/* * tumble: build a PDF file from image files * * bitblt routines * $Id: bitblt.c,v 1.17 2003/03/16 07:27:06 eric Exp $ * Copyright 2001, 2002, 2003 Eric Smith * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. Note that permission is * not granted to redistribute this program under the terms of any * other version of the General Public License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA */ #include #include #include #include #include #include #include "bitblt.h" #include "bitblt_tables.h" #define DIV_ROUND_UP(count,pow2) (((count) - 1) / (pow2) + 1) void reverse_bits (uint8_t *p, int byte_count) { while (byte_count--) { (*p) = bit_reverse_byte [*p]; p++; } } static word_t bit_reverse_word (word_t d) { return (bit_reverse_byte [d >> 24] | (bit_reverse_byte [(d >> 16) & 0xff] << 8) | (bit_reverse_byte [(d >> 8) & 0xff] << 16) | (bit_reverse_byte [d & 0xff] << 24)); } static void reverse_range_of_bytes (uint8_t *b, uint32_t count) { uint8_t *b2 = b + count - 1; while (b < b2) { uint8_t t = bit_reverse_byte [*b]; *b = bit_reverse_byte [*b2]; *b2 = t; b++; b2--; } if (b == b2) *b = bit_reverse_byte [*b]; } static word_t *temp_buffer; static word_t temp_buffer_size; static void realloc_temp_buffer (uint32_t size) { if (size <= temp_buffer_size) return; temp_buffer = realloc (temp_buffer, size); if (! temp_buffer) { fprintf (stderr, "realloc failed in bitblt library\n"); exit (2); } temp_buffer_size = size; } static inline word_t pixel_mask (int x) { #if defined (MIXED_ENDIAN) /* disgusting hack for mixed-endian */ word_t m; m = 0x80 >> (x & 7); m <<= (x & 24); return (m); #elif defined (LSB_RIGHT) return (1U << ((BITS_PER_WORD - 1) - x)); #else return (1U << x); #endif }; /* mask for range of bits left..right, inclusive */ static inline word_t pixel_range_mask (int left, int right) { word_t m1, m2, val; /* $$$ one of these cases is wrong! */ #if defined (LSB_RIGHT) m1 = (~ 0U) >> left; m2 = (~ 0U) << (BITS_PER_WORD - 1 - right); #else m1 = (~ 0U) << left; m2 = (~ 0U) >> (BITS_PER_WORD - 1 - right); #endif val = m1 & m2; printf ("left %d, right %d, mask %08x\n", left, right, val); return (val); }; Bitmap *create_bitmap (Rect *rect) { Bitmap *bitmap; uint32_t width = rect_width (rect); uint32_t height = rect_height (rect); if ((width <= 0) || (height <= 0)) return (NULL); bitmap = calloc (1, sizeof (Bitmap)); if (! bitmap) return (NULL); bitmap->rect = * rect; bitmap->row_words = DIV_ROUND_UP (width, BITS_PER_WORD); bitmap->bits = calloc (1, height * bitmap->row_words * sizeof (word_t)); if (! bitmap->bits) { free (bitmap); return (NULL); } return (bitmap); } void free_bitmap (Bitmap *bitmap) { free (bitmap->bits); free (bitmap); } bool get_pixel (Bitmap *bitmap, Point coord) { word_t *p; int w,b; if ((coord.x < bitmap->rect.min.x) || (coord.x >= bitmap->rect.max.x) || (coord.y < bitmap->rect.min.y) || (coord.y >= bitmap->rect.max.y)) return (0); coord.y -= bitmap->rect.min.y; coord.x -= bitmap->rect.min.x; w = coord.x / BITS_PER_WORD; b = coord.x & (BITS_PER_WORD - 1); p = bitmap->bits + coord.y * bitmap->row_words + w; return (((*p) & pixel_mask (b)) != 0); } void set_pixel (Bitmap *bitmap, Point coord, bool value) { word_t *p; int w,b; if ((coord.x < bitmap->rect.min.x) || (coord.x >= bitmap->rect.max.x) || (coord.y < bitmap->rect.min.y) || (coord.y >= bitmap->rect.max.y)) return; coord.y -= bitmap->rect.min.y; coord.x -= bitmap->rect.min.x; w = coord.x / BITS_PER_WORD; b = coord.x & (BITS_PER_WORD - 1); p = bitmap->bits + coord.y * bitmap->row_words + w; if (value) (*p) |= pixel_mask (b); else (*p) &= ~pixel_mask (b); } /* modifies rect1 to be the