// SPDX-License-Identifier: MIT #include "m68k.h" #include "emulator.h" #include "platforms/platforms.h" #include "input/input.h" #include "platforms/amiga/Gayle.h" #include "platforms/amiga/amiga-registers.h" #include "platforms/amiga/rtg/rtg.h" #include "platforms/amiga/hunk-reloc.h" #include "platforms/amiga/piscsi/piscsi.h" #include "platforms/amiga/piscsi/piscsi-enums.h" #include "platforms/amiga/net/pi-net.h" #include "platforms/amiga/net/pi-net-enums.h" #include "platforms/amiga/pistorm-dev/pistorm-dev.h" #include "platforms/amiga/pistorm-dev/pistorm-dev-enums.h" #include "gpio/ps_protocol.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KEY_POLL_INTERVAL_MSEC 5000 unsigned char read_ranges; unsigned int read_addr[8]; unsigned int read_upper[8]; unsigned char *read_data[8]; unsigned char write_ranges; unsigned int write_addr[8]; unsigned int write_upper[8]; unsigned char *write_data[8]; int kb_hook_enabled = 0; int mouse_hook_enabled = 0; int cpu_emulation_running = 1; uint8_t mouse_dx = 0, mouse_dy = 0; uint8_t mouse_buttons = 0; uint8_t mouse_extra = 0; extern uint8_t gayle_int; extern uint8_t gayle_ide_enabled; extern uint8_t gayle_emulation_enabled; extern uint8_t gayle_a4k_int; extern volatile unsigned int *gpio; extern volatile uint16_t srdata; extern uint8_t realtime_graphics_debug; extern uint8_t rtg_on; uint8_t realtime_disassembly, int2_enabled = 0; uint32_t do_disasm = 0, old_level; uint32_t last_irq = 8, last_last_irq = 8; uint8_t end_signal = 0, load_new_config = 0; char disasm_buf[4096]; #define KICKBASE 0xF80000 #define KICKSIZE 0x7FFFF int mem_fd, mouse_fd = -1, keyboard_fd = -1; int mem_fd_gpclk; int irq; int gayleirq; #define MUSASHI_HAX #ifdef MUSASHI_HAX #include "m68kcpu.h" extern m68ki_cpu_core m68ki_cpu; extern int m68ki_initial_cycles; extern int m68ki_remaining_cycles; #define M68K_SET_IRQ(i) old_level = CPU_INT_LEVEL; \ CPU_INT_LEVEL = (i << 8); \ if(old_level != 0x0700 && CPU_INT_LEVEL == 0x0700) \ m68ki_cpu.nmi_pending = TRUE; #define M68K_END_TIMESLICE m68ki_initial_cycles = GET_CYCLES(); \ SET_CYCLES(0); #else #define M68K_SET_IRQ m68k_set_irq #define M68K_END_TIMESLICE m68k_end_timeslice() #endif #define NOP asm("nop"); asm("nop"); asm("nop"); asm("nop"); #define DEBUG_EMULATOR #ifdef DEBUG_EMULATOR #define DEBUG printf #else #define DEBUG(...) #endif // Configurable emulator options unsigned int cpu_type = M68K_CPU_TYPE_68000; unsigned int loop_cycles = 300, irq_status = 0; struct emulator_config *cfg = NULL; char keyboard_file[256] = "/dev/input/event1"; uint64_t trig_irq = 0, serv_irq = 0; uint16_t irq_delay = 0; unsigned int amiga_reset=0, amiga_reset_last=0; unsigned int do_reset=0; void *ipl_task(void *args) { printf("IPL thread running\n"); uint16_t old_irq = 0; uint32_t value; while (1) { value = *(gpio + 13); if (!(value & (1 << PIN_IPL_ZERO))) { irq = 1; old_irq = irq_delay; //NOP M68K_END_TIMESLICE; NOP //usleep(0); } else { if (irq) { if (old_irq) { old_irq--; } else { irq = 0; } M68K_END_TIMESLICE; NOP //usleep(0); } } if(do_reset==0) { amiga_reset=(value & (1 << PIN_RESET)); if(amiga_reset!=amiga_reset_last) { amiga_reset_last=amiga_reset; if(amiga_reset==0) { printf("Amiga Reset is down...\n"); do_reset=1; M68K_END_TIMESLICE; } else { printf("Amiga Reset is up...