1
0
mirror of https://github.com/antonblanchard/microwatt.git synced 2026-02-09 09:41:23 +00:00
Files
antonblanchard.microwatt/writeback.vhdl
Paul Mackerras 5d85ede97d dcache: Implement load-reserve and store-conditional instructions
This involves plumbing the (existing) 'reserve' and 'rc' bits in
the decode tables down to dcache, and 'rc' and 'store_done' bits
from dcache to writeback.

It turns out that we had 'RC' set in the 'rc' column for several
ordinary stores and for the attn instruction.  This corrects them
to 'NONE', and sets the 'rc' column to 'ONE' for the conditional
stores.

In writeback we now have logic to set CR0 when the input from dcache
has rc = 1.

In dcache we have the reservation itself, which has a valid bit
and the address down to cache line granularity.  We don't currently
store the reservation length.  For a store conditional which fails,
we set a 'cancel_store' signal which inhibits the write to the
cache and prevents the state machine from starting a bus cycle or
going to the STORE_WAIT_ACK state.  Instead we set r1.stcx_fail
which causes the instruction to complete in the next cycle with
rc=1 and store_done=0.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-02-28 08:09:08 +11:00

204 lines
6.9 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.common.all;
use work.crhelpers.all;
entity writeback is
port (
clk : in std_ulogic;
e_in : in Execute1ToWritebackType;
l_in : in DcacheToWritebackType;
w_out : out WritebackToRegisterFileType;
c_out : out WritebackToCrFileType;
complete_out : out std_ulogic
);
end entity writeback;
architecture behaviour of writeback is
subtype byte_index_t is unsigned(2 downto 0);
type permutation_t is array(0 to 7) of byte_index_t;
subtype byte_trim_t is std_ulogic_vector(1 downto 0);
type trim_ctl_t is array(0 to 7) of byte_trim_t;
type byte_sel_t is array(0 to 7) of std_ulogic;
signal data_len : unsigned(3 downto 0);
signal data_in : std_ulogic_vector(63 downto 0);
signal data_permuted : std_ulogic_vector(63 downto 0);
signal data_trimmed : std_ulogic_vector(63 downto 0);
signal data_latched : std_ulogic_vector(63 downto 0);
signal perm : permutation_t;
signal use_second : byte_sel_t;
signal byte_offset : unsigned(2 downto 0);
signal brev_lenm1 : unsigned(2 downto 0);
signal trim_ctl : trim_ctl_t;
signal rc : std_ulogic;
signal partial_write : std_ulogic;
signal sign_extend : std_ulogic;
signal negative : std_ulogic;
signal second_word : std_ulogic;
begin
writeback_0: process(clk)
begin
if rising_edge(clk) then
if partial_write = '1' then
data_latched <= data_permuted;
end if;
end if;
end process;
writeback_1: process(all)
variable x : std_ulogic_vector(0 downto 0);
variable y : std_ulogic_vector(0 downto 0);
variable z : std_ulogic_vector(0 downto 0);
variable w : std_ulogic_vector(0 downto 0);
variable j : integer;
variable k : unsigned(3 downto 0);
variable cf: std_ulogic_vector(3 downto 0);
variable xe: xer_common_t;
variable zero : std_ulogic;
variable sign : std_ulogic;
variable scf : std_ulogic_vector(3 downto 0);
begin
x(0) := e_in.valid;
y(0) := l_in.valid;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y))) <= 1 severity failure;
x(0) := e_in.write_enable;
y(0) := l_in.write_enable;
assert (to_integer(unsigned(x)) + to_integer(unsigned(y))) <= 1 severity failure;
w(0) := e_in.write_cr_enable;