intersection of rect1 and rect2; returns true if intersection is non-null */ static bool clip_rect (Rect *rect1, Rect *rect2) { if (rect1->min.y > rect2->max.y) goto empty; if (rect1->min.y < rect2->min.y) { if (rect1->max.y < rect2->max.y) goto empty; rect1->min.y = rect2->min.y; } if (rect1->max.y > rect2->max.y) rect1->max.y = rect2->max.y; if (rect1->min.x > rect2->max.x) goto empty; if (rect1->min.x < rect2->min.x) { if (rect1->max.x < rect2->max.x) goto empty; rect1->min.x = rect2->min.x; } if (rect1->max.x > rect2->max.x) rect1->max.x = rect2->max.x; empty: rect1->min.x = rect1->min.y = rect1->max.x = rect1->max.y = 0; return (0); } static void blt_background (Bitmap *dest_bitmap, Rect dest_rect) { uint32_t y; word_t *rp; uint32_t left_bit, left_word; uint32_t right_bit, right_word; word_t left_mask, right_mask; int32_t word_count; /* This function requires a non-null dest rect */ assert (dest_rect.min.x < dest_rect.max.x); assert (dest_rect.min.y < dest_rect.max.y); /* and that the rows of the dest rect lie entirely within the dest bitmap */ assert (dest_rect.min.y >= dest_bitmap->rect.min.y); assert (dest_rect.max.y <= dest_bitmap->rect.max.y); /* clip the x axis of the dest_rect to the bounds of the dest bitmap */ if (dest_rect.min.x < dest_bitmap->rect.min.x) dest_rect.min.x = dest_bitmap->rect.min.x; if (dest_rect.max.x > dest_bitmap->rect.max.x) dest_rect.max.x = dest_bitmap->rect.max.x; rp = dest_bitmap->bits + (dest_rect.min.y - dest_bitmap->rect.min.y) * dest_bitmap->row_words + (dest_rect.min.x - dest_bitmap->rect.min.x) / BITS_PER_WORD; left_bit = dest_rect.min.x % BITS_PER_WORD; left_word = dest_rect.min.x / BITS_PER_WORD; right_bit = (dest_rect.max.x - 1) % BITS_PER_WORD; right_word = (dest_rect.max.x - 1) / BITS_PER_WORD; word_count = right_word + 1 - left_word; /* special case if entire horizontal range fits in a single word */ if (word_count == 1) { left_mask = 0; right_mask = ~ pixel_range_mask (left_bit, right_bit); word_count = 0; } else { if (left_bit) { left_mask = ~ pixel_range_mask (left_bit, BITS_PER_WORD - 1); word_count--; } if (right_bit != (BITS_PER_WORD - 1)) { right_mask = ~ pixel_range_mask (0, right_bit); word_count--; } } for (y = 0; y < rect_height (& dest_rect); y++) { word_t *wp = rp; /* partial word at left, if any */ if (left_mask) *(wp++) &= left_mask; /* use Duff's Device for the full words */ if (word_count) { int32_t i = word_count; switch (i % 8) { while (i > 0) { *(wp++) = 0; case 7: *(wp++) = 0; case 6: *(wp++) = 0; case 5: *(wp++) = 0; case 4: *(wp++) = 0; case 3: *(wp++) = 0; case 2: *(wp++) = 0; case 1: *(wp++) = 0; case 0: i -= 8; } } } /* partial word at right, if any */ if (right_mask) *wp &= right_mask; /* advance to next row */ rp += dest_bitmap->row_words; } } #if 0 static void blt (Bitmap *src_bitmap, Rect *src_rect, Bitmap *dest_bitmap, Rect *dest_rect) { int32_t y; word_t *rp; /* This function requires a non-null src rect */ assert (dest_rect->min.x < dest_rect->max.x); assert (dest_rect->min.y < dest_rect->max.y); /* and a non-null dest rect */ assert (dest_rect->min.x < dest_rect->max.x); assert (dest_rect->min.y < dest_rect->max.y); /* and that the widths and heights of the rects match */ assert (rect_width (src_rect) == rect_width (dest_rect)); assert (rect_height (src_rect) == rect_height (dest_rect)); /* and that the rows of the src rect lie entirely within the src bitmap */ assert (dest_rect->min.y >= dest_bitmap->rect->min.y); assert (dest_rect->max.y <= dest_bitmap->rect->max.y); /* and that the rows of the dest rect lie entirely within the dest bitmap */ assert (dest_rect->min.y >= dest_bitmap->rect->min.y); assert (dest_rect->max.y <= dest_bitmap->rect->max.y); /* clip the x axis of the dest_rect to the bounds of the dest bitmap, and adjust the src_rect to match */ if (dest_rect->min.x < dest_bitmap->rect.min.x) { src_rect->min.x += ???; dest_rect->min.x = dest_bitmap->rect.min.x; } if (dest_rect->max.x > dest_bitmap->rect.max.x) { dest_rect->max.x = dest_bitmap->rect.max.x; } rp = ???; for (y = 0; y < rect_height (dest_rect); y++) { ???; rp += dest_bitmap->row_words; } } /* * The destination rectangle is first clipped to the dest bitmap, and * the source rectangle is adjusted in the corresponding manner. * What's left is divided into five sections, any of which may be * null. The portion that actually corresponds to the intersection of * the source rectangle and the source bitmpa is the "middle". The * other four sections will use the background color as the source * operand. * * * y0 -> ------------------------------------------------- * | top | * | | * y1 -> ------------------------------------------------- * | left | middle | right | * | | | | * y2 -> ------------------------------------------------- * | bottom | * | | * y3 -> ------------------------------------------------- * * ^ ^ ^ ^ * | | | | * x0 x1 x2 x3 * * */ Bitmap *bitblt (Bitmap *src_bitmap, Rect *src_rect, Bitmap *dest_bitmap, Point *dest_min, int tfn, int background) { Rect sr, dr; /* src and dest rects, clipped to visible portion of dest rect */ uint32_t drw, drh; /* dest rect width, height - gets adjusted */ Point src_point, dest_point; /* dest coordinates: */ uint32_t x0, x1, x2, x3; uint32_t y0, y1, y2, y3; { sr = * src_rect; uint32_t srw = rect_width (& sr); uint32_t srh = rect_height (& sr); if ((srw < 0) || (srh < 0)) goto done; /* the source rect is empty! */ dr.min.x = dest_min->x; dr.min.y = dest_min->y; dr.max.x = dr.min.x + srw; dr.max.y = dr.min.y + srh; } if (! dest_bitmap) { dest_bitmap = create_bitmap (& dr); if (! dest_bitmap) return (NULL); } if ((dr.min.x >= dest_bitmap->rect.max.x) || (dr.min.y >= dest_bitmap->rect.max.y)) goto done; /* the dest rect isn't even in the dest bitmap! */ /* crop dest rect to dest bitmap */ delta = dest_bitmap->rect.min.x - dr.min.x; if (delta > 0) { sr.min.x += delta; dr.min.x += delta; } delta = dest_bitmap->rect.min.y - dr.min.y; if (delta > 0) { sr.min.y += delta; dr.min.y += delta; } delta = dr.max.x - dest_bitmap->rect.max.x; if (delta > 0) { sr.max.x -= delta; dr.max.x -= delta; } delta = dr.max.y - dest_bitmap->rect.max.y; if (delta > 0) { sr.max.x -= delta; dr.max.x -= delta; } drw = rect_width (& dr); drh = rect_height (& dh); x0 = dr.min.x; y0 = dr.min.y; x3 = dr.max.x; y3 = dr.max.y; #if 0 /* if the source rect min y is >= the source bitmap max y, we transfer background color to the entire dest rect */ if (sr.min.y >= src->rect.max.y) { blt_background (dest_bitmap, dr); goto done; } #endif /* top */ if (y0 != y1) { dr2.min.x = x0; dr2.max.x = x3; dr2.min.y = y0; dr2.max.y = y1; blt_background (dest_bitmap, & dr2); } /* * top: if the source rect min y is less than the source bitmap min y, * we need to transfer some backgound color to the top part of the dest * rect */ if (sr.min.y < src->rect.min.y) { Rect dr2; uint32 bg_height; bg_height = src->rect.min.y - sr.min.y; if (bg_height > sh) bg_height = sh; dr2 = dr; dr2.max.y = dr2.min.y + bg_height; blt_background (dest_bitmap, & dr2); /* now reduce the rect height by the number of lines of background color */ sr.min.y += bg_height; dr.min.y += bg_height; sh -= bg_height; dh -= bg_height; if (sr.min.y == sr.max.y) goto done; } if (y1 != y2) { /* left */ if (x0 != x1) { dr2.min.x = x1; dr2.max.x = x1; dr2.min.y = y1; dr2.max.y = y2 blt_background (dest_bitmap, & dr2); } /* middle */ if (x1 != x2) { /* ??? */ } /* right */ if (x2 != x3) { dr2.min.x = x2; dr2.max.x = x3; dr2.min.y = y1; dr2.max.y = y2 blt_background (dest_bitmap, & dr2); } } /* bottom */ if (y2 != y3) { dr2.min.x = x0; dr2.max.x = x3; dr2.min.y = y2; dr2.max.y = y3; blt_background (dest_bitmap, & dr2); } done: return (dest_bitmap); } #else Bitmap *bitblt (Bitmap *src_bitmap, Rect *src_rect, Bitmap *dest_bitmap, Point *dest_min, int tfn, int background) { Point src_point, dest_point; if (! dest_bitmap) { Rect dest_rect = {{ 0, 0 }, { dest_min->x + rect_width (src_rect), dest_min->y + rect_height (src_rect) }}; dest_bitmap = create_bitmap (& dest_rect); if (! dest_bitmap) return (NULL); } if (tfn == TF_SRC) { for (src_point.y = src_rect->min.y; src_point.y < src_rect->max.y; src_point.y++) { dest_point.y = dest_min->y + src_point.y - src_rect->min.y; for (src_point.x = src_rect->min.x; src_point.x < src_rect->max.x; src_point.x++) { bool a; dest_point.x = dest_min->x + src_point.x - src_rect->min.x; a = get_pixel (src_bitmap, src_point); set_pixel (dest_bitmap, dest_point, a); } } } else { for (src_point.y = src_rect->min.y; src_point.y < src_rect->max.y; src_point.y++) { dest_point.y = dest_min->y + src_point.y - src_rect->min.y; for (src_point.x = src_rect->min.x; src_point.x < src_rect->max.x; src_point.x++) { bool a, b, c; dest_point.x = dest_min->x + src_point.x - src_rect->min.x; a = get_pixel (src_bitmap, src_point); b = get_pixel (dest_bitmap, dest_point); c = (tfn & (1 << (a * 2 + b))) != 0; set_pixel (dest_bitmap, dest_point, c); } } } return (dest_bitmap); } #endif /* in-place transformations */ void flip_h (Bitmap *src) { word_t *rp; /* row pointer */ int32_t y; int shift1, shift2; rp = src->bits; if ((rect_width (& src->rect) & 7) == 0) { for (y = src->rect.min.y; y < src->rect.max.y; y++) { reverse_range_of_bytes ((uint8_t *) rp, rect_width (& src->rect) / 8); rp += src->row_words; } return; } realloc_temp_buffer ((src->row_words + 1) * sizeof (word_t)); temp_buffer [0] = 0; shift1 = rect_width (& src->rect) & (BITS_PER_WORD - 1); shift2 = BITS_PER_WORD - shift1; for (y = src->rect.min.y; y < src->rect.max.y; y++) { word_t d1, d2; word_t *p1; /* work src ptr */ word_t *p2; /* work dest ptr */ memcpy (temp_buffer + 1, rp, src->row_words * sizeof (word_t)); p1 = temp_buffer + src->row_words; p2 = rp; d2 = *(p1--); while (p1 >= temp_buffer) { word_t t; d1 = *(p1--); t = (d1 >> shift1) | (d2 << shift2); *(p2++) = bit_reverse_word (t); d2 = d1; } rp += src->row_words; } } void flip_v (Bitmap *src) { word_t *p1, *p2; realloc_temp_buffer (src->row_words * sizeof (word_t)); p1 = src->bits; p2 = src->bits + src->row_words * (rect_height (& src->rect) - 1); while (p1 < p2) { memcpy (temp_buffer, p1, src->row_words * sizeof (word_t)); memcpy (p1, p2, src->row_words * sizeof (word_t)); memcpy (p2, temp_buffer, src->row_words * sizeof (word_t)); p1 += src->row_words; p2 -= src->row_words; } } void rot_180 (Bitmap *src) /* combination of flip_h and flip_v */ { flip_h (src); flip_v (src); } /* "in-place" transformations - will allocate new memory and free old */ void transpose (Bitmap *src) { uint32_t new_row_words = DIV_ROUND_UP (rect_height (& src->rect), 32); word_t *new_bits; new_bits = calloc (1, new_row_words * rect_width (& src->rect) * sizeof (word_t)); /* $$$ more code needed here */ } void rot_90 (Bitmap *src) /* transpose + flip_h */ { transpose (src); flip_h (src); } void rot_270 (Bitmap *src) /* transpose + flip_v */ { transpose (src); flip_v (src); }