1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-02-15 04:06:10 +00:00
Files
antonblanchard.microwatt/decode2.vhdl
Paul Mackerras 4b2c23703c core: Implement quadword loads and stores
This implements the lq, stq, lqarx and stqcx. instructions.

These instructions all access two consecutive GPRs; for example the
"lq %r6,0(%r3)" instruction will load the doubleword at the address
in R3 into R7 and the doubleword at address R3 + 8 into R6.  To cope
with having two GPR sources or destinations, the instruction gets
repeated at the decode2 stage, that is, for each lq/stq/lqarx/stqcx.
coming in from decode1, two instructions get sent out to execute1.

For these instructions, the RS or RT register gets modified on one
of the iterations by setting the LSB of the register number.  In LE
mode, the first iteration uses RS|1 or RT|1 and the second iteration
uses RS or RT.  In BE mode, this is done the other way around.  In
order for decode2 to know what endianness is currently in use, we
pass the big_endian flag down from icache through decode1 to decode2.
This is always in sync with what execute1 is using because only rfid
or an interrupt can change MSR[LE], and those operations all cause
a flush and redirect.

There is now an extra column in the decode tables in decode1 to
indicate whether the instruction needs to be repeated.  Decode1 also
enforces the rule that lq with RT = RT and lqarx with RA = RT or
RB = RT are illegal.

Decode2 now passes a 'repeat' flag and a 'second' flag to execute1,
and execute1 passes them on to loadstore1.  The 'repeat' flag is set
for both iterations of a repeated instruction, and 'second' is set
on the second iteration.  Execute1 does not take asynchronous or
trace interrupts on the second iteration of a repeated instruction.

Loadstore1 uses 'next_addr' for the second iteration of a repeated
load/store so that we access the second doubleword of the memory
operand.  Thus loadstore1 accesses the doublewords in increasing
memory order.  For 16-byte loads this means that the first iteration
writes GPR RT|1.  It is possible that RA = RT|1 (this is a legal
but non-preferred form), meaning that if the memory operand was
misaligned, the first iteration would overwrite RA but then the
second iteration might take a page fault, leading to corrupted state.
To avoid that possibility, 16-byte loads in LE mode take an
alignment interrupt if the operand is not 16-byte aligned.  (This
is the case anyway for lqarx, and we enforce it for lq as well.)

