mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-01-13 15:18:09 +00:00
This makes the FPU able to stall other units at execute stage 2 and be stalled by other units (specifically the LSU). This means that the completion and writeback for an instruction can now end up being deferred until the second cycle of a following instruction, i.e. the cycle when the state machine has gone through IDLE state into one of the DO_* states, which means we need to latch the destination FPR number, CR mask, etc. from the previous instruction so that we present the correct information to writeback. The advantage of this is that we can get rid of the in_progress signal from the LSU. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1660 lines
61 KiB
VHDL
1660 lines
61 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.crhelpers.all;
|
|
use work.insn_helpers.all;
|
|
use work.ppc_fx_insns.all;
|
|
|
|
entity execute1 is
|
|
generic (
|
|
EX1_BYPASS : boolean := true;
|
|
HAS_FPU : boolean := true;
|
|
HAS_SHORT_MULT : boolean := false;
|
|
-- Non-zero to enable log data collection
|
|
LOG_LENGTH : natural := 0
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
-- asynchronous
|
|
flush_in : in std_ulogic;
|
|
busy_out : out std_ulogic;
|
|
|
|
e_in : in Decode2ToExecute1Type;
|
|
l_in : in Loadstore1ToExecute1Type;
|
|
fp_in : in FPUToExecute1Type;
|
|
|
|
ext_irq_in : std_ulogic;
|
|
interrupt_in : std_ulogic;
|
|
|
|
-- asynchronous
|
|
l_out : out Execute1ToLoadstore1Type;
|
|
fp_out : out Execute1ToFPUType;
|
|
|
|
e_out : out Execute1ToWritebackType;
|
|
bypass_data : out bypass_data_t;
|
|
bypass_cr_data : out cr_bypass_data_t;
|
|
bypass2_data : out bypass_data_t;
|
|
bypass2_cr_data : out cr_bypass_data_t;
|
|
|
|
dbg_ctrl_out : out ctrl_t;
|
|
|
|
icache_inval : out std_ulogic;
|
|
terminate_out : out std_ulogic;
|
|
|
|
-- PMU event buses
|
|
wb_events : in WritebackEventType;
|
|
ls_events : in Loadstore1EventType;
|
|
dc_events : in DcacheEventType;
|
|
ic_events : in IcacheEventType;
|
|
|
|
log_out : out std_ulogic_vector(14 downto 0);
|
|
log_rd_addr : out std_ulogic_vector(31 downto 0);
|
|
log_rd_data : in std_ulogic_vector(63 downto 0);
|
|
log_wr_addr : in std_ulogic_vector(31 downto 0)
|
|
);
|
|
end entity execute1;
|
|
|
|
architecture behaviour of execute1 is
|
|
type side_effect_type is record
|
|
terminate : std_ulogic;
|
|
icache_inval : std_ulogic;
|
|
write_msr : std_ulogic;
|
|
write_xerlow : std_ulogic;
|
|
write_dec : std_ulogic;
|
|
write_cfar : std_ulogic;
|
|
write_loga : std_ulogic;
|
|
inc_loga : std_ulogic;
|
|
write_pmuspr : std_ulogic;
|
|
end record;
|
|
constant side_effect_init : side_effect_type := (others => '0');
|
|
|
|
type actions_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
complete : std_ulogic;
|
|
exception : std_ulogic;
|
|
trap : std_ulogic;
|
|
new_msr : std_ulogic_vector(63 downto 0);
|
|
take_branch : std_ulogic;
|
|
direct_branch : std_ulogic;
|
|
start_mul : std_ulogic;
|
|
start_div : std_ulogic;
|
|
do_trace : std_ulogic;
|
|
fp_intr : std_ulogic;
|
|
res2_sel : std_ulogic_vector(1 downto 0);
|
|
bypass_valid : std_ulogic;
|
|
end record;
|
|
constant actions_type_init : actions_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
new_msr => (others => '0'), res2_sel => "00", others => '0');
|
|
|
|
type reg_stage1_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
busy: std_ulogic;
|
|
fp_exception_next : std_ulogic;
|
|
trace_next : std_ulogic;
|
|
prev_op : insn_type_t;
|
|
br_taken : std_ulogic;
|
|
oe : std_ulogic;
|
|
mul_select : std_ulogic_vector(1 downto 0);
|
|
res2_sel : std_ulogic_vector(1 downto 0);
|
|
spr_select : spr_id;
|
|
pmu_spr_num : std_ulogic_vector(4 downto 0);
|
|
mul_in_progress : std_ulogic;
|
|
mul_finish : std_ulogic;
|
|
div_in_progress : std_ulogic;
|
|
no_instr_avail : std_ulogic;
|
|
instr_dispatch : std_ulogic;
|
|
ext_interrupt : std_ulogic;
|
|
taken_branch_event : std_ulogic;
|
|
br_mispredict : std_ulogic;
|
|
msr : std_ulogic_vector(63 downto 0);
|
|
xerc : xer_common_t;
|
|
xerc_valid : std_ulogic;
|
|
end record;
|
|
constant reg_stage1_type_init : reg_stage1_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
busy => '0',
|
|
fp_exception_next => '0', trace_next => '0', prev_op => OP_ILLEGAL, br_taken => '0',
|
|
oe => '0', mul_select => "00", res2_sel => "00",
|
|
spr_select => spr_id_init, pmu_spr_num => 5x"0",
|
|
mul_in_progress => '0', mul_finish => '0', div_in_progress => '0',
|
|
no_instr_avail => '0', instr_dispatch => '0', ext_interrupt => '0',
|
|
taken_branch_event => '0', br_mispredict => '0',
|
|
msr => 64x"0",
|
|
xerc => xerc_init, xerc_valid => '0');
|
|
|
|
type reg_stage2_type is record
|
|
e : Execute1ToWritebackType;
|
|
se : side_effect_type;
|
|
ext_interrupt : std_ulogic;
|
|
taken_branch_event : std_ulogic;
|
|
br_mispredict : std_ulogic;
|
|
log_addr_spr : std_ulogic_vector(31 downto 0);
|
|
end record;
|
|
constant reg_stage2_type_init : reg_stage2_type :=
|
|
(e => Execute1ToWritebackInit, se => side_effect_init,
|
|
log_addr_spr => 32x"0", others => '0');
|
|
|
|
signal ex1, ex1in : reg_stage1_type;
|
|
signal ex2, ex2in : reg_stage2_type;
|
|
signal actions : actions_type;
|
|
|
|
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
|
|
signal cr_in : std_ulogic_vector(31 downto 0);
|
|
signal xerc_in : xer_common_t;
|
|
signal mshort_p : std_ulogic_vector(31 downto 0) := (others => '0');
|
|
|
|
signal valid_in : std_ulogic;
|
|
signal ctrl: ctrl_t := ctrl_t_init;
|
|
signal ctrl_tmp: ctrl_t := ctrl_t_init;
|
|
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
|
|
signal rot_sign_ext: std_ulogic;
|
|
signal rotator_result: std_ulogic_vector(63 downto 0);
|
|
signal rotator_carry: std_ulogic;
|
|
signal logical_result: std_ulogic_vector(63 downto 0);
|
|
signal do_popcnt: std_ulogic;
|
|
signal countbits_result: std_ulogic_vector(63 downto 0);
|
|
signal alu_result: std_ulogic_vector(63 downto 0);
|
|
signal adder_result: std_ulogic_vector(63 downto 0);
|
|
signal misc_result: std_ulogic_vector(63 downto 0);
|
|
signal muldiv_result: std_ulogic_vector(63 downto 0);
|
|
signal shortmul_result: std_ulogic_vector(63 downto 0);
|
|
signal spr_result: std_ulogic_vector(63 downto 0);
|
|
signal next_nia : std_ulogic_vector(63 downto 0);
|
|
signal s1_sel : std_ulogic_vector(2 downto 0);
|
|
|
|
signal carry_32 : std_ulogic;
|
|
signal carry_64 : std_ulogic;
|
|
signal overflow_32 : std_ulogic;
|
|
signal overflow_64 : std_ulogic;
|
|
|
|
signal trapval : std_ulogic_vector(4 downto 0);
|
|
|
|
signal write_cr_mask : std_ulogic_vector(7 downto 0);
|
|
signal write_cr_data : std_ulogic_vector(31 downto 0);
|
|
|
|
-- multiply signals
|
|
signal x_to_multiply: MultiplyInputType;
|
|
signal multiply_to_x: MultiplyOutputType;
|
|
|
|
-- divider signals
|
|
signal x_to_divider: Execute1ToDividerType;
|
|
signal divider_to_x: DividerToExecute1Type;
|
|
|
|
-- random number generator signals
|
|
signal random_raw : std_ulogic_vector(63 downto 0);
|
|
signal random_cond : std_ulogic_vector(63 downto 0);
|
|
signal random_err : std_ulogic;