\n"); } } } /*if (gayle_ide_enabled) { if (((gayle_int & 0x80) || gayle_a4k_int) && (get_ide(0)->drive[0].intrq || get_ide(0)->drive[1].intrq)) { //get_ide(0)->drive[0].intrq = 0; gayleirq = 1; M68K_END_TIMESLICE; } else gayleirq = 0; }*/ //usleep(0); //NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP //NOP NOP NOP NOP NOP NOP NOP NOP //NOP NOP NOP NOP NOP NOP NOP NOP /*NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP*/ } return args; } void *cpu_task() { m68k_pulse_reset(); cpu_loop: if (mouse_hook_enabled) { get_mouse_status(&mouse_dx, &mouse_dy, &mouse_buttons, &mouse_extra); } if (realtime_disassembly && (do_disasm || cpu_emulation_running)) { m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type); printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \ m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7)); printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \ m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7)); printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf); if (do_disasm) do_disasm--; m68k_execute(1); } else { if (cpu_emulation_running) m68k_execute(loop_cycles); } if (irq) { while (irq) { last_irq = ((read_reg() & 0xe000) >> 13); if (last_irq != last_last_irq) { last_last_irq = last_irq; M68K_SET_IRQ(last_irq); } m68k_execute(5); } if (gayleirq && int2_enabled) { write16(0xdff09c, 0x8000 | (1 << 3) && last_irq != 2); last_last_irq = last_irq; last_irq = 2; M68K_SET_IRQ(2); } M68K_SET_IRQ(0); last_last_irq = 0; m68k_execute(5); } /*else { if (last_irq != 0) { M68K_SET_IRQ(0); last_last_irq = last_irq; last_irq = 0; } }*/ if (do_reset) { cpu_pulse_reset(); do_reset=0; usleep(1000000); // 1sec rtg_on=0; // while(amiga_reset==0); // printf("CPU emulation reset.\n"); } if (mouse_hook_enabled && (mouse_extra != 0x00)) { // mouse wheel events have occurred; unlike l/m/r buttons, these are queued as keypresses, so add to end of buffer switch (mouse_extra) { case 0xff: // wheel up queue_keypress(0xfe, KEYPRESS_PRESS, PLATFORM_AMIGA); break; case 0x01: // wheel down queue_keypress(0xff, KEYPRESS_PRESS, PLATFORM_AMIGA); break; } // dampen the scroll wheel until next while loop iteration mouse_extra = 0x00; } if (load_new_config) { printf("[CPU] Loading new config file.\n"); goto stop_cpu_emulation; } if (end_signal) goto stop_cpu_emulation; goto cpu_loop; stop_cpu_emulation: printf("[CPU] End of CPU thread\n"); return (void *)NULL; } void *keyboard_task() { struct pollfd kbdpoll[1]; int kpollrc; char c = 0, c_code = 0, c_type = 0; char grab_message[] = "[KBD] Grabbing keyboard from input layer\n", ungrab_message[] = "[KBD] Ungrabbing keyboard\n"; printf("[KBD] Keyboard thread started\n"); // because we permit the keyboard to be grabbed on startup, quickly check if we need to grab it if (kb_hook_enabled && cfg->keyboard_grab) { printf(grab_message); grab_device(keyboard_fd); } kbdpoll[0].fd = keyboard_fd; kbdpoll[0].events = POLLIN; key_loop: kpollrc = poll(kbdpoll, 1, KEY_POLL_INTERVAL_MSEC); if ((kpollrc > 0) && (kbdpoll[0].revents & POLLHUP)) { // in the event that a keyboard is unplugged, keyboard_task will whiz up to 100% utilisation // this is undesired, so if the keyboard HUPs, end the thread without ending the emulation printf("[KBD] Keyboard node returned HUP (unplugged?)