mirror of
https://github.com/antonblanchard/microwatt.git
synced 2026-02-09 01:31:06 +00:00
This logs 256 bits of data per cycle to a ring buffer in BRAM. The data collected can be read out through 2 new SPRs or through the debug interface. The new SPRs are LOG_ADDR (724) and LOG_DATA (725). LOG_ADDR contains the buffer write pointer in the upper 32 bits (in units of entries, i.e. 32 bytes) and the read pointer in the lower 32 bits (in units of doublewords, i.e. 8 bytes). Reading LOG_DATA gives the doubleword from the buffer at the read pointer and increments the read pointer. Setting bit 31 of LOG_ADDR inhibits the trace log system from writing to the log buffer, so the contents are stable and can be read. There are two new debug addresses which function similarly to the LOG_ADDR and LOG_DATA SPRs. The log is frozen while either or both of the LOG_ADDR SPR bit 31 or the debug LOG_ADDR register bit 31 are set. The buffer defaults to 2048 entries, i.e. 64kB. The size is set by the LOG_LENGTH generic on the core_debug module. Software can determine the length of the buffer because the length is ORed into the buffer write pointer in the upper 32 bits of LOG_ADDR. Hence the length of the buffer can be calculated as 1 << (31 - clz(LOG_ADDR)). There is a program to format the log entries in a somewhat readable fashion in scripts/fmt_log/fmt_log.c. The log_entry struct in that file describes the layout of the bits in the log entries. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
404 lines
14 KiB
VHDL
404 lines
14 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.insn_helpers.all;
|
|
|
|
entity decode2 is
|
|
generic (
|
|
EX1_BYPASS : boolean := true
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
complete_in : in std_ulogic;
|
|
stall_in : in std_ulogic;
|
|
stall_out : out std_ulogic;
|
|
|
|
stopped_out : out std_ulogic;
|
|
|
|
flush_in: in std_ulogic;
|
|
|
|
d_in : in Decode1ToDecode2Type;
|
|
|
|
e_out : out Decode2ToExecute1Type;
|
|
|
|
r_in : in RegisterFileToDecode2Type;
|
|
r_out : out Decode2ToRegisterFileType;
|
|
|
|
c_in : in CrFileToDecode2Type;
|
|
c_out : out Decode2ToCrFileType;
|
|
|
|
log_out : out std_ulogic_vector(9 downto 0)
|
|
);
|
|
end entity decode2;
|
|
|
|
architecture behaviour of decode2 is
|
|
type reg_type is record
|
|
e : Decode2ToExecute1Type;
|
|
end record;
|
|
|
|
signal r, rin : reg_type;
|
|
|
|
signal log_data : std_ulogic_vector(9 downto 0);
|
|
|
|
type decode_input_reg_t is record
|
|
reg_valid : std_ulogic;
|
|
reg : gspr_index_t;
|
|
data : std_ulogic_vector(63 downto 0);
|
|
end record;
|
|
|
|
type decode_output_reg_t is record
|
|
reg_valid : std_ulogic;
|
|
reg : gspr_index_t;
|
|
end record;
|
|
|
|
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0);
|
|
ispr : gspr_index_t;
|
|
instr_addr : std_ulogic_vector(63 downto 0))
|
|
return decode_input_reg_t is
|
|
begin
|
|
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
|
|
assert is_fast_spr(ispr) = '0' report "Decode A says GPR but ISPR says SPR:" &
|
|
to_hstring(ispr) severity failure;
|
|
return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
|
|
elsif t = SPR then
|
|
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
|
|
-- If it's all 0, we don't treat it as a dependency as slow SPRs
|
|
-- operations are single issue.