|
|
|
|
-- PMU signals
|
|
signal x_to_pmu : Execute1ToPMUType;
|
|
signal pmu_to_x : PMUToExecute1Type;
|
|
|
|
-- signals for logging
|
|
signal exception_log : std_ulogic;
|
|
signal irq_valid_log : std_ulogic;
|
|
|
|
signal stage2_stall : std_ulogic;
|
|
|
|
type privilege_level is (USER, SUPER);
|
|
type op_privilege_array is array(insn_type_t) of privilege_level;
|
|
constant op_privilege: op_privilege_array := (
|
|
OP_ATTN => SUPER,
|
|
OP_MFMSR => SUPER,
|
|
OP_MTMSRD => SUPER,
|
|
OP_RFID => SUPER,
|
|
OP_TLBIE => SUPER,
|
|
others => USER
|
|
);
|
|
|
|
function instr_is_privileged(op: insn_type_t; insn: std_ulogic_vector(31 downto 0))
|
|
return boolean is
|
|
begin
|
|
if op_privilege(op) = SUPER then
|
|
return true;
|
|
elsif op = OP_MFSPR or op = OP_MTSPR then
|
|
return insn(20) = '1';
|
|
else
|
|
return false;
|
|
end if;
|
|
end;
|
|
|
|
procedure set_carry(e: inout Execute1ToWritebackType;
|
|
carry32 : in std_ulogic;
|
|
carry : in std_ulogic) is
|
|
begin
|
|
e.xerc.ca32 := carry32;
|
|
e.xerc.ca := carry;
|
|
end;
|
|
|
|
procedure set_ov(e: inout Execute1ToWritebackType;
|
|
ov : in std_ulogic;
|
|
ov32 : in std_ulogic) is
|
|
begin
|
|
e.xerc.ov32 := ov32;
|
|
e.xerc.ov := ov;
|
|
if ov = '1' then
|
|
e.xerc.so := '1';
|
|
end if;
|
|
end;
|
|
|
|
function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
|
|
ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
|
|
begin
|
|
return (ca xor msb_r) and not (msb_a xor msb_b);
|
|
end;
|
|
|
|
function decode_input_carry(ic : carry_in_t;
|
|
xerc : xer_common_t) return std_ulogic is
|
|
begin
|
|
case ic is
|
|
when ZERO =>
|
|
return '0';
|
|
when CA =>
|
|
return xerc.ca;
|
|
when OV =>
|
|
return xerc.ov;
|
|
when ONE =>
|
|
return '1';
|
|
end case;
|
|
end;
|
|
|
|
function msr_copy(msr: std_ulogic_vector(63 downto 0))
|
|
return std_ulogic_vector is
|
|
variable msr_out: std_ulogic_vector(63 downto 0);
|
|
begin
|
|
-- ISA says this:
|
|
-- Defined MSR bits are classified as either full func-
|
|
-- tion or partial function. Full function MSR bits are
|
|
-- saved in SRR1 or HSRR1 when an interrupt other
|
|
-- than a System Call Vectored interrupt occurs and
|
|
-- restored by rfscv, rfid, or hrfid, while partial func-
|
|
-- tion MSR bits are not saved or restored.
|
|
-- Full function MSR bits lie in the range 0:32, 37:41, and
|
|
-- 48:63, and partial function MSR bits lie in the range
|
|
-- 33:36 and 42:47. (Note this is IBM bit numbering).
|
|
msr_out := (others => '0');
|
|
msr_out(63 downto 31) := msr(63 downto 31);
|
|
msr_out(26 downto 22) := msr(26 downto 22);
|
|
msr_out(15 downto 0) := msr(15 downto 0);
|
|
return msr_out;
|
|
end;
|
|
|
|
-- Work out whether a signed value fits into n bits,
|
|
-- that is, see if it is in the range -2^(n-1) .. 2^(n-1) - 1
|
|
function fits_in_n_bits(val: std_ulogic_vector; n: integer) return boolean is
|
|
variable x, xp1: std_ulogic_vector(val'left downto val'right);
|
|
begin
|
|
x := val;
|
|
if val(val'left) = '0' then
|
|
x := not val;
|
|
end if;
|
|
xp1 := bit_reverse(std_ulogic_vector(unsigned(bit_reverse(x)) + 1));
|
|
x := x and not xp1;
|
|
-- For positive inputs, x has ones at the positions
|
|
-- to the left of the leftmost 1 bit in val.
|
|
-- For negative inputs, x has ones to the left of
|
|
-- the leftmost 0 bit in val.
|
|
return x(n - 1) = '1';
|
|
end;
|
|
|
|
function assemble_xer(xerc: xer_common_t; xer_low: std_ulogic_vector)
|
|
return std_ulogic_vector is
|
|
begin
|
|
return 32x"0" & xerc.so & xerc.ov & xerc.ca & "000000000" &
|
|
xerc.ov32 & xerc.ca32 & xer_low(17 downto 0);
|
|
end;
|
|
|
|
-- Tell vivado to keep the hierarchy for the random module so that the
|
|
-- net names in the xdc file match.
|
|
attribute keep_hierarchy : string;
|
|
attribute keep_hierarchy of random_0 : label is "yes";
|
|
|
|
begin
|
|
|
|
rotator_0: entity work.rotator
|
|
port map (
|
|
rs => c_in,
|
|
ra => a_in,
|
|
shift => b_in(6 downto 0),
|
|
insn => e_in.insn,
|
|
is_32bit => e_in.is_32bit,
|
|
right_shift => right_shift,
|
|
arith => e_in.is_signed,
|
|
clear_left => rot_clear_left,
|
|
clear_right => rot_clear_right,
|
|
sign_ext_rs => rot_sign_ext,
|
|
result => rotator_result,
|
|
carry_out => rotator_carry
|
|
);
|
|
|
|
logical_0: entity work.logical
|
|
port map (
|
|
rs => c_in,
|
|
rb => b_in,
|
|
op => e_in.insn_type,
|
|
invert_in => e_in.invert_a,
|
|
invert_out => e_in.invert_out,
|
|
result => logical_result,
|
|
datalen => e_in.data_len
|
|
);
|
|
|
|
countbits_0: entity work.bit_counter
|
|
port map (
|
|
clk => clk,
|
|
rs => c_in,
|
|
stall => stage2_stall,
|
|
count_right => e_in.insn(10),
|
|
is_32bit => e_in.is_32bit,
|
|
do_popcnt => do_popcnt,
|
|
datalen => e_in.data_len,
|
|
result => countbits_result
|
|
);
|
|
|
|
multiply_0: entity work.multiply
|
|
port map (
|
|
clk => clk,
|
|
m_in => x_to_multiply,
|
|
m_out => multiply_to_x
|
|
);
|
|
|
|
divider_0: entity work.divider
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
d_in => x_to_divider,
|
|
d_out => divider_to_x
|
|
);
|
|
|
|
random_0: entity work.random
|
|
port map (
|
|
clk => clk,
|
|
data => random_cond,
|
|
raw => random_raw,
|
|
err => random_err
|
|
);
|
|
|
|
pmu_0: entity work.pmu
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
p_in => x_to_pmu,
|
|
p_out => pmu_to_x
|
|
);
|
|
|
|
short_mult_0: if HAS_SHORT_MULT generate
|
|
begin
|
|
short_mult: entity work.short_multiply
|
|
port map (
|
|
clk => clk,
|
|
a_in => a_in(15 downto 0),
|
|
b_in => b_in(15 downto 0),
|
|
m_out => mshort_p
|
|
);
|
|
end generate;
|
|
|
|
dbg_ctrl_out <= ctrl;
|
|
log_rd_addr <= ex2.log_addr_spr;
|
|
|
|
a_in <= e_in.read_data1;
|
|
b_in <= e_in.read_data2;
|
|
c_in <= e_in.read_data3;
|
|
cr_in <= e_in.cr;
|
|
|
|
x_to_pmu.occur <= (instr_complete => wb_events.instr_complete,
|
|
fp_complete => wb_events.fp_complete,
|
|
ld_complete => ls_events.load_complete,
|
|
st_complete => ls_events.store_complete,
|
|
itlb_miss => ls_events.itlb_miss,
|
|
dc_load_miss => dc_events.load_miss,
|
|
dc_ld_miss_resolved => dc_events.dcache_refill,
|
|
dc_store_miss => dc_events.store_miss,
|
|
dtlb_miss => dc_events.dtlb_miss,
|
|
dtlb_miss_resolved => dc_events.dtlb_miss_resolved,
|
|
icache_miss => ic_events.icache_miss,
|
|
itlb_miss_resolved => ic_events.itlb_miss_resolved,
|
|
no_instr_avail => ex1.no_instr_avail,
|
|
dispatch => ex1.instr_dispatch,
|
|
ext_interrupt => ex2.ext_interrupt,
|
|
br_taken_complete => ex2.taken_branch_event,
|
|
br_mispredict => ex2.br_mispredict,
|
|
others => '0');
|
|
x_to_pmu.nia <= e_in.nia;
|
|
x_to_pmu.addr <= (others => '0');
|
|
x_to_pmu.addr_v <= '0';
|
|
x_to_pmu.spr_num <= ex1.pmu_spr_num;
|
|
x_to_pmu.spr_val <= ex1.e.write_data;
|
|
x_to_pmu.run <= '1';
|
|
|
|
-- XER forwarding. To avoid having to track XER hazards, we use
|
|
-- the previously latched value. Since the XER common bits
|
|
-- (SO, OV[32] and CA[32]) are only modified by instructions that are
|
|
-- handled here, we can just use the result most recently sent to
|
|
-- writeback, unless a pipeline flush has happened in the meantime.
