Adam Polkosnik [fun] b453b907cc
Reduce the changes
2022-06-11 20:55:04 -04:00

1175 lines
34 KiB
C

// SPDX-License-Identifier: MIT
#include "m68k.h"
#include "emulator.h"
#include "platforms/platforms.h"
#include "input/input.h"
#include "m68kcpu.h"
#include "platforms/amiga/Gayle.h"
#include "platforms/amiga/amiga-registers.h"
#include "platforms/amiga/amiga-interrupts.h"
#include "platforms/amiga/rtg/rtg.h"
#include "platforms/amiga/hunk-reloc.h"
#include "platforms/amiga/piscsi/piscsi.h"
#include "platforms/amiga/piscsi/piscsi-enums.h"
#include "platforms/amiga/net/pi-net.h"
#include "platforms/amiga/net/pi-net-enums.h"
#include "platforms/amiga/ahi/pi_ahi.h"
#include "platforms/amiga/ahi/pi-ahi-enums.h"
#include "platforms/amiga/pistorm-dev/pistorm-dev.h"
#include "platforms/amiga/pistorm-dev/pistorm-dev-enums.h"
#include "gpio/ps_protocol.h"
#include <assert.h>
#include <dirent.h>
#include <endian.h>
#include <fcntl.h>
#include <poll.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "m68kops.h"
#define KEY_POLL_INTERVAL_MSEC 5000
unsigned int ovl;
int kb_hook_enabled = 0;
int mouse_hook_enabled = 0;
int cpu_emulation_running = 1;
int swap_df0_with_dfx = 0;
int spoof_df0_id = 0;
int move_slow_to_chip = 0;
int force_move_slow_to_chip = 0;
uint8_t mouse_dx = 0, mouse_dy = 0;
uint8_t mouse_buttons = 0;
uint8_t mouse_extra = 0;
extern uint8_t gayle_int;
extern uint8_t gayle_ide_enabled;
extern uint8_t gayle_emulation_enabled;
extern uint8_t gayle_a4k_int;
extern volatile unsigned int *gpio;
extern volatile uint16_t srdata;
extern uint8_t realtime_graphics_debug, emulator_exiting;
extern uint8_t rtg_on;
uint8_t realtime_disassembly, int2_enabled = 0;
uint32_t do_disasm = 0, old_level;
uint32_t last_irq = 8, last_last_irq = 8;
uint8_t ipl_enabled[8];
uint8_t end_signal = 0, load_new_config = 0;
char disasm_buf[4096];
#define KICKBASE 0xF80000
#define KICKSIZE 0x7FFFF
int mem_fd, mouse_fd = -1, keyboard_fd = -1;
int mem_fd_gpclk;
int irq;
int gayleirq;
#define MUSASHI_HAX
#ifdef MUSASHI_HAX
#include "m68kcpu.h"
extern m68ki_cpu_core m68ki_cpu;
extern int m68ki_initial_cycles;
extern int m68ki_remaining_cycles;
#define M68K_SET_IRQ(i) old_level = CPU_INT_LEVEL; \
CPU_INT_LEVEL = (i << 8); \
if(old_level != 0x0700 && CPU_INT_LEVEL == 0x0700) \
m68ki_cpu.nmi_pending = TRUE;
#define M68K_END_TIMESLICE m68ki_initial_cycles = GET_CYCLES(); \
SET_CYCLES(0);
#else
#define M68K_SET_IRQ m68k_set_irq
#define M68K_END_TIMESLICE m68k_end_timeslice()
#endif
#define NOP asm("nop"); asm("nop"); asm("nop"); asm("nop");
#define DEBUG_EMULATOR
#ifdef DEBUG_EMULATOR
#define DEBUG printf
#else
#define DEBUG(...)