x(0) := (e_in.write_enable and e_in.rc);
assert (to_integer(unsigned(w)) + to_integer(unsigned(x))) <= 1 severity failure;
w_out <= WritebackToRegisterFileInit;
c_out <= WritebackToCrFileInit;
complete_out <= '0';
if e_in.valid = '1' or l_in.valid = '1' then
complete_out <= '1';
end if;
rc <= '0';
brev_lenm1 <= "000";
partial_write <= '0';
second_word <= '0';
xe := e_in.xerc;
data_in <= (others => '0');
if e_in.write_enable = '1' then
w_out.write_reg <= e_in.write_reg;
w_out.write_enable <= '1';
rc <= e_in.rc;
end if;
if e_in.write_cr_enable = '1' then
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= e_in.write_cr_mask;
c_out.write_cr_data <= e_in.write_cr_data;
end if;
if e_in.write_xerc_enable = '1' then
c_out.write_xerc_enable <= '1';
c_out.write_xerc_data <= e_in.xerc;
end if;
sign_extend <= l_in.sign_extend;
data_len <= unsigned(l_in.write_len);
byte_offset <= unsigned(l_in.write_shift);
if l_in.write_enable = '1' then
w_out.write_reg <= gpr_to_gspr(l_in.write_reg);
if l_in.byte_reverse = '1' then
brev_lenm1 <= unsigned(l_in.write_len(2 downto 0)) - 1;
end if;
second_word <= l_in.second_word;
if l_in.valid = '0' and (data_len + byte_offset > 8) then
partial_write <= '1';
end if;
xe := l_in.xerc;
w_out.write_enable <= not partial_write or second_word;
end if;
if l_in.rc = '1' then
-- st*cx. instructions
scf(3) := '0';
scf(2) := '0';
scf(1) := l_in.store_done;
scf(0) := xe.so;
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= num_to_fxm(0);
c_out.write_cr_data(31 downto 28) <= scf;
end if;
-- shift and byte-reverse data bytes
for i in 0 to 7 loop
k := ('0' & (to_unsigned(i, 3) xor brev_lenm1)) + ('0' & byte_offset);
perm(i) <= k(2 downto 0);
use_second(i) <= k(3);
end loop;
for i in 0 to 7 loop
j := to_integer(perm(i)) * 8;
data_permuted(i * 8 + 7 downto i * 8) <= l_in.write_data(j + 7 downto j);
end loop;
-- If the data can arrive split over two cycles, this will be correct
-- provided we don't have both sign extension and byte reversal.
negative <= (data_len(3) and data_permuted(63)) or
(data_len(2) and data_permuted(31)) or
(data_len(1) and data_permuted(15)) or
(data_len(0) and data_permuted(7));
-- trim and sign-extend
for i in 0 to 7 loop
if i < to_integer(data_len) then
if second_word = '1' then
trim_ctl(i) <= '1' & not use_second(i);
else
trim_ctl(i) <= not use_second(i) & '0';
end if;
else
trim_ctl(i) <= '0' & (negative and sign_extend);
end if;
end loop;
for i in 0 to 7 loop
case trim_ctl(i) is
when "11" =>
data_trimmed(i * 8 + 7 downto i * 8) <= data_latched(i * 8 + 7 downto i * 8);
when "10" =>
data_trimmed(i * 8 + 7 downto i * 8) <= data_permuted(i * 8 + 7 downto i * 8);
when "01" =>
data_trimmed(i * 8 + 7 downto i * 8) <= x"FF";
when others =>
data_trimmed(i * 8 + 7 downto i * 8) <= x"00";
end case;
end loop;
-- deliver to regfile
if l_in.write_enable = '1' then
w_out.write_data <= data_trimmed;
else
w_out.write_data <= e_in.write_data;
end if;
-- Perform CR0 update for RC forms
-- Note that loads never have a form with an RC bit, therefore this can test e_in.write_data
if rc = '1' then
sign := e_in.write_data(63);
zero := not (or e_in.write_data);
c_out.write_cr_enable <= '1';
c_out.write_cr_mask <= num_to_fxm(0);
cf(3) := sign;
cf(2) := not sign and not zero;
cf(1) := zero;
cf(0) := xe.so;
c_out.write_cr_data(31 downto 28) <= cf;
end if;
end process;
end;