|
|
xerc_in <= ex1.xerc when ex1.xerc_valid = '1' else e_in.xerc;
|
|
|
|
-- N.B. the busy signal from each source includes the
|
|
-- stage2 stall from that source in it.
|
|
busy_out <= l_in.busy or ex1.busy or fp_in.busy;
|
|
|
|
valid_in <= e_in.valid and not (busy_out or flush_in or ex1.e.redirect or ex1.e.interrupt);
|
|
|
|
-- First stage result mux
|
|
s1_sel <= e_in.result_sel when ex1.busy = '0' else "100";
|
|
with s1_sel select alu_result <=
|
|
adder_result when "000",
|
|
logical_result when "001",
|
|
rotator_result when "010",
|
|
shortmul_result when "011",
|
|
muldiv_result when "100",
|
|
next_nia when "110",
|
|
misc_result when others;
|
|
|
|
execute1_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' then
|
|
ex1 <= reg_stage1_type_init;
|
|
ex2 <= reg_stage2_type_init;
|
|
ctrl <= ctrl_t_init;
|
|
ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
|
|
ex1.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
|
|
else
|
|
ex1 <= ex1in;
|
|
ex2 <= ex2in;
|
|
ctrl <= ctrl_tmp;
|
|
if valid_in = '1' then
|
|
report "execute " & to_hstring(e_in.nia) & " op=" & insn_type_t'image(e_in.insn_type) &
|
|
" wr=" & to_hstring(ex1in.e.write_reg) & " we=" & std_ulogic'image(ex1in.e.write_enable) &
|
|
" tag=" & integer'image(ex1in.e.instr_tag.tag) & std_ulogic'image(ex1in.e.instr_tag.valid);
|
|
end if;
|
|
-- We mustn't get stalled on a cycle where execute2 is
|
|
-- completing an instruction or generating an interrupt
|
|
if ex2.e.valid = '1' or ex2.e.interrupt = '1' then
|
|
assert stage2_stall = '0' severity failure;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Data path for integer instructions (first execute stage)
|
|
execute1_dp: process(all)
|
|
variable a_inv : std_ulogic_vector(63 downto 0);
|
|
variable b_or_m1 : std_ulogic_vector(63 downto 0);
|
|
variable sum_with_carry : std_ulogic_vector(64 downto 0);
|
|
variable sign1, sign2 : std_ulogic;
|
|
variable abs1, abs2 : signed(63 downto 0);
|
|
variable addend : std_ulogic_vector(127 downto 0);
|
|
variable addg6s : std_ulogic_vector(63 downto 0);
|
|
variable crbit : integer range 0 to 31;
|
|
variable isel_result : std_ulogic_vector(63 downto 0);
|
|
variable darn : std_ulogic_vector(63 downto 0);
|
|
variable setb_result : std_ulogic_vector(63 downto 0);
|
|
variable mfcr_result : std_ulogic_vector(63 downto 0);
|
|
variable lo, hi : integer;
|
|
variable l : std_ulogic;
|
|
variable zerohi, zerolo : std_ulogic;
|
|
variable msb_a, msb_b : std_ulogic;
|
|
variable a_lt : std_ulogic;
|
|
variable a_lt_lo : std_ulogic;
|
|
variable a_lt_hi : std_ulogic;
|
|
variable newcrf : std_ulogic_vector(3 downto 0);
|
|
variable bf, bfa : std_ulogic_vector(2 downto 0);
|
|
variable crnum : crnum_t;
|
|
variable scrnum : crnum_t;
|
|
variable cr_operands : std_ulogic_vector(1 downto 0);
|
|
variable crresult : std_ulogic;
|
|
variable bt, ba, bb : std_ulogic_vector(4 downto 0);
|
|
variable btnum : integer range 0 to 3;
|
|
variable banum, bbnum : integer range 0 to 31;
|
|
variable j : integer;
|
|
begin
|
|
-- Main adder
|
|
if e_in.invert_a = '0' then
|
|
a_inv := a_in;
|
|
else
|
|
a_inv := not a_in;
|
|
end if;
|
|
if e_in.addm1 = '0' then
|
|
b_or_m1 := b_in;
|
|
else
|
|
b_or_m1 := (others => '1');
|
|
end if;
|
|
sum_with_carry := ppc_adde(a_inv, b_or_m1,
|
|
decode_input_carry(e_in.input_carry, xerc_in));
|
|
adder_result <= sum_with_carry(63 downto 0);
|
|
carry_32 <= sum_with_carry(32) xor a_inv(32) xor b_in(32);
|
|
carry_64 <= sum_with_carry(64);
|
|
overflow_32 <= calc_ov(a_inv(31), b_in(31), carry_32, sum_with_carry(31));
|
|
overflow_64 <= calc_ov(a_inv(63), b_in(63), carry_64, sum_with_carry(63));
|
|
|
|
-- signals to multiply and divide units
|
|
sign1 := '0';
|
|
sign2 := '0';
|
|
if e_in.is_signed = '1' then
|
|
if e_in.is_32bit = '1' then
|
|
sign1 := a_in(31);
|
|
sign2 := b_in(31);
|
|
else
|
|
sign1 := a_in(63);
|
|
sign2 := b_in(63);
|
|
end if;
|
|
end if;
|
|
-- take absolute values
|
|
if sign1 = '0' then
|
|
abs1 := signed(a_in);
|
|
else
|
|
abs1 := - signed(a_in);
|
|
end if;
|
|
if sign2 = '0' then
|
|
abs2 := signed(b_in);
|
|
else
|
|
abs2 := - signed(b_in);
|
|
end if;
|
|
|
|
-- Interface to multiply and divide units
|
|
x_to_divider.is_signed <= e_in.is_signed;
|
|
x_to_divider.is_32bit <= e_in.is_32bit;
|
|
x_to_divider.is_extended <= '0';
|
|
x_to_divider.is_modulus <= '0';
|
|
if e_in.insn_type = OP_MOD then
|
|
x_to_divider.is_modulus <= '1';
|
|
end if;
|
|
x_to_divider.flush <= flush_in;
|
|
|
|
addend := (others => '0');
|
|
if e_in.insn(26) = '0' then
|
|
-- integer multiply-add, major op 4 (if it is a multiply)
|
|
addend(63 downto 0) := c_in;
|
|
if e_in.is_signed = '1' then
|
|
addend(127 downto 64) := (others => c_in(63));
|
|
end if;
|
|
end if;
|
|
if (sign1 xor sign2) = '1' then
|
|
addend := not addend;
|
|
end if;
|
|
|
|
x_to_multiply.is_32bit <= e_in.is_32bit;
|
|
x_to_multiply.not_result <= sign1 xor sign2;
|
|
x_to_multiply.addend <= addend;
|
|
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
|
|
if e_in.is_32bit = '0' then
|
|
-- 64-bit forms
|
|
x_to_multiply.data1 <= std_ulogic_vector(abs1);
|
|
x_to_multiply.data2 <= std_ulogic_vector(abs2);
|
|
if e_in.insn_type = OP_DIVE then
|
|
x_to_divider.is_extended <= '1';
|
|
end if;
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1);
|
|
x_to_divider.divisor <= std_ulogic_vector(abs2);
|
|
else
|
|
-- 32-bit forms
|
|
x_to_multiply.data1 <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
|
|
x_to_multiply.data2 <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
|
|
x_to_divider.is_extended <= '0';
|
|
if e_in.insn_type = OP_DIVE then -- extended forms
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
|
|
else
|
|
x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
|
|
end if;
|
|
x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
|
|
end if;
|
|
|
|
shortmul_result <= std_ulogic_vector(resize(signed(mshort_p), 64));
|
|
case ex1.mul_select is
|
|
when "00" =>
|
|
muldiv_result <= multiply_to_x.result(63 downto 0);
|
|
when "01" =>
|
|
muldiv_result <= multiply_to_x.result(127 downto 64);
|
|
when "10" =>
|
|
muldiv_result <= multiply_to_x.result(63 downto 32) &
|
|
multiply_to_x.result(63 downto 32);
|
|
when others =>
|
|
muldiv_result <= divider_to_x.write_reg_data;
|
|
end case;
|
|
|
|
-- Compute misc_result
|
|
case e_in.sub_select is
|
|
when "000" =>
|
|
misc_result <= (others => '0');
|
|
when "001" =>
|
|
-- addg6s
|
|
addg6s := (others => '0');
|
|
for i in 0 to 14 loop