#endif
// Configurable emulator options
unsigned int cpu_type = M68K_CPU_TYPE_68000;
unsigned int loop_cycles = 300, irq_status = 0;
struct emulator_config *cfg = NULL;
char keyboard_file[256] = "/dev/input/event1";
uint64_t trig_irq = 0, serv_irq = 0;
uint16_t irq_delay = 0;
unsigned int amiga_reset=0, amiga_reset_last=0;
unsigned int do_reset=0;
void *ipl_task(void *args) {
printf("IPL thread running\n");
uint16_t old_irq = 0;
uint32_t value;
while (1) {
value = *(gpio + 13);
if (value & (1 << PIN_TXN_IN_PROGRESS))
goto noppers;
if (!(value & (1 << PIN_IPL_ZERO)) || ipl_enabled[amiga_emulated_ipl()]) {
old_irq = irq_delay;
//NOP
if (!irq) {
M68K_END_TIMESLICE;
NOP
irq = 1;
}
//usleep(0);
}
else {
if (irq) {
if (old_irq) {
old_irq--;
}
else {
irq = 0;
}
M68K_END_TIMESLICE;
NOP
//usleep(0);
}
}
if(do_reset==0)
{
amiga_reset=(value & (1 << PIN_RESET));
if(amiga_reset!=amiga_reset_last)
{
amiga_reset_last=amiga_reset;
if(amiga_reset==0)
{
printf("Amiga Reset is down...\n");
do_reset=1;
M68K_END_TIMESLICE;
}
else
{
printf("Amiga Reset is up...\n");
}
}
}
/*if (gayle_ide_enabled) {
if (((gayle_int & 0x80) || gayle_a4k_int) && (get_ide(0)->drive[0].intrq || get_ide(0)->drive[1].intrq)) {
//get_ide(0)->drive[0].intrq = 0;
gayleirq = 1;
M68K_END_TIMESLICE;
}
else
gayleirq = 0;
}*/
//usleep(0);
//NOP NOP
noppers:
NOP NOP NOP NOP NOP NOP NOP NOP
//NOP NOP NOP NOP NOP NOP NOP NOP
//NOP NOP NOP NOP NOP NOP NOP NOP
/*NOP NOP NOP NOP NOP NOP NOP NOP
NOP NOP NOP NOP NOP NOP NOP NOP
NOP NOP NOP NOP NOP NOP NOP NOP*/
}
return args;
}
static inline void m68k_execute_bef(m68ki_cpu_core *state, int num_cycles)
{
/* eat up any reset cycles */
if (RESET_CYCLES) {
int rc = RESET_CYCLES;
RESET_CYCLES = 0;
num_cycles -= rc;
if (num_cycles <= 0)
return;
}
/* Set our pool of clock cycles available */
SET_CYCLES(num_cycles);
m68ki_initial_cycles = num_cycles;
/* See if interrupts came in */
m68ki_check_interrupts(state);
/* Make sure we're not stopped */
if(!CPU_STOPPED)
{
/* Return point if we had an address error */
m68ki_set_address_error_trap(state); /* auto-disable (see m68kcpu.h) */
#ifdef M68K_BUSERR_THING
m68ki_check_bus_error_trap();
#endif
/* Main loop. Keep going until we run out of clock cycles */
do
{
/* Set tracing according to T1. (T0 is done inside instruction) */
m68ki_trace_t1(); /* auto-disable (see m68kcpu.h) */
/* Set the address space for reads */
m68ki_use_data_space(); /* auto-disable (see m68kcpu.h) */
/* Call external hook to peek at CPU */
m68ki_instr_hook(REG_PC); /* auto-disable (see m68kcpu.h) */
/* Record previous program counter */
REG_PPC = REG_PC;
/* Record previous D/A register state (in case of bus error) */
//#define M68K_BUSERR_THING
#ifdef M68K_BUSERR_THING
for (int i = 15; i >= 0; i--){
REG_DA_SAVE[i] = REG_DA[i];
}
#endif
/* Read an instruction and call its handler */
REG_IR = m68ki_read_imm_16(state);
m68ki_instruction_jump_table[REG_IR](state);
USE_CYCLES(CYC_INSTRUCTION[REG_IR]);
/* Trace m68k_exception, if necessary */
m68ki_exception_if_trace(state); /* auto-disable (see m68kcpu.h) */
} while(GET_CYCLES() > 0);
/* set previous PC to current PC for the next entry into the loop */
REG_PPC = REG_PC;
}
else
SET_CYCLES(0);
/* return how many clocks we used */
return;
}
void *cpu_task() {
m68ki_cpu_core *state = &m68ki_cpu;
state->ovl = ovl;
state->gpio = gpio;
m68k_pulse_reset(state);
cpu_loop:
if (mouse_hook_enabled) {
get_mouse_status(&mouse_dx, &mouse_dy, &mouse_buttons, &mouse_extra);
}
if (realtime_disassembly && (do_disasm || cpu_emulation_running)) {
m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type);
printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \
m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7));
printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \
m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7));
printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf);
if (do_disasm)
do_disasm--;
m68k_execute_bef(state, 1);
}
else {
if (cpu_emulation_running) {
if (irq)
m68k_execute_bef(state, 5);