|
|
--
|
|
assert is_fast_spr(ispr) = '1' or ispr = "000000"
|
|
report "Decode A says SPR but ISPR is invalid:" &
|
|
to_hstring(ispr) severity failure;
|
|
return (is_fast_spr(ispr), ispr, reg_data);
|
|
elsif t = CIA then
|
|
return ('0', (others => '0'), instr_addr);
|
|
else
|
|
return ('0', (others => '0'), (others => '0'));
|
|
end if;
|
|
end;
|
|
|
|
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0);
|
|
ispr : gspr_index_t) return decode_input_reg_t is
|
|
variable ret : decode_input_reg_t;
|
|
begin
|
|
case t is
|
|
when RB =>
|
|
assert is_fast_spr(ispr) = '0' report "Decode B says GPR but ISPR says SPR:" &
|
|
to_hstring(ispr) severity failure;
|
|
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
|
|
when CONST_UI =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
|
|
when CONST_SI =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
|
|
when CONST_SI_HI =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
|
|
when CONST_UI_HI =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
|
|
when CONST_LI =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
|
|
when CONST_BD =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
|
|
when CONST_DS =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
|
|
when CONST_DXHI4 =>
|
|
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
|
|
when CONST_M1 =>
|
|
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
|
|
when CONST_SH =>
|
|
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
|
|
when CONST_SH32 =>
|
|
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
|
|
when SPR =>
|
|
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
|
|
-- If it's all 0, we don't treat it as a dependency as slow SPRs
|
|
-- operations are single issue.
|
|
assert is_fast_spr(ispr) = '1' or ispr = "000000"
|
|
report "Decode B says SPR but ISPR is invalid:" &
|
|
to_hstring(ispr) severity failure;
|
|
ret := (is_fast_spr(ispr), ispr, reg_data);
|
|
when NONE =>
|
|
ret := ('0', (others => '0'), (others => '0'));
|
|
end case;
|
|
|
|
return ret;
|
|
end;
|
|
|
|
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
begin
|
|
case t is
|
|
when RS =>
|
|
return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
|
|
when NONE =>
|
|
return ('0', (others => '0'), (others => '0'));
|
|
end case;
|
|
end;
|
|
|
|
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
ispr : gspr_index_t) return decode_output_reg_t is
|
|
begin
|
|
case t is
|
|
when RT =>
|
|
return ('1', gpr_to_gspr(insn_rt(insn_in)));
|
|
when RA =>
|
|
return ('1', gpr_to_gspr(insn_ra(insn_in)));
|
|
when SPR =>
|
|
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
|
|
-- If it's all 0, we don't treat it as a dependency as slow SPRs
|
|
-- operations are single issue.
|
|
assert is_fast_spr(ispr) = '1' or ispr = "000000"
|
|
report "Decode B says SPR but ISPR is invalid:" &
|
|
to_hstring(ispr) severity failure;
|
|
return (is_fast_spr(ispr), ispr);
|
|
when NONE =>
|
|
return ('0', "000000");
|
|
end case;
|
|
end;
|
|
|
|
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RC =>
|
|
return insn_rc(insn_in);
|
|
when ONE =>
|
|
return '1';
|
|
when NONE =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
|
|
-- For now, use "rc" in the decode table to decide whether oe exists.
|
|
-- This is not entirely correct architecturally: For mulhd and
|
|
-- mulhdu, the OE field is reserved. It remains to be seen what an
|
|
-- actual POWER9 does if we set it on those instructions, for now we
|
|
-- test that further down when assigning to the multiplier oe input.