|
|
lo := i * 4;
|
|
hi := (i + 1) * 4;
|
|
if (a_in(hi) xor b_in(hi) xor sum_with_carry(hi)) = '0' then
|
|
addg6s(lo + 3 downto lo) := "0110";
|
|
end if;
|
|
end loop;
|
|
if sum_with_carry(64) = '0' then
|
|
addg6s(63 downto 60) := "0110";
|
|
end if;
|
|
misc_result <= addg6s;
|
|
when "010" =>
|
|
-- isel
|
|
crbit := to_integer(unsigned(insn_bc(e_in.insn)));
|
|
if cr_in(31-crbit) = '1' then
|
|
isel_result := a_in;
|
|
else
|
|
isel_result := b_in;
|
|
end if;
|
|
misc_result <= isel_result;
|
|
when "011" =>
|
|
-- darn
|
|
darn := (others => '1');
|
|
if random_err = '0' then
|
|
case e_in.insn(17 downto 16) is
|
|
when "00" =>
|
|
darn := x"00000000" & random_cond(31 downto 0);
|
|
when "10" =>
|
|
darn := random_raw;
|
|
when others =>
|
|
darn := random_cond;
|
|
end case;
|
|
end if;
|
|
misc_result <= darn;
|
|
when "100" =>
|
|
-- mfmsr
|
|
misc_result <= ex1.msr;
|
|
when "101" =>
|
|
if e_in.insn(20) = '0' then
|
|
-- mfcr
|
|
mfcr_result := x"00000000" & cr_in;
|
|
else
|
|
-- mfocrf
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
mfcr_result := (others => '0');
|
|
for i in 0 to 7 loop
|
|
lo := (7-i)*4;
|
|
hi := lo + 3;
|
|
if crnum = i then
|
|
mfcr_result(hi downto lo) := cr_in(hi downto lo);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
misc_result <= mfcr_result;
|
|
when "110" =>
|
|
-- setb
|
|
bfa := insn_bfa(e_in.insn);
|
|
crbit := to_integer(unsigned(bfa)) * 4;
|
|
setb_result := (others => '0');
|
|
if cr_in(31 - crbit) = '1' then
|
|
setb_result := (others => '1');
|
|
elsif cr_in(30 - crbit) = '1' then
|
|
setb_result(0) := '1';
|
|
end if;
|
|
misc_result <= setb_result;
|
|
when others =>
|
|
misc_result <= (others => '0');
|
|
end case;
|
|
|
|
-- compute comparison results
|
|
-- Note, we have done RB - RA, not RA - RB
|
|
if e_in.insn_type = OP_CMP then
|
|
l := insn_l(e_in.insn);
|
|
else
|
|
l := not e_in.is_32bit;
|
|
end if;
|
|
zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
|
|
zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
|
|
if zerolo = '1' and (l = '0' or zerohi = '1') then
|
|
-- values are equal
|
|
trapval <= "00100";
|
|
else
|
|
a_lt_lo := '0';
|
|
a_lt_hi := '0';
|
|
if unsigned(a_in(30 downto 0)) < unsigned(b_in(30 downto 0)) then
|
|
a_lt_lo := '1';
|
|
end if;
|
|
if unsigned(a_in(62 downto 31)) < unsigned(b_in(62 downto 31)) then
|
|
a_lt_hi := '1';
|
|
end if;
|
|
if l = '1' then
|
|
-- 64-bit comparison
|
|
msb_a := a_in(63);
|
|
msb_b := b_in(63);
|
|
a_lt := a_lt_hi or (zerohi and (a_in(31) xnor b_in(31)) and a_lt_lo);
|
|
else
|
|
-- 32-bit comparison
|
|
msb_a := a_in(31);
|
|
msb_b := b_in(31);
|
|
a_lt := a_lt_lo;
|
|
end if;
|
|
if msb_a /= msb_b then
|
|
-- Comparison is clear from MSB difference.
|
|
-- for signed, 0 is greater; for unsigned, 1 is greater
|
|
trapval <= msb_a & msb_b & '0' & msb_b & msb_a;
|
|
else
|
|
-- MSBs are equal, so signed and unsigned comparisons give the
|
|
-- same answer.
|
|
trapval <= a_lt & not a_lt & '0' & a_lt & not a_lt;
|
|
end if;
|
|
end if;
|
|
|
|
-- CR result mux
|
|
bf := insn_bf(e_in.insn);
|
|
crnum := to_integer(unsigned(bf));
|
|
newcrf := (others => '0');
|
|
case e_in.sub_select is
|
|
when "000" =>
|
|
-- CMP and CMPL instructions
|
|
if e_in.is_signed = '1' then
|
|
newcrf := trapval(4 downto 2) & xerc_in.so;
|
|
else
|
|
newcrf := trapval(1 downto 0) & trapval(2) & xerc_in.so;
|
|
end if;
|
|
when "001" =>
|
|
newcrf := ppc_cmprb(a_in, b_in, insn_l(e_in.insn));
|
|
when "010" =>
|
|
newcrf := ppc_cmpeqb(a_in, b_in);
|
|
when "011" =>
|
|
if e_in.insn(1) = '1' then
|
|
-- CR logical instructions
|
|
j := (7 - crnum) * 4;
|
|
newcrf := cr_in(j + 3 downto j);
|
|
bt := insn_bt(e_in.insn);
|
|
ba := insn_ba(e_in.insn);
|
|
bb := insn_bb(e_in.insn);
|
|
btnum := 3 - to_integer(unsigned(bt(1 downto 0)));
|
|
banum := 31 - to_integer(unsigned(ba));
|
|
bbnum := 31 - to_integer(unsigned(bb));
|
|
-- Bits 6-9 of the instruction word give the truth table
|
|
-- of the requested logical operation
|
|
cr_operands := cr_in(banum) & cr_in(bbnum);
|
|
crresult := e_in.insn(6 + to_integer(unsigned(cr_operands)));
|
|
for i in 0 to 3 loop
|
|
if i = btnum then
|
|
newcrf(i) := crresult;
|
|
end if;
|
|
end loop;
|
|
else
|
|
-- MCRF
|
|
bfa := insn_bfa(e_in.insn);
|
|
scrnum := to_integer(unsigned(bfa));
|
|
j := (7 - scrnum) * 4;
|
|
newcrf := cr_in(j + 3 downto j);
|
|
end if;
|
|
when "100" =>
|
|
-- MCRXRX
|
|
newcrf := xerc_in.ov & xerc_in.ov32 & xerc_in.ca & xerc_in.ca32;
|
|
when others =>
|
|
end case;
|
|
if e_in.insn_type = OP_MTCRF then
|
|
if e_in.insn(20) = '0' then
|
|
-- mtcrf
|
|
write_cr_mask <= insn_fxm(e_in.insn);
|
|
else
|
|
-- mtocrf: We require one hot priority encoding here
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
write_cr_mask <= num_to_fxm(crnum);
|
|
end if;
|
|
elsif e_in.output_cr = '1' then
|
|
write_cr_mask <= num_to_fxm(crnum);
|
|
else
|
|
write_cr_mask <= (others => '0');
|
|
end if;
|
|
for i in 0 to 7 loop
|
|
if write_cr_mask(i) = '0' then
|
|
write_cr_data(i*4 + 3 downto i*4) <= cr_in(i*4 + 3 downto i*4);
|
|
elsif e_in.insn_type = OP_MTCRF then
|
|
write_cr_data(i*4 + 3 downto i*4) <= c_in(i*4 + 3 downto i*4);
|
|
else
|
|
write_cr_data(i*4 + 3 downto i*4) <= newcrf;
|
|
end if;
|
|
end loop;
|
|
|
|
end process;
|
|
|
|
execute1_actions: process(all)
|
|
variable v: actions_type;
|
|
variable bo, bi : std_ulogic_vector(4 downto 0);
|
|
variable illegal : std_ulogic;
|
|
variable privileged : std_ulogic;
|
|
variable slow_op : std_ulogic;
|
|
variable owait : std_ulogic;
|
|
begin
|
|
v := actions_type_init;
|
|
v.e.write_data := alu_result;
|
|
v.e.write_reg := e_in.write_reg;
|
|
v.e.write_enable := e_in.write_reg_enable;
|
|
v.e.rc := e_in.rc;
|
|
v.e.write_cr_data := write_cr_data;
|
|
v.e.write_cr_mask := write_cr_mask;
|
|
v.e.write_cr_enable := e_in.output_cr;
|
|
v.e.write_xerc_enable := e_in.output_xer;
|
|
v.e.xerc := xerc_in;
|
|
v.new_msr := ex1.msr;
|
|
v.e.redir_mode := ex1.msr(MSR_IR) & not ex1.msr(MSR_PR) &
|
|
not ex1.msr(MSR_LE) & not ex1.msr(MSR_SF);
|
|
v.e.intr_vec := 16#700#;
|
|
v.e.mode_32bit := not ex1.msr(MSR_SF);
|
|
v.e.instr_tag := e_in.instr_tag;
|
|
v.e.last_nia := e_in.nia;
|
|
v.e.br_offset := 64x"4";
|
|
|
|
-- Note the difference between v.exception and v.trap:
|
|
-- v.exception signals a condition that prevents execution of the
|
|
-- instruction, and hence shouldn't depend on operand data, so as to
|
|
-- avoid timing chains through both data and control paths.