else
m68k_execute_bef(state, loop_cycles);
}
}
if (irq) {
last_irq = ((ps_read_status_reg() & 0xe000) >> 13);
uint8_t amiga_irq = amiga_emulated_ipl();
if (amiga_irq >= last_irq) {
last_irq = amiga_irq;
}
if (last_irq != 0 && last_irq != last_last_irq) {
last_last_irq = last_irq;
M68K_SET_IRQ(last_irq);
}
}
if (!irq && last_last_irq != 0) {
M68K_SET_IRQ(0);
last_last_irq = 0;
}
if (do_reset) {
cpu_pulse_reset();
do_reset=0;
usleep(1000000); // 1sec
rtg_on=0;
// while(amiga_reset==0);
// printf("CPU emulation reset.\n");
}
if (mouse_hook_enabled && (mouse_extra != 0x00)) {
// mouse wheel events have occurred; unlike l/m/r buttons, these are queued as keypresses, so add to end of buffer
switch (mouse_extra) {
case 0xff:
// wheel up
queue_keypress(0xfe, KEYPRESS_PRESS, PLATFORM_AMIGA);
break;
case 0x01:
// wheel down
queue_keypress(0xff, KEYPRESS_PRESS, PLATFORM_AMIGA);
break;
}
// dampen the scroll wheel until next while loop iteration
mouse_extra = 0x00;
}
if (load_new_config) {
printf("[CPU] Loading new config file.\n");
goto stop_cpu_emulation;
}
if (end_signal)
goto stop_cpu_emulation;
goto cpu_loop;
stop_cpu_emulation:
printf("[CPU] End of CPU thread\n");
return (void *)NULL;
}
void *keyboard_task() {
struct pollfd kbdpoll[1];
int kpollrc;
char c = 0, c_code = 0, c_type = 0;
char grab_message[] = "[KBD] Grabbing keyboard from input layer",
ungrab_message[] = "[KBD] Ungrabbing keyboard";
printf("[KBD] Keyboard thread started\n");
// because we permit the keyboard to be grabbed on startup, quickly check if we need to grab it
if (kb_hook_enabled && cfg->keyboard_grab) {
puts(grab_message);
grab_device(keyboard_fd);
}
kbdpoll[0].fd = keyboard_fd;
kbdpoll[0].events = POLLIN;
key_loop:
kpollrc = poll(kbdpoll, 1, KEY_POLL_INTERVAL_MSEC);
if ((kpollrc > 0) && (kbdpoll[0].revents & POLLHUP)) {
// in the event that a keyboard is unplugged, keyboard_task will whiz up to 100% utilisation
// this is undesired, so if the keyboard HUPs, end the thread without ending the emulation
printf("[KBD] Keyboard node returned HUP (unplugged?)\n");
goto key_end;
}
// if kpollrc > 0 then it contains number of events to pull, also check if POLLIN is set in revents
if ((kpollrc <= 0) || !(kbdpoll[0].revents & POLLIN)) {
if (cfg->platform->id == PLATFORM_AMIGA && last_irq != 2 && get_num_kb_queued()) {
amiga_emulate_irq(PORTS);
}
goto key_loop;
}
while (get_key_char(&c, &c_code, &c_type)) {
if (c && c == cfg->keyboard_toggle_key && !kb_hook_enabled) {
kb_hook_enabled = 1;
printf("[KBD] Keyboard hook enabled.\n");
if (cfg->keyboard_grab) {
grab_device(keyboard_fd);
puts(grab_message);
}
} else if (kb_hook_enabled) {
if (c == 0x1B && c_type) {
kb_hook_enabled = 0;
printf("[KBD] Keyboard hook disabled.\n");
if (cfg->keyboard_grab) {
release_device(keyboard_fd);
puts(ungrab_message);
}
} else {
if (queue_keypress(c_code, c_type, cfg->platform->id)) {
if (cfg->platform->id == PLATFORM_AMIGA && last_irq != 2) {
amiga_emulate_irq(PORTS);
}
}
}
}
// pause pressed; trigger nmi (int level 7)
if (c == 0x01 && c_type) {
printf("[INT] Sending NMI\n");
M68K_SET_IRQ(7);
}
if (!kb_hook_enabled && c_type) {
if (c && c == cfg->mouse_toggle_key) {
mouse_hook_enabled ^= 1;
printf("Mouse hook %s.\n", mouse_hook_enabled ? "enabled" : "disabled");
mouse_dx = mouse_dy = mouse_buttons = mouse_extra = 0;
}
if (c == 'r') {
cpu_emulation_running ^= 1;
printf("CPU emulation is now %s\n", cpu_emulation_running ? "running" : "stopped");
}
if (c == 'g') {
realtime_graphics_debug ^= 1;
printf("Real time graphics debug is now %s\n", realtime_graphics_debug ? "on" : "off");
}
if (c == 'R') {
cpu_pulse_reset();
//m68k_pulse_reset();
printf("CPU emulation reset.\n");
}
if (c == 'q') {
printf("Quitting and exiting emulator.\n");
end_signal = 1;
goto key_end;
}
if (c == 'd') {
realtime_disassembly ^= 1;
do_disasm = 1;
printf("Real time disassembly is now %s\n", realtime_disassembly ? "on" : "off");
}
if (c == 'D') {
int r = get_mapped_item_by_address(cfg, 0x08000000);
if (r != -1) {
printf("Dumping first 16MB of mapped range %d.\n", r);