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2021-01-15 12:40:09 +11:00

489 lines
18 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.insn_helpers.all;
entity decode2 is
generic (
EX1_BYPASS : boolean := true;
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in std_ulogic;
busy_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
flush_in: in std_ulogic;
d_in : in Decode1ToDecode2Type;
e_out : out Decode2ToExecute1Type;
r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType;
c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType;
log_out : out std_ulogic_vector(9 downto 0)
);
end entity decode2;
architecture behaviour of decode2 is
type reg_type is record
e : Decode2ToExecute1Type;
repeat : std_ulogic;
end record;
signal r, rin : reg_type;
signal deferred : std_ulogic;
type decode_input_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
type decode_output_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
end record;
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t;
instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is
begin
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
elsif t = SPR then
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
--
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode A says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr, reg_data);
elsif t = CIA then
return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then
return ('1', fpr_to_gspr(insn_fra(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t) return decode_input_reg_t is
variable ret : decode_input_reg_t;
begin
case t is
when RB =>
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
when FRB =>
if HAS_FPU then
ret := ('1', fpr_to_gspr(insn_frb(insn_in)), reg_data);
else
ret := ('0', (others => '0'), (others => '0'));
end if;
when CONST_UI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_SI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when CONST_DQ =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dq(insn_in)) & "0000", 64)));
when CONST_DXHI4 =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
when CONST_M1 =>
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
when CONST_SH =>
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
ret := (is_fast_spr(ispr), ispr, reg_data);
when NONE =>
ret := ('0', (others => '0'), (others => '0'));
end case;
return ret;
end;
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin
case t is
when RS =>
return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
when RCR =>
return ('1', gpr_to_gspr(insn_rcreg(insn_in)), reg_data);
when FRS =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
when FRC =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frc(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
ispr : gspr_index_t) return decode_output_reg_t is
begin
case t is
when RT =>
return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA =>
return ('1', gpr_to_gspr(insn_ra(insn_in)));
when FRT =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)));
else
return ('0', "0000000");
end if;
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr);
when NONE =>
return ('0', "0000000");
end case;
end;
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC =>
return insn_rc(insn_in);
when ONE =>
return '1';
when NONE =>
return '0';
end case;
end;
-- For now, use "rc" in the decode table to decide whether oe exists.
-- This is not entirely correct architecturally: For mulhd and
-- mulhdu, the OE field is reserved. It remains to be seen what an
-- actual POWER9 does if we set it on those instructions, for now we
-- test that further down when assigning to the multiplier oe input.
--
function decode_oe (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC =>
return insn_oe(insn_in);
when OTHERS =>
return '0';
end case;
end;
-- issue control signals
signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic;
signal control_stall_out : std_ulogic;
signal control_sgl_pipe : std_logic;
signal gpr_write_valid : std_ulogic;
signal gpr_write : gspr_index_t;
signal gpr_bypassable : std_ulogic;
signal update_gpr_write_valid : std_ulogic;
signal update_gpr_write_reg : gspr_index_t;
signal gpr_a_read_valid : std_ulogic;
signal gpr_a_read :gspr_index_t;
signal gpr_a_bypass : std_ulogic;
signal gpr_b_read_valid : std_ulogic;
signal gpr_b_read : gspr_index_t;
signal gpr_b_bypass : std_ulogic;
signal gpr_c_read_valid : std_ulogic;
signal gpr_c_read : gspr_index_t;
signal gpr_c_bypass : std_ulogic;
signal cr_write_valid : std_ulogic;
signal cr_bypass : std_ulogic;
signal cr_bypass_avail : std_ulogic;
begin
control_0: entity work.control
generic map (
PIPELINE_DEPTH => 1
)
port map (
clk => clk,
rst => rst,
complete_in => complete_in,
valid_in => control_valid_in,
repeated => r.repeat,
busy_in => busy_in,
deferred => deferred,
flush_in => flush_in,
sgl_pipe_in => control_sgl_pipe,
stop_mark_in => d_in.stop_mark,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write,
gpr_bypassable => gpr_bypassable,
update_gpr_write_valid => update_gpr_write_valid,
update_gpr_write_reg => update_gpr_write_reg,