|
|
-- v.trap also means we want to generate an interrupt, but doesn't
|
|
-- cancel instruction execution (hence we need to avoid setting any
|
|
-- side-effect flags or write enables when generating a trap).
|
|
-- With v.trap = 1 we will assert both ex1.e.valid and ex1.e.interrupt
|
|
-- to writeback, and it will complete the instruction and take
|
|
-- and interrupt. It is OK for v.trap to depend on operand data.
|
|
|
|
illegal := '0';
|
|
privileged := '0';
|
|
slow_op := '0';
|
|
owait := '0';
|
|
|
|
if ex1.msr(MSR_PR) = '1' and instr_is_privileged(e_in.insn_type, e_in.insn) then
|
|
privileged := '1';
|
|
end if;
|
|
|
|
if (not HAS_FPU and e_in.fac = FPU) or e_in.unit = NONE then
|
|
-- make lfd/stfd/lfs/stfs etc. illegal in no-FPU implementations
|
|
illegal := '1';
|
|
end if;
|
|
|
|
v.do_trace := ex1.msr(MSR_SE);
|
|
case_0: case e_in.insn_type is
|
|
when OP_ILLEGAL =>
|
|
illegal := '1';
|
|
when OP_SC =>
|
|
-- check bit 1 of the instruction is 1 so we know this is sc;
|
|
-- 0 would mean scv, so generate an illegal instruction interrupt
|
|
if e_in.insn(1) = '1' then
|
|
v.trap := '1';
|
|
v.e.intr_vec := 16#C00#;
|
|
v.e.last_nia := next_nia;
|
|
if e_in.valid = '1' then
|
|
report "sc";
|
|
end if;
|
|
else
|
|
illegal := '1';
|
|
end if;
|
|
when OP_ATTN =>
|
|
-- check bits 1-10 of the instruction to make sure it's attn
|
|
-- if not then it is illegal
|
|
if e_in.insn(10 downto 1) = "0100000000" then
|
|
v.se.terminate := '1';
|
|
if e_in.valid = '1' then
|
|
report "ATTN";
|
|
end if;
|
|
else
|
|
illegal := '1';
|
|
end if;
|
|
when OP_NOP | OP_DCBF | OP_DCBST | OP_DCBT | OP_DCBTST | OP_ICBT =>
|
|
-- Do nothing
|
|
when OP_ADD =>
|
|
if e_in.output_carry = '1' then
|
|
if e_in.input_carry /= OV then
|
|
set_carry(v.e, carry_32, carry_64);
|
|
else
|
|
v.e.xerc.ov := carry_64;
|
|
v.e.xerc.ov32 := carry_32;
|
|
end if;
|
|
end if;
|
|
if e_in.oe = '1' then
|
|
set_ov(v.e, overflow_64, overflow_32);
|
|
end if;
|
|
when OP_CMP =>
|
|
when OP_TRAP =>
|
|
-- trap instructions (tw, twi, td, tdi)
|
|
v.e.intr_vec := 16#700#;
|
|
-- set bit 46 to say trap occurred
|
|
v.e.srr1(47 - 46) := '1';
|
|
if or (trapval and insn_to(e_in.insn)) = '1' then
|
|
-- generate trap-type program interrupt
|
|
v.trap := '1';
|
|
if e_in.valid = '1' then
|
|
report "trap";
|
|
end if;
|
|
end if;
|
|
when OP_ADDG6S =>
|
|
when OP_CMPRB =>
|
|
when OP_CMPEQB =>
|
|
when OP_AND | OP_OR | OP_XOR | OP_PRTY | OP_CMPB | OP_EXTS |
|
|
OP_BPERM | OP_BCD =>
|
|
|
|
when OP_B =>
|
|
v.take_branch := '1';
|
|
v.direct_branch := '1';
|
|
v.e.br_last := '1';
|
|
v.e.br_taken := '1';
|
|
v.e.br_offset := b_in;
|
|
v.e.abs_br := insn_aa(e_in.insn);
|
|
if e_in.br_pred = '0' then
|
|
-- should never happen
|
|
v.e.redirect := '1';
|
|
end if;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.write_cfar := '1';
|
|
when OP_BC =>
|
|
-- read_data1 is CTR
|
|
-- If this instruction updates both CTR and LR, then it is
|
|
-- doubled; the first instruction decrements CTR and determines
|
|
-- whether the branch is taken, and the second does the
|
|
-- redirect and the LR update.
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
if e_in.second = '0' then
|
|
v.take_branch := ppc_bc_taken(bo, bi, cr_in, a_in);
|
|
else
|
|
v.take_branch := ex1.br_taken;
|
|
end if;
|
|
if v.take_branch = '1' then
|
|
v.e.br_offset := b_in;
|
|
v.e.abs_br := insn_aa(e_in.insn);
|
|
end if;
|
|
if e_in.repeat = '0' or e_in.second = '1' then
|
|
-- Mispredicted branches cause a redirect
|
|
if v.take_branch /= e_in.br_pred then
|
|
v.e.redirect := '1';
|
|
end if;
|
|
v.direct_branch := '1';
|
|
v.e.br_last := '1';
|
|
v.e.br_taken := v.take_branch;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.write_cfar := v.take_branch;
|
|
end if;
|
|
when OP_BCREG =>
|
|
-- read_data1 is CTR, read_data2 is target register (CTR, LR or TAR)
|
|
-- If this instruction updates both CTR and LR, then it is
|
|
-- doubled; the first instruction decrements CTR and determines
|
|
-- whether the branch is taken, and the second does the
|
|
-- redirect and the LR update.
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
if e_in.second = '0' then
|
|
v.take_branch := ppc_bc_taken(bo, bi, cr_in, a_in);
|
|
else
|
|
v.take_branch := ex1.br_taken;
|
|
end if;
|
|
if v.take_branch = '1' then
|
|
v.e.br_offset := b_in;
|
|
v.e.abs_br := '1';
|
|
end if;
|
|
if e_in.repeat = '0' or e_in.second = '1' then
|
|
-- Indirect branches are never predicted taken
|
|
v.e.redirect := v.take_branch;
|
|
v.e.br_taken := v.take_branch;
|
|
if ex1.msr(MSR_BE) = '1' then
|
|
v.do_trace := '1';
|
|
end if;
|
|
v.se.write_cfar := v.take_branch;
|
|
end if;
|
|
|
|
when OP_RFID =>
|
|
v.e.redir_mode := (a_in(MSR_IR) or a_in(MSR_PR)) & not a_in(MSR_PR) &
|
|
not a_in(MSR_LE) & not a_in(MSR_SF);
|
|
-- Can't use msr_copy here because the partial function MSR
|
|
-- bits should be left unchanged, not zeroed.