FILE *dmp = fopen("./memdmp.bin", "wb+");
fwrite(cfg->map_data[r], 16 * SIZE_MEGA, 1, dmp);
fclose(dmp);
}
}
if (c == 's' && realtime_disassembly) {
do_disasm = 1;
}
if (c == 'S' && realtime_disassembly) {
do_disasm = 128;
}
}
}
goto key_loop;
key_end:
printf("[KBD] Keyboard thread ending\n");
if (cfg->keyboard_grab) {
puts(ungrab_message);
release_device(keyboard_fd);
}
return (void*)NULL;
}
void stop_cpu_emulation(uint8_t disasm_cur) {
M68K_END_TIMESLICE;
if (disasm_cur) {
m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type);
printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \
m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7));
printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \
m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7));
printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf);
realtime_disassembly = 1;
}
cpu_emulation_running = 0;
do_disasm = 0;
}
void sigint_handler(int sig_num) {
//if (sig_num) { }
//cpu_emulation_running = 0;
//return;
printf("Received sigint %d, exiting.\n", sig_num);
if (mouse_fd != -1)
close(mouse_fd);
if (mem_fd)
close(mem_fd);
if (cfg->platform->shutdown) {
cfg->platform->shutdown(cfg);
}
while (!emulator_exiting) {
emulator_exiting = 1;
usleep(0);
}
printf("IRQs triggered: %lld\n", trig_irq);
printf("IRQs serviced: %lld\n", serv_irq);
printf("Last serviced IRQ: %d\n", last_last_irq);
exit(0);
}
int main(int argc, char *argv[]) {
int g;
ps_setup_protocol();
//const struct sched_param priority = {99};
// Some command line switch stuffles
for (g = 1; g < argc; g++) {
if (strcmp(argv[g], "--cpu_type") == 0 || strcmp(argv[g], "--cpu") == 0) {
if (g + 1 >= argc) {
printf("%s switch found, but no CPU type specified.\n", argv[g]);
} else {
g++;
cpu_type = get_m68k_cpu_type(argv[g]);
}
}
else if (strcmp(argv[g], "--config-file") == 0 || strcmp(argv[g], "--config") == 0) {
if (g + 1 >= argc) {
printf("%s switch found, but no config filename specified.\n", argv[g]);
} else {
g++;
FILE *chk = fopen(argv[g], "rb");
if (chk == NULL) {
printf("Config file %s does not exist, please check that you've specified the path correctly.\n", argv[g]);
} else {
fclose(chk);
load_new_config = 1;
set_pistorm_devcfg_filename(argv[g]);
}
}
}
else if (strcmp(argv[g], "--keyboard-file") == 0 || strcmp(argv[g], "--kbfile") == 0) {
if (g + 1 >= argc) {
printf("%s switch found, but no keyboard device path specified.\n", argv[g]);
} else {
g++;
strcpy(keyboard_file, argv[g]);
}
}
}
switch_config:
srand(clock());
ps_reset_state_machine();
ps_pulse_reset();
usleep(1500);
if (load_new_config != 0) {
uint8_t config_action = load_new_config - 1;
load_new_config = 0;
if (cfg) {
free_config_file(cfg);
free(cfg);
cfg = NULL;
}
switch(config_action) {
case PICFG_LOAD:
case PICFG_RELOAD:
cfg = load_config_file(get_pistorm_devcfg_filename());
break;
case PICFG_DEFAULT:
cfg = load_config_file("default.cfg");
break;
}
}
if (!cfg) {
printf("No config file specified. Trying to load default.cfg...\n");
cfg = load_config_file("default.cfg");
if (!cfg) {
printf("Couldn't load default.cfg, empty emulator config will be used.\n");
cfg = (struct emulator_config *)calloc(1, sizeof(struct emulator_config));
if (!cfg) {
printf("Failed to allocate memory for emulator config!\n");
return 1;
}
memset(cfg, 0x00, sizeof(struct emulator_config));
}
}
if (cfg) {
if (cfg->cpu_type) cpu_type = cfg->cpu_type;
if (cfg->loop_cycles) loop_cycles = cfg->loop_cycles;
if (!cfg->platform)
cfg->platform = make_platform_config("none", "generic");
cfg->platform->platform_initial_setup(cfg);
}
if (cfg->mouse_enabled) {
mouse_fd = open(cfg->mouse_file, O_RDWR | O_NONBLOCK);
if (mouse_fd == -1) {
printf("Failed to open %s, can't enable mouse hook.\n", cfg->mouse_file);
cfg->mouse_enabled = 0;
} else {
/**
* *-*-*-* magic numbers! *-*-*-*
* great, so waaaay back in the history of the pc, the ps/2 protocol set the standard for mice
* and in the process, the mouse sample rate was defined as a way of putting mice into vendor-specific modes.
