlow = '1' then
|
|
ctrl_tmp.xer_low <= ex1.e.write_data(17 downto 0);
|
|
end if;
|
|
if ex1.se.write_dec = '1' then
|
|
ctrl_tmp.dec <= ex1.e.write_data;
|
|
end if;
|
|
if ex1.se.write_cfar = '1' then
|
|
ctrl_tmp.cfar <= ex1.e.write_data;
|
|
elsif ex1.se.set_cfar = '1' then
|
|
ctrl_tmp.cfar <= ex1.e.last_nia;
|
|
end if;
|
|
if ex1.se.write_loga = '1' then
|
|
v.log_addr_spr := ex1.e.write_data(31 downto 0);
|
|
elsif ex1.se.inc_loga = '1' then
|
|
v.log_addr_spr := std_ulogic_vector(unsigned(ex2.log_addr_spr) + 1);
|
|
end if;
|
|
x_to_pmu.mtspr <= ex1.se.write_pmuspr;
|
|
if ex1.se.write_hfscr = '1' then
|
|
ctrl_tmp.hfscr_ic <= ex1.e.write_data(59 downto 56);
|
|
ctrl_tmp.hfscr_pref <= ex1.e.write_data(HFSCR_PREFIX);
|
|
ctrl_tmp.hfscr_tar <= ex1.e.write_data(HFSCR_TAR);
|
|
ctrl_tmp.hfscr_dscr <= ex1.e.write_data(HFSCR_DSCR);
|
|
ctrl_tmp.hfscr_fp <= ex1.e.write_data(HFSCR_FP);
|
|
elsif ex1.se.write_hic = '1' then
|
|
ctrl_tmp.hfscr_ic <= ex1.ic;
|
|
end if;
|
|
if ex1.se.write_fscr = '1' then
|
|
ctrl_tmp.fscr_ic <= ex1.e.write_data(59 downto 56);
|
|
ctrl_tmp.fscr_pref <= ex1.e.write_data(FSCR_PREFIX);
|
|
ctrl_tmp.fscr_scv <= ex1.e.write_data(FSCR_SCV);
|
|
ctrl_tmp.fscr_tar <= ex1.e.write_data(FSCR_TAR);
|
|
ctrl_tmp.fscr_dscr <= ex1.e.write_data(FSCR_DSCR);
|
|
elsif ex1.se.write_ic = '1' then
|
|
ctrl_tmp.fscr_ic <= ex1.ic;
|
|
end if;
|
|
if ex1.se.write_heir = '1' then
|
|
ctrl_tmp.heir <= ex1.e.write_data;
|
|
elsif ex1.se.set_heir = '1' then
|
|
ctrl_tmp.heir(31 downto 0) <= ex1.insn;
|
|
if ex1.prefixed = '1' then
|
|
ctrl_tmp.heir(63 downto 58) <= 6x"01";
|
|
ctrl_tmp.heir(57 downto 32) <= ex1.prefix;
|
|
else
|
|
ctrl_tmp.heir(63 downto 32) <= (others => '0');
|
|
end if;
|
|
end if;
|
|
if ex1.se.write_ctrl = '1' then
|
|
ctrl_tmp.run <= ex1.e.write_data(0);
|
|
end if;
|
|
if ex1.se.write_dscr = '1' then
|
|
ctrl_tmp.dscr <= ex1.e.write_data(24 downto 0);
|
|
end if;
|
|
if ex1.se.write_ciabr = '1' then
|
|
ctrl_tmp.ciabr <= ex1.e.write_data;
|
|
end if;
|
|
if ex1.se.enter_wait = '1' then
|
|
ctrl_tmp.wait_state <= '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- pending exceptions clear any wait state
|
|
-- ex1.fp_exception_next is not tested because it is not possible to
|
|
-- get into wait state with a pending FP exception.