|
|
v.new_msr(63 downto 31) := a_in(63 downto 31);
|
|
v.new_msr(26 downto 22) := a_in(26 downto 22);
|
|
v.new_msr(15 downto 0) := a_in(15 downto 0);
|
|
if a_in(MSR_PR) = '1' then
|
|
v.new_msr(MSR_EE) := '1';
|
|
v.new_msr(MSR_IR) := '1';
|
|
v.new_msr(MSR_DR) := '1';
|
|
end if;
|
|
v.se.write_msr := '1';
|
|
v.e.br_offset := b_in;
|
|
v.e.abs_br := '1';
|
|
v.e.redirect := '1';
|
|
v.se.write_cfar := '1';
|
|
if HAS_FPU then
|
|
v.fp_intr := fp_in.exception and
|
|
(a_in(MSR_FE0) or a_in(MSR_FE1));
|
|
end if;
|
|
v.do_trace := '0';
|
|
|
|
when OP_CNTZ | OP_POPCNT =>
|
|
v.res2_sel := "01";
|
|
slow_op := '1';
|
|
when OP_ISEL =>
|
|
when OP_CROP =>
|
|
when OP_MCRXRX =>
|
|
when OP_DARN =>
|
|
when OP_MFMSR =>
|
|
when OP_MFSPR =>
|
|
if is_fast_spr(e_in.read_reg1) = '1' then
|
|
if e_in.valid = '1' then
|
|
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(a_in);
|
|
end if;
|
|
elsif e_in.spr_select.valid = '1' then
|
|
if e_in.valid = '1' then
|
|
report "MFSPR to slow SPR " & integer'image(decode_spr_num(e_in.insn));
|
|
end if;
|
|
slow_op := '1';
|
|
if e_in.spr_select.ispmu = '0' then
|
|
case e_in.spr_select.sel is
|
|
when SPRSEL_LOGD =>
|
|
v.se.inc_loga := '1';
|
|
when others =>
|
|
end case;
|
|
v.res2_sel := "10";
|
|
else
|
|
v.res2_sel := "11";
|
|
end if;
|
|
else
|
|
-- mfspr from unimplemented SPRs should be a nop in
|
|
-- supervisor mode and a program interrupt for user mode
|
|
if e_in.valid = '1' then
|
|
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
" invalid";
|
|
end if;
|
|
if ex1.msr(MSR_PR) = '1' then
|
|
illegal := '1';
|
|
end if;
|
|
end if;
|
|
|
|
when OP_MFCR =>
|
|
when OP_MTCRF =>
|
|
when OP_MTMSRD =>
|
|
v.se.write_msr := '1';
|
|
if e_in.insn(16) = '1' then
|
|
-- just update EE and RI
|
|
v.new_msr(MSR_EE) := c_in(MSR_EE);
|
|
v.new_msr(MSR_RI) := c_in(MSR_RI);
|
|
else
|
|
-- Architecture says to leave out bits 3 (HV), 51 (ME)
|
|
-- and 63 (LE) (IBM bit numbering)
|
|
if e_in.is_32bit = '0' then
|
|
v.new_msr(63 downto 61) := c_in(63 downto 61);
|
|
v.new_msr(59 downto 32) := c_in(59 downto 32);
|
|
end if;
|
|
v.new_msr(31 downto 13) := c_in(31 downto 13);
|
|
v.new_msr(11 downto 1) := c_in(11 downto 1);
|
|
if c_in(MSR_PR) = '1' then
|
|
v.new_msr(MSR_EE) := '1';
|
|
v.new_msr(MSR_IR) := '1';
|
|
v.new_msr(MSR_DR) := '1';
|
|
end if;
|
|
if HAS_FPU then
|
|
v.fp_intr := fp_in.exception and
|
|
(c_in(MSR_FE0) or c_in(MSR_FE1));
|
|
end if;
|
|
end if;
|
|
when OP_MTSPR =>
|
|
if e_in.valid = '1' then
|
|
report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(c_in);
|
|
end if;
|
|
v.se.write_pmuspr := e_in.spr_select.ispmu;
|
|
if e_in.spr_select.valid = '1' and e_in.spr_select.ispmu = '0' then
|
|
case e_in.spr_select.sel is
|
|
when SPRSEL_XER =>
|
|
v.e.xerc.so := c_in(63-32);
|
|
v.e.xerc.ov := c_in(63-33);
|
|
v.e.xerc.ca := c_in(63-34);
|
|
v.e.xerc.ov32 := c_in(63-44);
|
|
v.e.xerc.ca32 := c_in(63-45);
|
|
v.se.write_xerlow := '1';
|
|
when SPRSEL_DEC =>
|
|
v.se.write_dec := '1';
|
|
when SPRSEL_LOGA =>
|
|
v.se.write_loga := '1';
|
|
when others =>
|
|
end case;
|
|
elsif is_fast_spr(e_in.write_reg) = '0' then
|
|
-- mtspr to unimplemented SPRs should be a nop in
|
|
-- supervisor mode and a program interrupt for user mode
|
|
if ex1.msr(MSR_PR) = '1' then
|
|
illegal := '1';
|
|
end if;
|
|
end if;
|
|
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR | OP_EXTSWSLI =>
|
|
if e_in.output_carry = '1' then
|
|
set_carry(v.e, rotator_carry, rotator_carry);
|
|
end if;
|
|
when OP_SETB =>
|
|
|
|
when OP_ISYNC =>
|
|
v.e.redirect := '1';
|
|
|
|
when OP_ICBI =>
|
|
v.se.icache_inval := '1';
|
|
|
|
when OP_MUL_L64 =>
|
|
if HAS_SHORT_MULT and e_in.insn(26) = '1' and
|
|
fits_in_n_bits(a_in, 16) and fits_in_n_bits(b_in, 16) then
|
|
-- Operands fit into 16 bits, so use short multiplier
|
|
if e_in.oe = '1' then
|
|
-- Note 16x16 multiply can't overflow, even for mullwo
|
|
set_ov(v.e, '0', '0');
|
|
end if;
|
|
else
|
|
-- Use standard multiplier
|
|
v.start_mul := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
end if;
|
|
|
|
when OP_MUL_H64 | OP_MUL_H32 =>
|
|
v.start_mul := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
|
|
when OP_DIV | OP_DIVE | OP_MOD =>
|
|
v.start_div := '1';
|
|
slow_op := '1';
|
|
owait := '1';
|
|
|
|
when OP_FETCH_FAILED =>
|
|
-- Handling an ITLB miss doesn't count as having executed an instruction
|
|
v.do_trace := '0';
|
|
|
|
when others =>
|
|
if e_in.valid = '1' and e_in.unit = ALU then
|
|
report "unhandled insn_type " & insn_type_t'image(e_in.insn_type);
|
|
end if;
|
|
end case;
|
|
|
|
if privileged = '1' then
|
|
-- generate a program interrupt
|
|
v.exception := '1';
|
|
-- set bit 45 to indicate privileged instruction type interrupt
|
|
v.e.srr1(47 - 45) := '1';
|
|
if e_in.valid = '1' then
|
|
report "privileged instruction";
|
|
end if;
|
|
|
|
elsif illegal = '1' then
|
|
v.exception := '1';
|
|
-- Since we aren't doing Hypervisor emulation assist (0xe40) we
|
|
-- set bit 44 to indicate we have an illegal
|
|
v.e.srr1(47 - 44) := '1';
|
|
if e_in.valid = '1' then
|
|
report "illegal instruction";
|
|
end if;
|
|
|
|
elsif HAS_FPU and ex1.msr(MSR_FP) = '0' and e_in.fac = FPU then
|
|
-- generate a floating-point unavailable interrupt
|
|
v.exception := '1';
|
|
v.e.intr_vec := 16#800#;
|
|
if e_in.valid = '1' then
|
|
report "FP unavailable interrupt";
|
|
end if;
|
|
end if;
|
|
|
|
if e_in.unit = ALU then
|
|
v.complete := e_in.valid and not v.exception and not owait;
|
|
v.bypass_valid := e_in.valid and not v.exception and not slow_op;
|
|
end if;
|
|
|
|
actions <= v;
|
|
end process;
|
|
|
|
-- First execute stage
|
|
execute1_1: process(all)
|
|
variable v : reg_stage1_type;
|
|
variable overflow : std_ulogic;
|
|
variable lv : Execute1ToLoadstore1Type;
|
|
variable irq_valid : std_ulogic;
|
|
variable exception : std_ulogic;
|
|
variable fv : Execute1ToFPUType;
|
|
variable go : std_ulogic;
|
|
variable bypass_valid : std_ulogic;
|
|
begin
|
|
v := ex1;
|
|
if (ex1.busy or l_in.busy or fp_in.busy) = '0' then
|
|
v.e := actions.e;
|
|
v.e.valid := '0';
|
|
v.oe := e_in.oe;
|
|
v.spr_select := e_in.spr_select;
|
|
v.pmu_spr_num := e_in.insn(20 downto 16);
|
|
v.mul_select := e_in.sub_select(1 downto 0);
|
|
v.se := side_effect_init;
|
|
end if;
|
|
|
|
lv := Execute1ToLoadstore1Init;
|
|
fv := Execute1ToFPUInit;
|
|
|
|
x_to_multiply.valid <= '0';
|
|
x_to_divider.valid <= '0';
|
|
v.ext_interrupt := '0';
|
|
v.taken_branch_event := '0';
|
|
v.br_mispredict := '0';
|
|
v.busy := '0';
|
|
bypass_valid := '0';
|
|
|
|
irq_valid := ex1.msr(MSR_EE) and (pmu_to_x.intr or ctrl.dec(63) or ext_irq_in);
|
|
|
|
-- Next insn adder used in a couple of places
|
|
next_nia <= std_ulogic_vector(unsigned(e_in.nia) + 4);
|
|
|
|
-- rotator control signals
|
|
right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
|
|
rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
|
|
rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
|
|
rot_sign_ext <= '1' when e_in.insn_type = OP_EXTSWSLI else '0';
|
|
|
|
do_popcnt <= '1' when e_in.insn_type = OP_POPCNT else '0';
|
|
|
|
if valid_in = '1' then
|
|
v.prev_op := e_in.insn_type;
|
|
end if;
|
|
|
|
-- Determine if there is any interrupt to be taken
|
|
-- before/instead of executing this instruction
|
|
exception := valid_in and actions.exception;
|
|
if valid_in = '1' and e_in.second = '0' then
|
|
if HAS_FPU and ex1.fp_exception_next = '1' then
|
|
-- This is used for FP-type program interrupts that
|
|
-- become pending due to MSR[FE0,FE1] changing from 00 to non-zero.