* as the ancient gpm command explains, almost everything except incredibly old mice talk the IntelliMouse
* protocol, which reports four bytes. by default, every mouse starts in 3-byte mode (don't report wheel or
* additional buttons) until imps2 magic is sent. so, command $f3 is "set sample rate", followed by a byte.
*/
uint8_t mouse_init[] = { 0xf4, 0xf3, 0x64 }; // enable, then set sample rate 100
uint8_t imps2_init[] = { 0xf3, 0xc8, 0xf3, 0x64, 0xf3, 0x50 }; // magic sequence; set sample 200, 100, 80
if (write(mouse_fd, mouse_init, sizeof(mouse_init)) != -1) {
if (write(mouse_fd, imps2_init, sizeof(imps2_init)) == -1)
printf("[MOUSE] Couldn't enable scroll wheel events; is this mouse from the 1980s?\n");
} else
printf("[MOUSE] Mouse didn't respond to normal PS/2 init; have you plugged a brick in by mistake?\n");
}
}
if (cfg->keyboard_file)
keyboard_fd = open(cfg->keyboard_file, O_RDONLY | O_NONBLOCK);
else
keyboard_fd = open(keyboard_file, O_RDONLY | O_NONBLOCK);
if (keyboard_fd == -1) {
printf("Failed to open keyboard event source.\n");
}
if (cfg->mouse_autoconnect)
mouse_hook_enabled = 1;
if (cfg->keyboard_autoconnect)
kb_hook_enabled = 1;
InitGayle();
signal(SIGINT, sigint_handler);
ps_reset_state_machine();
ps_pulse_reset();
usleep(1500);
m68k_init();
printf("Setting CPU type to %d.\n", cpu_type);
m68k_set_cpu_type(&m68ki_cpu, cpu_type);
cpu_pulse_reset();
pthread_t ipl_tid = 0, cpu_tid, kbd_tid;
int err;
if (ipl_tid == 0) {
err = pthread_create(&ipl_tid, NULL, &ipl_task, NULL);
if (err != 0)
printf("[ERROR] Cannot create IPL thread: [%s]", strerror(err));
else {
pthread_setname_np(ipl_tid, "pistorm: ipl");
printf("IPL thread created successfully\n");
}
}
// create keyboard task
err = pthread_create(&kbd_tid, NULL, &keyboard_task, NULL);
if (err != 0)
printf("[ERROR] Cannot create keyboard thread: [%s]", strerror(err));
else {
pthread_setname_np(kbd_tid, "pistorm: kbd");
printf("[MAIN] Keyboard thread created successfully\n");
}
// create cpu task
err = pthread_create(&cpu_tid, NULL, &cpu_task, NULL);
if (err != 0)
printf("[ERROR] Cannot create CPU thread: [%s]", strerror(err));
else {
pthread_setname_np(cpu_tid, "pistorm: cpu");
printf("[MAIN] CPU thread created successfully\n");
}
// wait for cpu task to end before closing up and finishing
pthread_join(cpu_tid, NULL);
while (!emulator_exiting) {
emulator_exiting = 1;
usleep(0);
}
if (load_new_config == 0)
printf("[MAIN] All threads appear to have concluded; ending process\n");
if (mouse_fd != -1)
close(mouse_fd);
if (mem_fd)
close(mem_fd);
if (load_new_config != 0)
goto switch_config;
if (cfg->platform->shutdown) {
cfg->platform->shutdown(cfg);
}
return 0;
}
void cpu_pulse_reset(void) {
m68ki_cpu_core *state = &m68ki_cpu;
ps_pulse_reset();
ovl = 1;
m68ki_cpu.ovl = 1;
for (int i = 0; i < 8; i++) {
ipl_enabled[i] = 0;
}
if (cfg->platform->handle_reset)
cfg->platform->handle_reset(cfg);