\n"); goto key_end; } // if kpollrc > 0 then it contains number of events to pull, also check if POLLIN is set in revents if ((kpollrc <= 0) || !(kbdpoll[0].revents & POLLIN)) { goto key_loop; } while (get_key_char(&c, &c_code, &c_type)) { if (c && c == cfg->keyboard_toggle_key && !kb_hook_enabled) { kb_hook_enabled = 1; printf("[KBD] Keyboard hook enabled.\n"); if (cfg->keyboard_grab) { grab_device(keyboard_fd); printf(grab_message); } } else if (kb_hook_enabled) { if (c == 0x1B && c_type) { kb_hook_enabled = 0; printf("[KBD] Keyboard hook disabled.\n"); if (cfg->keyboard_grab) { release_device(keyboard_fd); printf(ungrab_message); } } else { if (queue_keypress(c_code, c_type, cfg->platform->id) && int2_enabled && last_irq != 2) { //last_irq = 0; //M68K_SET_IRQ(2); } } } // pause pressed; trigger nmi (int level 7) if (c == 0x01 && c_type) { printf("[INT] Sending NMI\n"); M68K_SET_IRQ(7); } if (!kb_hook_enabled && c_type) { if (c && c == cfg->mouse_toggle_key) { mouse_hook_enabled ^= 1; printf("Mouse hook %s.\n", mouse_hook_enabled ? "enabled" : "disabled"); mouse_dx = mouse_dy = mouse_buttons = mouse_extra = 0; } if (c == 'r') { cpu_emulation_running ^= 1; printf("CPU emulation is now %s\n", cpu_emulation_running ? "running" : "stopped"); } if (c == 'g') { realtime_graphics_debug ^= 1; printf("Real time graphics debug is now %s\n", realtime_graphics_debug ? "on" : "off"); } if (c == 'R') { cpu_pulse_reset(); //m68k_pulse_reset(); printf("CPU emulation reset.\n"); } if (c == 'q') { printf("Quitting and exiting emulator.\n"); end_signal = 1; goto key_end; } if (c == 'd') { realtime_disassembly ^= 1; do_disasm = 1; printf("Real time disassembly is now %s\n", realtime_disassembly ? "on" : "off"); } if (c == 'D') { int r = get_mapped_item_by_address(cfg, 0x08000000); if (r != -1) { printf("Dumping first 16MB of mapped range %d.\n", r); FILE *dmp = fopen("./memdmp.bin", "wb+"); fwrite(cfg->map_data[r], 16 * SIZE_MEGA, 1, dmp); fclose(dmp); } } if (c == 's' && realtime_disassembly) { do_disasm = 1; } if (c == 'S' && realtime_disassembly) { do_disasm = 128; } } } goto key_loop; key_end: printf("[KBD] Keyboard thread ending\n"); if (cfg->keyboard_grab) { printf(ungrab_message); release_device(keyboard_fd); } return (void*)NULL; } void stop_cpu_emulation(uint8_t disasm_cur) { M68K_END_TIMESLICE; if (disasm_cur) { m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type); printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \ m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7)); printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \ m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7)); printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf); realtime_disassembly = 1; } cpu_emulation_running = 0; do_disasm = 0; } unsigned int ovl; static volatile unsigned char maprom; void sigint_handler(int sig_num) { //if (sig_num) { } //cpu_emulation_running = 0; //return; printf("Received sigint %d, exiting.\n", sig_num); if (mouse_fd != -1) close(mouse_fd); if (mem_fd) close(mem_fd); if (cfg->platform->shutdown) { cfg->platform->shutdown(cfg); } printf("IRQs triggered: %lld\n", trig_irq); printf("IRQs serviced: %lld\n", serv_irq); exit(0); } int main(int argc, char *argv[]) { int g; //const struct sched_param priority = {99}; // Some command line switch stuffles for (g = 1; g < argc; g++) { if (strcmp(argv[g], "--cpu_type") == 0 || strcmp(argv[g], "--cpu") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no CPU type specified.