|
|
exception := '1';
|
|
v.e.intr_vec := 16#700#;
|
|
v.e.srr1 := (others => '0');
|
|
v.e.srr1(47 - 43) := '1';
|
|
v.e.srr1(47 - 47) := '1';
|
|
elsif ex1.trace_next = '1' then
|
|
-- Generate a trace interrupt rather than executing the next instruction
|
|
-- or taking any asynchronous interrupt
|
|
exception := '1';
|
|
v.e.intr_vec := 16#d00#;
|
|
v.e.srr1 := (others => '0');
|
|
v.e.srr1(47 - 33) := '1';
|
|
if ex1.prev_op = OP_LOAD or ex1.prev_op = OP_ICBI or ex1.prev_op = OP_ICBT or
|
|
ex1.prev_op = OP_DCBT or ex1.prev_op = OP_DCBST or ex1.prev_op = OP_DCBF then
|
|
v.e.srr1(47 - 35) := '1';
|
|
elsif ex1.prev_op = OP_STORE or ex1.prev_op = OP_DCBZ or
|
|
ex1.prev_op = OP_DCBTST then
|
|
v.e.srr1(47 - 36) := '1';
|
|
end if;
|
|
|
|
elsif irq_valid = '1' then
|
|
-- Don't deliver the interrupt until we have a valid instruction
|
|
-- coming in, so we have a valid NIA to put in SRR0.
|
|
if pmu_to_x.intr = '1' then
|
|
v.e.intr_vec := 16#f00#;
|
|
report "IRQ valid: PMU";
|
|
elsif ctrl.dec(63) = '1' then
|
|
v.e.intr_vec := 16#900#;
|
|
report "IRQ valid: DEC";
|
|
elsif ext_irq_in = '1' then
|
|
v.e.intr_vec := 16#500#;
|
|
report "IRQ valid: External";
|
|
v.ext_interrupt := '1';
|
|
end if;
|
|
v.e.srr1 := (others => '0');
|
|
exception := '1';
|
|
|
|
end if;
|
|
end if;
|
|
|
|
v.no_instr_avail := not (e_in.valid or l_in.busy or ex1.busy or fp_in.busy);
|
|
|
|
go := valid_in and not exception;
|
|
v.instr_dispatch := go;
|
|
|
|
if go = '1' then
|
|
v.se := actions.se;
|
|
v.e.valid := actions.complete;
|
|
bypass_valid := actions.bypass_valid;
|
|
v.taken_branch_event := actions.take_branch;
|
|
v.br_taken := actions.take_branch;
|
|
v.trace_next := actions.do_trace;
|
|
v.fp_exception_next := actions.fp_intr;
|
|
v.res2_sel := actions.res2_sel;
|
|
v.msr := actions.new_msr;
|
|
x_to_multiply.valid <= actions.start_mul;
|
|
v.mul_in_progress := actions.start_mul;
|
|
x_to_divider.valid <= actions.start_div;
|
|
v.div_in_progress := actions.start_div;
|
|
v.br_mispredict := v.e.redirect and actions.direct_branch;
|
|
exception := actions.trap;
|
|
|
|
-- Go busy while division is happening because the
|
|
-- divider is not pipelined. Also go busy while a
|
|
-- multiply is happening in order to stop following
|
|
-- instructions from using the wrong XER value
|
|
-- (and for simplicity in the OE=0 case).
|
|
v.busy := actions.start_div or actions.start_mul;
|
|
|
|
-- instruction for other units, i.e. LDST
|
|
if e_in.unit = LDST then
|
|
lv.valid := '1';
|
|
end if;
|
|
if HAS_FPU and e_in.unit = FPU then
|
|
fv.valid := '1';
|
|
end if;
|
|
end if;
|
|
|
|
if ex1.div_in_progress = '1' then
|
|
v.div_in_progress := not divider_to_x.valid;
|
|
v.busy := not divider_to_x.valid;
|
|
if divider_to_x.valid = '1' and ex1.oe = '1' then
|
|
v.e.xerc.ov := divider_to_x.overflow;
|
|
v.e.xerc.ov32 := divider_to_x.overflow;
|
|
if divider_to_x.overflow = '1' then
|
|
v.e.xerc.so := '1';
|
|
end if;
|
|
end if;
|
|
v.e.valid := divider_to_x.valid;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := v.e.valid;
|
|
end if;
|
|
if ex1.mul_in_progress = '1' then
|
|
v.mul_in_progress := not multiply_to_x.valid;
|
|
v.mul_finish := multiply_to_x.valid and ex1.oe;
|
|
v.e.valid := multiply_to_x.valid and not ex1.oe;
|
|
v.busy := not v.e.valid;
|
|
v.e.write_data := alu_result;
|
|
bypass_valid := v.e.valid;
|
|
end if;
|
|
if ex1.mul_finish = '1' then
|
|
v.mul_finish := '0';
|
|
v.e.xerc.ov := multiply_to_x.overflow;
|
|
v.e.xerc.ov32 := multiply_to_x.overflow;
|
|
if multiply_to_x.overflow = '1' then
|
|
v.e.xerc.so := '1';
|
|
end if;
|
|
v.e.valid := '1';
|
|
end if;
|
|
|
|
if v.e.write_xerc_enable = '1' and v.e.valid = '1' then
|
|
v.xerc := v.e.xerc;
|
|
v.xerc_valid := '1';
|
|
end if;
|
|
|
|
if (ex1.busy or l_in.busy or fp_in.busy) = '0' then
|
|
v.e.interrupt := exception;
|
|
end if;
|
|
if v.e.valid = '0' then
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
end if;
|
|
if flush_in = '1' then
|
|
v.e.valid := '0';
|
|
v.e.interrupt := '0';
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
v.busy := '0';
|
|
v.div_in_progress := '0';
|
|
v.mul_in_progress := '0';
|
|
v.mul_finish := '0';
|
|
v.xerc_valid := '0';
|
|
end if;
|
|
if flush_in = '1' or interrupt_in = '1' then
|
|
v.msr := ctrl_tmp.msr;
|
|
end if;
|
|
if interrupt_in = '1' then
|
|
v.trace_next := '0';
|
|
v.fp_exception_next := '0';
|
|
end if;
|
|
|
|
bypass_data.tag.valid <= v.e.write_enable and bypass_valid;
|
|
bypass_data.tag.tag <= v.e.instr_tag.tag;
|
|
bypass_data.data <= alu_result;
|
|
|
|
bypass_cr_data.tag.valid <= v.e.write_cr_enable and bypass_valid;
|
|
bypass_cr_data.tag.tag <= v.e.instr_tag.tag;
|
|
bypass_cr_data.data <= v.e.write_cr_data;
|
|
|
|
-- Outputs to loadstore1 (async)
|
|
lv.op := e_in.insn_type;
|
|
lv.nia := e_in.nia;
|
|
lv.instr_tag := e_in.instr_tag;
|
|
lv.addr1 := a_in;
|
|
lv.addr2 := b_in;
|
|
lv.data := c_in;
|
|
lv.write_reg := e_in.write_reg;
|
|
lv.length := e_in.data_len;
|
|
lv.byte_reverse := e_in.byte_reverse xnor ex1.msr(MSR_LE);
|
|
lv.sign_extend := e_in.sign_extend;
|
|
lv.update := e_in.update;
|
|
lv.xerc := xerc_in;
|
|
lv.reserve := e_in.reserve;
|
|
lv.rc := e_in.rc;
|
|
lv.insn := e_in.insn;
|
|
-- decode l*cix and st*cix instructions here
|
|
if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and
|
|
e_in.insn(5 downto 1) = "10101" then
|
|
lv.ci := '1';
|
|
end if;
|
|
lv.virt_mode := ex1.msr(MSR_DR);
|
|
lv.priv_mode := not ex1.msr(MSR_PR);
|
|
lv.mode_32bit := not ex1.msr(MSR_SF);
|
|
lv.is_32bit := e_in.is_32bit;
|
|
lv.repeat := e_in.repeat;
|
|
lv.second := e_in.second;
|
|
lv.e2stall := fp_in.f2stall;
|
|
|
|
-- Outputs to FPU
|
|
fv.op := e_in.insn_type;
|
|
fv.nia := e_in.nia;
|
|
fv.insn := e_in.insn;
|
|
fv.itag := e_in.instr_tag;
|
|
fv.single := e_in.is_32bit;
|
|
fv.fe_mode := ex1.msr(MSR_FE0) & ex1.msr(MSR_FE1);
|
|
fv.fra := a_in;
|
|
fv.frb := b_in;
|
|
fv.frc := c_in;
|
|
fv.frt := e_in.write_reg;
|
|
fv.rc := e_in.rc;
|
|
fv.out_cr := e_in.output_cr;
|
|
fv.stall := l_in.l2stall;
|
|
|
|