|
|
--
|
|
function decode_oe (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RC =>
|
|
return insn_oe(insn_in);
|
|
when OTHERS =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
|
|
-- issue control signals
|
|
signal control_valid_in : std_ulogic;
|
|
signal control_valid_out : std_ulogic;
|
|
signal control_sgl_pipe : std_logic;
|
|
|
|
signal gpr_write_valid : std_ulogic;
|
|
signal gpr_write : gspr_index_t;
|
|
signal gpr_bypassable : std_ulogic;
|
|
|
|
signal gpr_a_read_valid : std_ulogic;
|
|
signal gpr_a_read :gspr_index_t;
|
|
signal gpr_a_bypass : std_ulogic;
|
|
|
|
signal gpr_b_read_valid : std_ulogic;
|
|
signal gpr_b_read : gspr_index_t;
|
|
signal gpr_b_bypass : std_ulogic;
|
|
|
|
signal gpr_c_read_valid : std_ulogic;
|
|
signal gpr_c_read : gpr_index_t;
|
|
signal gpr_c_bypass : std_ulogic;
|
|
|
|
signal cr_write_valid : std_ulogic;
|
|
begin
|
|
control_0: entity work.control
|
|
generic map (
|
|
PIPELINE_DEPTH => 1
|
|
)
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
|
|
complete_in => complete_in,
|
|
valid_in => control_valid_in,
|
|
stall_in => stall_in,
|
|
flush_in => flush_in,
|
|
sgl_pipe_in => control_sgl_pipe,
|
|
stop_mark_in => d_in.stop_mark,
|
|
|
|
gpr_write_valid_in => gpr_write_valid,
|
|
gpr_write_in => gpr_write,
|
|
gpr_bypassable => gpr_bypassable,
|
|
|
|
gpr_a_read_valid_in => gpr_a_read_valid,
|
|
gpr_a_read_in => gpr_a_read,
|
|
|
|
gpr_b_read_valid_in => gpr_b_read_valid,
|
|
gpr_b_read_in => gpr_b_read,
|
|
|
|
gpr_c_read_valid_in => gpr_c_read_valid,
|
|
gpr_c_read_in => gpr_c_read,
|
|
|
|
cr_read_in => d_in.decode.input_cr,
|
|
cr_write_in => cr_write_valid,
|
|
|
|
valid_out => control_valid_out,
|
|
stall_out => stall_out,
|
|
stopped_out => stopped_out,
|
|
|
|
gpr_bypass_a => gpr_a_bypass,
|
|
gpr_bypass_b => gpr_b_bypass,
|
|
gpr_bypass_c => gpr_c_bypass
|
|
);
|
|
|
|
decode2_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rin.e.valid = '1' then
|
|
report "execute " & to_hstring(rin.e.nia);
|
|
end if;
|
|
r <= rin;
|
|
end if;
|
|
end process;
|
|
|
|
r_out.read1_reg <= gpr_or_spr_to_gspr(insn_ra(d_in.insn), d_in.ispr1);
|
|
r_out.read2_reg <= gpr_or_spr_to_gspr(insn_rb(d_in.insn), d_in.ispr2);
|
|
r_out.read3_reg <= insn_rs(d_in.insn);
|
|
|
|
c_out.read <= d_in.decode.input_cr;
|
|
|
|
decode2_1: process(all)
|
|
variable v : reg_type;
|
|
variable mul_a : std_ulogic_vector(63 downto 0);
|
|
variable mul_b : std_ulogic_vector(63 downto 0);
|
|
variable decoded_reg_a : decode_input_reg_t;
|
|
variable decoded_reg_b : decode_input_reg_t;
|
|
variable decoded_reg_c : decode_input_reg_t;
|
|
variable decoded_reg_o : decode_output_reg_t;
|
|
variable length : std_ulogic_vector(3 downto 0);
|
|
begin
|
|
v := r;
|
|
|
|
v.e := Decode2ToExecute1Init;
|
|
|
|
mul_a := (others => '0');
|
|
mul_b := (others => '0');
|
|
|
|
--v.e.input_cr := d_in.decode.input_cr;
|
|
--v.e.output_cr := d_in.decode.output_cr;
|
|
|
|
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1,
|
|
d_in.nia);
|
|
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
|
|
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