\n", argv[g]); } else { g++; cpu_type = get_m68k_cpu_type(argv[g]); } } else if (strcmp(argv[g], "--config-file") == 0 || strcmp(argv[g], "--config") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no config filename specified.\n", argv[g]); } else { g++; cfg = load_config_file(argv[g]); if (cfg) { set_pistorm_devcfg_filename(argv[g]); } } } else if (strcmp(argv[g], "--keyboard-file") == 0 || strcmp(argv[g], "--kbfile") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no keyboard device path specified.\n", argv[g]); } else { g++; strcpy(keyboard_file, argv[g]); } } } switch_config: srand(clock()); if (load_new_config != 0) { uint8_t config_action = load_new_config - 1; load_new_config = 0; free_config_file(cfg); if (cfg) { free(cfg); cfg = NULL; } for(int i = 0; i < 2 * SIZE_MEGA; i++) { write8(i, 0); } switch(config_action) { case PICFG_LOAD: case PICFG_RELOAD: cfg = load_config_file(get_pistorm_devcfg_filename()); break; case PICFG_DEFAULT: cfg = load_config_file("default.cfg"); break; } } if (!cfg) { printf("No config file specified. Trying to load default.cfg...\n"); cfg = load_config_file("default.cfg"); if (!cfg) { printf("Couldn't load default.cfg, empty emulator config will be used.\n"); cfg = (struct emulator_config *)calloc(1, sizeof(struct emulator_config)); if (!cfg) { printf("Failed to allocate memory for emulator config!\n"); return 1; } memset(cfg, 0x00, sizeof(struct emulator_config)); } } if (cfg) { if (cfg->cpu_type) cpu_type = cfg->cpu_type; if (cfg->loop_cycles) loop_cycles = cfg->loop_cycles; if (!cfg->platform) cfg->platform = make_platform_config("none", "generic"); cfg->platform->platform_initial_setup(cfg); } if (cfg->mouse_enabled) { mouse_fd = open(cfg->mouse_file, O_RDWR | O_NONBLOCK); if (mouse_fd == -1) { printf("Failed to open %s, can't enable mouse hook.\n", cfg->mouse_file); cfg->mouse_enabled = 0; } else { /** * *-*-*-* magic numbers! *-*-*-* * great, so waaaay back in the history of the pc, the ps/2 protocol set the standard for mice * and in the process, the mouse sample rate was defined as a way of putting mice into vendor-specific modes. * as the ancient gpm command explains, almost everything except incredibly old mice talk the IntelliMouse * protocol, which reports four bytes. by default, every mouse starts in 3-byte mode (don't report wheel or * additional buttons) until imps2 magic is sent. so, command $f3 is "set sample rate", followed by a byte. */ uint8_t mouse_init[] = { 0xf4, 0xf3, 0x64 }; // enable, then set sample rate 100 uint8_t imps2_init[] = { 0xf3, 0xc8, 0xf3, 0x64, 0xf3, 0x50 }; // magic sequence; set sample 200, 100, 80 if (write(mouse_fd, mouse_init, sizeof(mouse_init)) != -1) { if (write(mouse_fd, imps2_init, sizeof(imps2_init)) == -1) printf("[MOUSE] Couldn't enable scroll wheel events; is this mouse from the 1980s?\n"); } else printf("[MOUSE] Mouse didn't respond to normal PS/2 init; have you plugged a brick in by mistake?