|
|
irq_exc := pmu_to_x.intr or ctrl.dec(63) or ext_irq_in;
|
|
if ex1.trace_next = '1' or irq_exc = '1' or interrupt_in.intr = '1' then
|
|
ctrl_tmp.wait_state <= '0';
|
|
end if;
|
|
|
|
if interrupt_in.intr = '1' then
|
|
ctrl_tmp.msr(MSR_SF) <= '1';
|
|
ctrl_tmp.msr(MSR_PR) <= '0';
|
|
ctrl_tmp.msr(MSR_SE) <= '0';
|
|
ctrl_tmp.msr(MSR_BE) <= '0';
|
|
ctrl_tmp.msr(MSR_FP) <= '0';
|
|
ctrl_tmp.msr(MSR_FE0) <= '0';
|
|
ctrl_tmp.msr(MSR_FE1) <= '0';
|
|
ctrl_tmp.msr(MSR_IR) <= '0';
|
|
ctrl_tmp.msr(MSR_DR) <= '0';
|
|
ctrl_tmp.msr(MSR_LE) <= '1';
|
|
if interrupt_in.scv_int = '0' then
|
|
ctrl_tmp.msr(MSR_EE) <= '0';
|
|
ctrl_tmp.msr(MSR_RI) <= '0';
|
|
end if;
|
|
end if;
|
|
|
|
bypass_valid := ex1.e.valid;
|
|
if stage2_stall = '1' and ex1.res2_sel(1) = '1' then
|
|
bypass_valid := '0';
|
|
end if;
|
|
|
|
bypass2_data.tag.valid <= ex1.e.write_enable and bypass_valid;
|
|
bypass2_data.tag.tag <= ex1.e.instr_tag.tag;
|
|
bypass2_data.data <= ex_result;
|
|
|
|
bypass2_cr_data.tag.valid <= (ex1.e.write_cr_enable or (ex1.e.rc and ex1.e.write_enable))
|
|
and bypass_valid;
|
|
bypass2_cr_data.tag.tag <= ex1.e.instr_tag.tag;
|
|
bypass2_cr_data.data <= cr_res;
|
|
|
|
-- Update registers
|
|
ex2in <= v;
|
|
|
|
-- update outputs
|
|
e_out <= ex2.e;
|
|
e_out.msr <= msr_copy(ctrl.msr);
|
|
|
|
run_out <= ctrl.run;
|
|
terminate_out <= ex2.se.terminate;
|
|
icache_inval <= ex2.se.icache_inval;
|
|
|
|
exception_log <= v.e.interrupt;
|
|
end process;
|
|
|
|
sim_dump_test: if SIM generate
|
|
dump_exregs: process(all)
|
|
variable xer : std_ulogic_vector(63 downto 0);
|
|
begin
|
|
if sim_dump = '1' then
|
|
report "LR " & to_hstring(even_sprs(to_integer(RAMSPR_LR)));
|
|
report "CTR " & to_hstring(odd_sprs(to_integer(RAMSPR_CTR)));
|
|
sim_dump_done <= '1';
|
|
else
|
|
sim_dump_done <= '0';
|
|
end if;
|
|
end process;
|
|
end generate;
|
|
|
|
-- Keep GHDL synthesis happy
|
|
sim_dump_test_synth: if not SIM generate
|
|
sim_dump_done <= '0';
|
|
end generate;
|
|
|
|
e1_log: if LOG_LENGTH > 0 generate
|
|
signal log_data : std_ulogic_vector(11 downto 0);
|
|
begin
|
|
ex1_log : process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
log_data <= ctrl.msr(MSR_EE) & ctrl.msr(MSR_PR) &
|
|
ctrl.msr(MSR_IR) & ctrl.msr(MSR_DR) &
|
|
exception_log &
|
|
irq_valid_log &
|
|
interrupt_in.intr &
|
|
ex2.e.write_enable &
|
|
ex2.e.valid &
|
|
(ex2.e.redirect or ex2.e.interrupt) &
|
|
ex1.busy &
|
|
flush_in;
|
|
end if;
|
|
end process;
|
|
log_out <= log_data;
|
|
end generate;
|
|
end architecture behaviour;
|