gpr_a_read_valid_in => gpr_a_read_valid,
gpr_a_read_in => gpr_a_read,
gpr_b_read_valid_in => gpr_b_read_valid,
gpr_b_read_in => gpr_b_read,
gpr_c_read_valid_in => gpr_c_read_valid,
gpr_c_read_in => gpr_c_read,
cr_read_in => d_in.decode.input_cr,
cr_write_in => cr_write_valid,
cr_bypass => cr_bypass,
cr_bypassable => cr_bypass_avail,
valid_out => control_valid_out,
stall_out => control_stall_out,
stopped_out => stopped_out,
gpr_bypass_a => gpr_a_bypass,
gpr_bypass_b => gpr_b_bypass,
gpr_bypass_c => gpr_c_bypass
);
deferred <= r.e.valid and busy_in;
decode2_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' or deferred = '0' then
if rin.e.valid = '1' then
report "execute " & to_hstring(rin.e.nia);
end if;
r <= rin;
end if;
end if;
end process;
c_out.read <= d_in.decode.input_cr;
decode2_1: process(all)
variable v : reg_type;
variable mul_a : std_ulogic_vector(63 downto 0);
variable mul_b : std_ulogic_vector(63 downto 0);
variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t;
variable decoded_reg_o : decode_output_reg_t;
variable length : std_ulogic_vector(3 downto 0);
begin
v := r;
v.e := Decode2ToExecute1Init;
mul_a := (others => '0');
mul_b := (others => '0');
--v.e.input_cr := d_in.decode.input_cr;
v.e.output_cr := d_in.decode.output_cr;
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1,
d_in.nia);
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispr1);
if d_in.decode.repeat /= NONE then
v.e.repeat := '1';
v.e.second := r.repeat;
case d_in.decode.repeat is
when DRSE =>
-- do RS|1,RS for LE; RS,RS|1 for BE
if r.repeat = d_in.big_endian then
decoded_reg_c.reg(0) := '1';
end if;
when DRTE =>
-- do RT|1,RT for LE; RT,RT|1 for BE
if r.repeat = d_in.big_endian then
decoded_reg_o.reg(0) := '1';
end if;
when others =>
end case;
end if;
r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid;
r_out.read1_reg <= decoded_reg_a.reg;
r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid;
r_out.read2_reg <= decoded_reg_b.reg;
r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid;
r_out.read3_reg <= decoded_reg_c.reg;
case d_in.decode.length is
when is1B =>
length := "0001";
when is2B =>
length := "0010";
when is4B =>
length := "0100";
when is8B =>
length := "1000";
when NONE =>
length := "0000";
end case;
-- execute unit
v.e.nia := d_in.nia;
v.e.unit := d_in.decode.unit;
v.e.insn_type := d_in.decode.insn_type;
v.e.read_reg1 := decoded_reg_a.reg;
v.e.read_data1 := decoded_reg_a.data;
v.e.bypass_data1 := gpr_a_bypass;
v.e.read_reg2 := decoded_reg_b.reg;
v.e.read_data2 := decoded_reg_b.data;
v.e.bypass_data2 := gpr_b_bypass;
v.e.read_data3 := decoded_reg_c.data;
v.e.bypass_data3 := gpr_c_bypass;
v.e.write_reg := decoded_reg_o.reg;
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
if not (d_in.decode.insn_type = OP_MUL_H32 or d_in.decode.insn_type = OP_MUL_H64) then
v.e.oe := decode_oe(d_in.decode.rc, d_in.insn);
end if;
v.e.cr := c_in.read_cr_data;
v.e.bypass_cr := cr_bypass;
v.e.xerc := c_in.read_xerc_data;
v.e.invert_a := d_in.decode.invert_a;
v.e.invert_out := d_in.decode.invert_out;
v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry;
v.e.is_32bit := d_in.decode.is_32bit;
v.e.is_signed := d_in.decode.is_signed;
if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn);
end if;
v.e.insn := d_in.insn;
v.e.data_len := length;
v.e.byte_reverse := d_in.decode.byte_reverse;
v.e.sign_extend := d_in.decode.sign_extend;
v.e.update := d_in.decode.update;
v.e.reserve := d_in.decode.reserve;
v.e.br_pred := d_in.br_pred;
-- issue control
control_valid_in <= d_in.valid;
control_sgl_pipe <= d_in.decode.sgl_pipe;
gpr_write_valid <= decoded_reg_o.reg_valid;
gpr_write <= decoded_reg_o.reg;
gpr_bypassable <= '0';
if EX1_BYPASS and d_in.decode.unit = ALU then
gpr_bypassable <= '1';
end if;
update_gpr_write_valid <= d_in.decode.update;
update_gpr_write_reg <= decoded_reg_a.reg;
if v.e.lr = '1' then
-- there are no instructions that have both update=1 and lr=1
update_gpr_write_valid <= '1';
update_gpr_write_reg <= fast_spr_num(SPR_LR);
end if;
gpr_a_read_valid <= decoded_reg_a.reg_valid;
gpr_a_read <= decoded_reg_a.reg;
gpr_b_read_valid <= decoded_reg_b.reg_valid;
gpr_b_read <= decoded_reg_b.reg;
gpr_c_read_valid <= decoded_reg_c.reg_valid;
gpr_c_read <= decoded_reg_c.reg;
cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);
cr_bypass_avail <= '0';
if EX1_BYPASS and d_in.decode.unit = ALU then
cr_bypass_avail <= d_in.decode.output_cr;
end if;
v.e.valid := control_valid_out;
if control_valid_out = '1' then
v.repeat := v.e.repeat and not r.repeat;
end if;
stall_out <= control_stall_out or v.repeat;
if rst = '1' or flush_in = '1' then
v.e := Decode2ToExecute1Init;
v.repeat := '0';
end if;
-- Update registers
rin <= v;
-- Update outputs
e_out <= r.e;
end process;
d2_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(9 downto 0);
begin
dec2_log : process(clk)
begin
if rising_edge(clk) then
log_data <= r.e.nia(5 downto 2) &
r.e.valid &
stopped_out &
stall_out &
r.e.bypass_data3 &
r.e.bypass_data2 &
r.e.bypass_data1;
end if;
end process;
log_out <= log_data;
end generate;
end architecture behaviour;