\n"); } } if (cfg->keyboard_file) keyboard_fd = open(cfg->keyboard_file, O_RDONLY | O_NONBLOCK); else keyboard_fd = open(keyboard_file, O_RDONLY | O_NONBLOCK); if (keyboard_fd == -1) { printf("Failed to open keyboard event source.\n"); } if (cfg->mouse_autoconnect) mouse_hook_enabled = 1; if (cfg->keyboard_autoconnect) kb_hook_enabled = 1; InitGayle(); signal(SIGINT, sigint_handler); /*setup_io(); //goto skip_everything; // Enable 200MHz CLK output on GPIO4, adjust divider and pll source depending // on pi model printf("Enable 200MHz GPCLK0 on GPIO4\n"); gpio_enable_200mhz(); // reset cpld statemachine first write_reg(0x01); usleep(100); usleep(1500); write_reg(0x00); usleep(100); // reset amiga and statemachine skip_everything:; usleep(1500); m68k_init(); printf("Setting CPU type to %d.\n", cpu_type); m68k_set_cpu_type(cpu_type); cpu_pulse_reset(); if (maprom == 1) { m68k_set_reg(M68K_REG_PC, 0xF80002); } else { m68k_set_reg(M68K_REG_PC, 0x0); }*/ ps_setup_protocol(); ps_reset_state_machine(); ps_pulse_reset(); usleep(1500); m68k_init(); printf("Setting CPU type to %d.\n", cpu_type); m68k_set_cpu_type(cpu_type); cpu_pulse_reset(); pthread_t ipl_tid = 0, cpu_tid, kbd_tid; int err; if (ipl_tid == 0) { err = pthread_create(&ipl_tid, NULL, &ipl_task, NULL); if (err != 0) printf("[ERROR] Cannot create IPL thread: [%s]", strerror(err)); else { pthread_setname_np(ipl_tid, "pistorm: ipl"); printf("IPL thread created successfully\n"); } } // create keyboard task err = pthread_create(&kbd_tid, NULL, &keyboard_task, NULL); if (err != 0) printf("[ERROR] Cannot create keyboard thread: [%s]", strerror(err)); else { pthread_setname_np(kbd_tid, "pistorm: kbd"); printf("[MAIN] Keyboard thread created successfully\n"); } // create cpu task err = pthread_create(&cpu_tid, NULL, &cpu_task, NULL); if (err != 0) printf("[ERROR] Cannot create CPU thread: [%s]", strerror(err)); else { pthread_setname_np(cpu_tid, "pistorm: cpu"); printf("[MAIN] CPU thread created successfully\n"); } // wait for cpu task to end before closing up and finishing pthread_join(cpu_tid, NULL); if (load_new_config == 0) printf("[MAIN] All threads appear to have concluded; ending process\n"); if (mouse_fd != -1) close(mouse_fd); if (mem_fd) close(mem_fd); if (load_new_config != 0) goto switch_config; if (cfg->platform->shutdown) { cfg->platform->shutdown(cfg); } return 0; } void cpu_pulse_reset(void) { ps_pulse_reset(); //write_reg(0x00); // printf("Status Reg%x\n",read_reg()); //usleep(100000); //write_reg(0x02); // printf("Status Reg%x\n",read_reg()); if (cfg->platform->handle_reset) cfg->platform->handle_reset(cfg); //m68k_write_memory_16(INTENA, 0x7FFF); ovl = 1; m68k_write_memory_8(0xbfe201, 0x0001); // AMIGA OVL m68k_write_memory_8(0xbfe001, 0x0001); // AMIGA OVL high (ROM@0x0) m68k_pulse_reset(); } int cpu_irq_ack(int level) { printf("cpu irq ack\n"); return level; } static unsigned int target = 0; static uint8_t send_keypress = 0; uint8_t cdtv_dmac_reg_idx_read(); void cdtv_dmac_reg_idx_write(uint8_t value); uint32_t cdtv_dmac_read(uint32_t address, uint8_t type); void cdtv_dmac_write(uint32_t address, uint32_t value, uint8_t type); #define PLATFORM_CHECK_READ(a) \ if (address >= cfg->custom_low && address < cfg->custom_high) { \ unsigned int target = 0; \ switch(cfg->platform->id) { \ case PLATFORM_AMIGA: { \ if (address >= PISCSI_OFFSET && address < PISCSI_UPPER) { \ return handle_piscsi_read(address, a); \ } \ if (address >= PINET_OFFSET && address < PINET_UPPER) { \ return handle_pinet_read(address, a); \ } \ if (address >= PIGFX_RTG_BASE && address < PIGFX_UPPER) { \ return rtg_read((address & 0x0FFFFFFF), a); \ } \ if (custom_read_amiga(cfg, address, &target, a) != -1) { \ return target; \ } \ break; \ } \ default: \ break; \ } \ } \ if (ovl || (address >= cfg->mapped_low && address < cfg->mapped_high)) { \ if (handle_mapped_read(cfg, address, &target, a) != -1) \ return target; \ } unsigned int m68k_read_memory_8(unsigned int address) { PLATFORM_CHECK_READ(OP_TYPE_BYTE); /*if (address >= 0xE90000 && address < 0xF00000) { printf("BYTE read from DMAC @%.8X:", address); uint32_t v = cdtv_dmac_read(address & 0xFFFF, OP_TYPE_BYTE); printf("%.2X\n", v); M68K_END_TIMESLICE; cpu_emulation_running = 0; return v; }*/ /*if (m68k_get_reg(NULL, M68K_REG_PC) >= 0x080032F0 && m68k_get_reg(NULL, M68K_REG_PC) <= 0x080032F0 + 0x4000) { stop_cpu_emulation(1); }*/ if (address & 0xFF000000) return 0; unsigned char result = (unsigned int)read8((uint32_t)address); if (mouse_hook_enabled) { if (address == CIAAPRA) { if (mouse_buttons & 0x01) { //mouse_buttons -= 1; return (unsigned int)(result ^ 0x40); } return (unsigned int)result; } } if (kb_hook_enabled) { if (address == CIAAICR) { if (get_num_kb_queued() && (!send_keypress || send_keypress == 1)) { result |= 0x08; if (!send_keypress) send_keypress = 1; } if (send_keypress == 2) { //result |= 0x02; send_keypress = 0; } return result; } if (address == CIAADAT) { //if (send_keypress) { uint8_t c = 0, t = 0; pop_queued_key(&c, &t); t ^= 0x01; result = ((c << 1) | t) ^ 0xFF; send_keypress = 2; //M68K_SET_IRQ(0); //} return result; } } return result; } unsigned int m68k_read_memory_16(unsigned int address) { PLATFORM_CHECK_READ(OP_TYPE_WORD); /*if (m68k_get_reg(NULL, M68K_REG_PC) >= 0x080032F0 && m68k_get_reg(NULL, M68K_REG_PC) <= 0x080032F0 + 0x4000) { stop_cpu_emulation(1); }*/ /*if (address >= 0xE90000 && address < 0xF00000) { printf("WORD read from DMAC @%.8X:", address); uint32_t v = cdtv_dmac_read(address & 0xFFFF, OP_TYPE_WORD); printf("%.2X\n", v); M68K_END_TIMESLICE; cpu_emulation_running = 0; return v; }*/ if (mouse_hook_enabled) { if (address == JOY0DAT) { // Forward mouse valueses to Amyga. unsigned short result = (mouse_dy << 8) | (mouse_dx); return (unsigned int)result; } /*if (address == CIAAPRA) { unsigned short result = (unsigned int)read16((uint32_t)address); if (mouse_buttons & 0x01) { return (unsigned int)(result | 0x40); } else return (unsigned int)result; }*/ if (address == POTGOR) { unsigned short result = (unsigned int)read16((uint32_t)address); // bit 1 rmb, bit 2 mmb if (mouse_buttons & 0x06) { return (unsigned int)((result ^ ((mouse_buttons & 0x02) << 9)) // move rmb to bit 10 & (result ^ ((mouse_buttons & 0x04) << 6))); // move mmb to bit 8 } return (unsigned int)(result & 0xfffd); } } if (address & 0xFF000000) return 0; if (address & 0x01) { return ((read8(address) << 8) | read8(address + 1)); } return (unsigned int)read16((uint32_t)address); } unsigned int m68k_read_memory_32(unsigned int address) { PLATFORM_CHECK_READ(OP_TYPE_LONGWORD); /*if (m68k_get_reg(NULL, M68K_REG_PC) >= 0x080032F0 && m68k_get_reg(NULL, M68K_REG_PC) <= 0x080032F0 + 0x4000) { stop_cpu_emulation(1); }*/ /*if (address >= 0xE90000 && address < 0xF00000) { printf("LONGWORD read from DMAC @%.8X:", address); uint32_t v = cdtv_dmac_read(address & 0xFFFF, OP_TYPE_LONGWORD); printf("%.2X\n", v); M68K_END_TIMESLICE; cpu_emulation_running = 0; return v; }*/ if (address & 0xFF000000) return 0; if (address & 0x01) { uint32_t c = read8(address); c |= (be16toh(read16(address+1)) << 8); c |= (read8(address + 3) << 24); return htobe32(c); } uint16_t a = read16(address); uint16_t b = read16(address + 2); return (a << 16) | b; } #define PLATFORM_CHECK_WRITE(a) \ if (address >= cfg->custom_low && address < cfg->custom_high) { \ switch(cfg->platform->id) { \ case PLATFORM_AMIGA: { \ if (address >= PISCSI_OFFSET && address < PISCSI_UPPER) { \ handle_piscsi_write(address, value, a); \ } \ if (address >= PINET_OFFSET && address < PINET_UPPER) { \ handle_pinet_write(address, value, a); \ } \ if (address >= PIGFX_RTG_BASE && address < PIGFX_UPPER) { \ rtg_write((address & 0x0FFFFFFF), value, a); \ return; \ } \ if (custom_write_amiga(cfg, address, value, a) != -1) { \ return; \ } \ break; \ } \ default: \ break; \ } \ } \ if (address >= cfg->mapped_low && address < cfg->mapped_high) { \ if (handle_mapped_write(cfg, address, value, a) != -1) \ return; \ } void m68k_write_memory_8(unsigned int address, unsigned int value) { PLATFORM_CHECK_WRITE(OP_TYPE_BYTE); /*if (address >= 0xE90000 && address < 0xF00000) { printf("BYTE write to DMAC @%.8X: %.2X\n", address, value); cdtv_dmac_write(address & 0xFFFF, value, OP_TYPE_BYTE); M68K_END_TIMESLICE; cpu_emulation_running = 0; return; }*/ if (address == 0xbfe001) { if (ovl != (value & (1 << 0))) { ovl = (value & (1 << 0)); printf("OVL:%x\n", ovl); } } if (address & 0xFF000000) return; write8((uint32_t)address, value); return; } void m68k_write_memory_16(unsigned int address, unsigned int value) { PLATFORM_CHECK_WRITE(OP_TYPE_WORD); /*if (address >= 0xE90000 && address < 0xF00000) { printf("WORD write to DMAC @%.8X: %.4X\n", address, value); cdtv_dmac_write(address & 0xFFFF, value, OP_TYPE_WORD); M68K_END_TIMESLICE; cpu_emulation_running = 0; return; }*/ if (address == 0xDFF030) { char *serdat = (char *)&value; // SERDAT word. see amiga dev docs appendix a; upper byte is control codes, and bit 0 is always 1. // ignore this upper byte as it's not viewable data, only display lower byte. printf("%c", serdat[0]); } if (address == 0xDFF09A) { if (!(value & 0x8000)) { if (value & 0x04) { int2_enabled = 0; } } else if (value & 0x04) { int2_enabled = 1; } } if (address & 0xFF000000) return; if (address & 0x01) printf("Unaligned WORD write!\n"); write16((uint32_t)address, value); return; } void m68k_write_memory_32(unsigned int address, unsigned int value) { PLATFORM_CHECK_WRITE(OP_TYPE_LONGWORD); /*if (address >= 0xE90000 && address < 0xF00000) { printf("LONGWORD write to DMAC @%.8X: %.8X\n", address, value); cdtv_dmac_write(address & 0xFFFF, value, OP_TYPE_LONGWORD); M68K_END_TIMESLICE; cpu_emulation_running = 0; return; }*/ if (address & 0xFF000000) return; if (address & 0x01) printf("Unaligned LONGWORD write!\n"); write16(address, value >> 16); write16(address + 2, value); return; }