|
|
decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispr1);
|
|
|
|
r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid;
|
|
r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid;
|
|
r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid;
|
|
|
|
case d_in.decode.length is
|
|
when is1B =>
|
|
length := "0001";
|
|
when is2B =>
|
|
length := "0010";
|
|
when is4B =>
|
|
length := "0100";
|
|
when is8B =>
|
|
length := "1000";
|
|
when NONE =>
|
|
length := "0000";
|
|
end case;
|
|
|
|
-- execute unit
|
|
v.e.nia := d_in.nia;
|
|
v.e.unit := d_in.decode.unit;
|
|
v.e.insn_type := d_in.decode.insn_type;
|
|
v.e.read_reg1 := decoded_reg_a.reg;
|
|
v.e.read_data1 := decoded_reg_a.data;
|
|
v.e.bypass_data1 := gpr_a_bypass;
|
|
v.e.read_reg2 := decoded_reg_b.reg;
|
|
v.e.read_data2 := decoded_reg_b.data;
|
|
v.e.bypass_data2 := gpr_b_bypass;
|
|
v.e.read_data3 := decoded_reg_c.data;
|
|
v.e.bypass_data3 := gpr_c_bypass;
|
|
v.e.write_reg := decoded_reg_o.reg;
|
|
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
if not (d_in.decode.insn_type = OP_MUL_H32 or d_in.decode.insn_type = OP_MUL_H64) then
|
|
v.e.oe := decode_oe(d_in.decode.rc, d_in.insn);
|
|
end if;
|
|
v.e.cr := c_in.read_cr_data;
|
|
v.e.xerc := c_in.read_xerc_data;
|
|
v.e.invert_a := d_in.decode.invert_a;
|
|
v.e.invert_out := d_in.decode.invert_out;
|
|
v.e.input_carry := d_in.decode.input_carry;
|
|
v.e.output_carry := d_in.decode.output_carry;
|
|
v.e.is_32bit := d_in.decode.is_32bit;
|
|
v.e.is_signed := d_in.decode.is_signed;
|
|
if d_in.decode.lr = '1' then
|
|
v.e.lr := insn_lk(d_in.insn);
|
|
end if;
|
|
v.e.insn := d_in.insn;
|
|
v.e.data_len := length;
|
|
v.e.byte_reverse := d_in.decode.byte_reverse;
|
|
v.e.sign_extend := d_in.decode.sign_extend;
|
|
v.e.update := d_in.decode.update;
|
|
v.e.reserve := d_in.decode.reserve;
|
|
|
|
-- issue control
|
|
control_valid_in <= d_in.valid;
|
|
control_sgl_pipe <= d_in.decode.sgl_pipe;
|
|
|
|
gpr_write_valid <= decoded_reg_o.reg_valid;
|
|
gpr_write <= decoded_reg_o.reg;
|
|
gpr_bypassable <= '0';
|
|
if EX1_BYPASS and d_in.decode.unit = ALU then
|
|
gpr_bypassable <= '1';
|
|
end if;
|
|
|
|
gpr_a_read_valid <= decoded_reg_a.reg_valid;
|
|
gpr_a_read <= decoded_reg_a.reg;
|
|
|
|
gpr_b_read_valid <= decoded_reg_b.reg_valid;
|
|
gpr_b_read <= decoded_reg_b.reg;
|
|
|
|
gpr_c_read_valid <= decoded_reg_c.reg_valid;
|
|
gpr_c_read <= gspr_to_gpr(decoded_reg_c.reg);
|
|
|
|
cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
v.e.valid := control_valid_out;
|
|
if d_in.decode.unit = NONE then
|
|
v.e.insn_type := OP_ILLEGAL;
|
|
end if;
|
|
|
|
if rst = '1' then
|
|
v.e := Decode2ToExecute1Init;
|
|
end if;
|
|
|
|
-- Update registers
|
|
rin <= v;
|
|
|
|
-- Update outputs
|
|
e_out <= r.e;
|
|
end process;
|
|
|
|
dec2_log : process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
log_data <= r.e.nia(5 downto 2) &
|
|
r.e.valid &
|
|
stopped_out &
|
|
stall_out &
|
|
r.e.bypass_data3 &
|
|
r.e.bypass_data2 &
|
|
r.e.bypass_data1;
|
|
end if;
|
|
end process;
|
|
log_out <= log_data;
|
|
|
|
end architecture behaviour;
|