-- Update registers
|
|
ex1in <= v;
|
|
|
|
-- update outputs
|
|
l_out <= lv;
|
|
fp_out <= fv;
|
|
irq_valid_log <= irq_valid;
|
|
end process;
|
|
|
|
-- Slow SPR read mux
|
|
with ex1.spr_select.sel select spr_result <=
|
|
ctrl.tb when SPRSEL_TB,
|
|
32x"0" & ctrl.tb(63 downto 32) when SPRSEL_TBU,
|
|
ctrl.dec when SPRSEL_DEC,
|
|
32x"0" & PVR_MICROWATT when SPRSEL_PVR,
|
|
log_wr_addr & ex2.log_addr_spr when SPRSEL_LOGA,
|
|
log_rd_data when SPRSEL_LOGD,
|
|
ctrl.cfar when SPRSEL_CFAR,
|
|
assemble_xer(ex1.e.xerc, ctrl.xer_low) when others;
|
|
|
|
stage2_stall <= l_in.l2stall or fp_in.f2stall;
|
|
|
|
-- Second execute stage control
|
|
execute2_1: process(all)
|
|
variable v : reg_stage2_type;
|
|
variable overflow : std_ulogic;
|
|
variable lv : Execute1ToLoadstore1Type;
|
|
variable fv : Execute1ToFPUType;
|
|
variable k : integer;
|
|
variable go : std_ulogic;
|
|
variable bypass_valid : std_ulogic;
|
|
variable rcresult : std_ulogic_vector(63 downto 0);
|
|
variable sprres : std_ulogic_vector(63 downto 0);
|
|
variable ex_result : std_ulogic_vector(63 downto 0);
|
|
variable cr_res : std_ulogic_vector(31 downto 0);
|
|
variable cr_mask : std_ulogic_vector(7 downto 0);
|
|
variable sign, zero : std_ulogic;
|
|
variable rcnz_hi, rcnz_lo : std_ulogic;
|
|
begin
|
|
v := ex2;
|
|
if stage2_stall = '0' then
|
|
v.e := ex1.e;
|
|
v.se := ex1.se;
|
|
v.ext_interrupt := ex1.ext_interrupt;
|
|
v.taken_branch_event := ex1.taken_branch_event;
|
|
v.br_mispredict := ex1.br_mispredict;
|
|
end if;
|
|
|
|
ctrl_tmp <= ctrl;
|
|
-- FIXME: run at 512MHz not core freq
|
|
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
|
|
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
|
|
|
|
x_to_pmu.mfspr <= '0';
|
|
x_to_pmu.mtspr <= '0';
|
|
x_to_pmu.tbbits(3) <= ctrl.tb(63 - 47);
|
|
x_to_pmu.tbbits(2) <= ctrl.tb(63 - 51);
|
|
x_to_pmu.tbbits(1) <= ctrl.tb(63 - 55);
|
|
x_to_pmu.tbbits(0) <= ctrl.tb(63 - 63);
|
|
x_to_pmu.pmm_msr <= ctrl.msr(MSR_PMM);
|
|
x_to_pmu.pr_msr <= ctrl.msr(MSR_PR);
|
|
|
|
if v.e.valid = '0' or flush_in = '1' then
|
|
v.e.write_enable := '0';
|
|
v.e.write_cr_enable := '0';
|
|
v.e.write_xerc_enable := '0';
|
|
v.e.redirect := '0';
|
|
v.e.br_last := '0';
|
|
v.se := side_effect_init;
|
|
v.taken_branch_event := '0';
|
|
v.br_mispredict := '0';
|
|
end if;
|
|
if flush_in = '1' then
|
|
v.e.valid := '0';
|
|
v.e.interrupt := '0';
|
|
v.ext_interrupt := '0';
|
|
end if;
|
|
|
|
-- This is split like this because mfspr doesn't have an Rc bit,
|
|
-- and we don't want the zero-detect logic to be after the
|
|
-- SPR mux for timing reasons.
|
|
if ex1.res2_sel(0) = '0' then
|
|
rcresult := ex1.e.write_data;
|
|
sprres := spr_result;
|
|
else
|
|
rcresult := countbits_result;
|
|
sprres := pmu_to_x.spr_val;
|
|
end if;
|
|
if ex1.res2_sel(1) = '0' then
|
|
ex_result := rcresult;
|
|
else
|
|
ex_result := sprres;
|
|
end if;
|
|
|
|
cr_res := ex1.e.write_cr_data;
|
|
cr_mask := ex1.e.write_cr_mask;
|
|
if ex1.e.rc = '1' and ex1.e.write_enable = '1' then
|
|
rcnz_lo := or (rcresult(31 downto 0));
|
|
if ex1.e.mode_32bit = '0' then
|
|
rcnz_hi := or (rcresult(63 downto 32));
|
|
zero := not (rcnz_hi or rcnz_lo);
|
|
sign := ex_result(63);
|
|
else
|
|
zero := not rcnz_lo;
|
|
sign := ex_result(31);
|
|
end if;
|
|
cr_res(31) := sign;
|
|
cr_res(30) := not (sign or zero);
|
|
cr_res(29) := zero;
|
|
cr_res(28) := ex1.xerc.so;
|
|
cr_mask(7) := '1';
|
|
end if;
|
|
|
|
if stage2_stall = '0' then
|
|
v.e.write_data := ex_result;
|
|
v.e.write_cr_data := cr_res;
|
|
v.e.write_cr_mask := cr_mask;
|
|
if ex1.e.rc = '1' and ex1.e.write_enable = '1' and v.e.valid = '1' then
|
|
v.e.write_cr_enable := '1';
|
|
end if;
|
|
|
|
if ex1.se.write_msr = '1' then
|
|
ctrl_tmp.msr <= ex1.msr;
|
|
end if;
|
|
if ex1.se.write_xerlow = '1' then
|
|
ctrl_tmp.xer_low <= ex1.e.write_data(17 downto 0);
|
|
end if;
|
|
if ex1.se.write_dec = '1' then
|
|
ctrl_tmp.dec <= ex1.e.write_data;
|
|
end if;
|
|
if ex1.se.write_cfar = '1' then
|
|
ctrl_tmp.cfar <= ex1.e.last_nia;
|
|
end if;
|
|
if ex1.se.write_loga = '1' then
|
|
v.log_addr_spr := ex1.e.write_data(31 downto 0);
|
|
elsif ex1.se.inc_loga = '1' then
|
|
v.log_addr_spr := std_ulogic_vector(unsigned(ex2.log_addr_spr) + 1);
|
|
end if;
|
|
x_to_pmu.mtspr <= ex1.se.write_pmuspr;
|
|
end if;
|
|
|
|
if interrupt_in = '1' then
|
|
ctrl_tmp.msr(MSR_SF) <= '1';
|
|
ctrl_tmp.msr(MSR_EE) <= '0';
|
|
ctrl_tmp.msr(MSR_PR) <= '0';
|
|
ctrl_tmp.msr(MSR_SE) <= '0';
|
|
ctrl_tmp.msr(MSR_BE) <= '0';
|
|
ctrl_tmp.msr(MSR_FP) <= '0';
|
|
ctrl_tmp.msr(MSR_FE0) <= '0';
|
|
ctrl_tmp.msr(MSR_FE1) <= '0';
|
|
ctrl_tmp.msr(MSR_IR) <= '0';
|
|
ctrl_tmp.msr(MSR_DR) <= '0';
|
|
ctrl_tmp.msr(MSR_RI) <= '0';
|
|
ctrl_tmp.msr(MSR_LE) <= '1';
|
|
end if;
|
|
|
|
bypass_valid := ex1.e.valid;
|
|
if stage2_stall = '1' and ex1.res2_sel(1) = '1' then
|
|
bypass_valid := '0';
|
|
end if;
|
|
|
|
bypass2_data.tag.valid <= ex1.e.write_enable and bypass_valid;
|
|
bypass2_data.tag.tag <= ex1.e.instr_tag.tag;
|
|
bypass2_data.data <= ex_result;
|
|
|
|
bypass2_cr_data.tag.valid <= (ex1.e.write_cr_enable or (ex1.e.rc and ex1.e.write_enable))
|
|
and bypass_valid;
|
|
bypass2_cr_data.tag.tag <= ex1.e.instr_tag.tag;
|
|
bypass2_cr_data.data <= cr_res;
|
|
|
|
-- Update registers
|
|
ex2in <= v;
|
|
|
|
-- update outputs
|
|
e_out <= ex2.e;
|
|
e_out.msr <= msr_copy(ctrl.msr);
|
|
|
|
terminate_out <= ex2.se.terminate;
|
|
icache_inval <= ex2.se.icache_inval;
|
|
|
|
exception_log <= v.e.interrupt;
|
|
end process;
|
|
|
|
e1_log: if LOG_LENGTH > 0 generate
|
|
signal log_data : std_ulogic_vector(14 downto 0);
|
|
begin
|
|
ex1_log : process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
log_data <= ctrl.msr(MSR_EE) & ctrl.msr(MSR_PR) &
|
|
ctrl.msr(MSR_IR) & ctrl.msr(MSR_DR) &
|
|
exception_log &
|
|
irq_valid_log &
|
|
interrupt_in &
|
|
"000" &
|
|
ex2.e.write_enable &
|
|
ex2.e.valid &
|
|
(ex2.e.redirect or ex2.e.interrupt) &
|
|
ex1.busy &
|
|
flush_in;
|
|
end if;
|
|
end process;
|
|
log_out <= log_data;
|
|
end generate;
|
|
end architecture behaviour;
|