m68k_pulse_reset(state);
}
unsigned int cpu_irq_ack(int level) {
//printf("cpu irq ack\n");
return 24 + level;
}
static unsigned int target = 0;
static uint32_t platform_res, rres;
uint8_t cdtv_dmac_reg_idx_read();
void cdtv_dmac_reg_idx_write(uint8_t value);
uint32_t cdtv_dmac_read(uint32_t address, uint8_t type);
void cdtv_dmac_write(uint32_t address, uint32_t value, uint8_t type);
unsigned int garbage = 0;
static inline uint32_t ps_read(uint8_t type, uint32_t addr) {
switch (type) {
case OP_TYPE_BYTE:
return ps_read_8(addr);
case OP_TYPE_WORD:
return ps_read_16(addr);
case OP_TYPE_LONGWORD:
return ps_read_32(addr);
}
// This shouldn't actually happen.
return 0;
}
static inline void ps_write(uint8_t type, uint32_t addr, uint32_t val) {
switch (type) {
case OP_TYPE_BYTE:
ps_write_8(addr, val);
return;
case OP_TYPE_WORD:
ps_write_16(addr, val);
return;
case OP_TYPE_LONGWORD:
ps_write_32(addr, val);
return;
}
// This shouldn't actually happen.
return;
}
static inline int32_t platform_read_check(uint8_t type, uint32_t addr, uint32_t *res) {
switch (cfg->platform->id) {
case PLATFORM_AMIGA:
switch (addr) {
case INTREQR:
return amiga_handle_intrqr_read(res);
break;
case CIAAPRA:
if (mouse_hook_enabled && (mouse_buttons & 0x01)) {
rres = (uint32_t)ps_read(type, addr);
*res = (rres ^ 0x40);
return 1;
}
if (swap_df0_with_dfx && spoof_df0_id) {
// DF0 doesn't emit a drive type ID on RDY pin
// If swapping DF0 with DF1-3 we need to provide this ID so that DF0 continues to function.
rres = (uint32_t)ps_read(type, addr);
*res = (rres & 0xDF); // Spoof drive id for swapped DF0 by setting RDY low
return 1;
}
return 0;
break;
case CIAAICR:
if (kb_hook_enabled && get_num_kb_queued() && amiga_emulating_irq(PORTS)) {
*res = 0x88;
return 1;
}
return 0;
break;
case CIAADAT:
if (kb_hook_enabled && amiga_emulating_irq(PORTS)) {
uint8_t c = 0, t = 0;
pop_queued_key(&c, &t);
t ^= 0x01;
rres = ((c << 1) | t) ^ 0xFF;
*res = rres;
return 1;
}
return 0;
break;
case JOY0DAT:
if (mouse_hook_enabled) {
unsigned short result = (mouse_dy << 8) | (mouse_dx);
*res = (unsigned int)result;
return 1;
}
return 0;
break;
case INTENAR: {
// This code is kind of strange and should probably be reworked/revoked.
uint8_t enable = 1;
rres = (uint16_t)ps_read(type, addr);
uint16_t val = rres;
if (val & 0x0007) {
ipl_enabled[1] = enable;
}
if (val & 0x0008) {
ipl_enabled[2] = enable;
}
if (val & 0x0070) {
ipl_enabled[3] = enable;
}
if (val & 0x0780) {
ipl_enabled[4] = enable;
}
if (val & 0x1800) {
ipl_enabled[5] = enable;
}
if (val & 0x2000) {
ipl_enabled[6] = enable;
}
if (val & 0x4000) {
ipl_enabled[7] = enable;
}
//printf("Interrupts enabled: M:%d 0-6:%d%d%d%d%d%d\n", ipl_enabled[7], ipl_enabled[6], ipl_enabled[5], ipl_enabled[4], ipl_enabled[3], ipl_enabled[2], ipl_enabled[1]);
*res = rres;
return 1;
break;
}
case POTGOR:
if (mouse_hook_enabled) {
unsigned short result = (unsigned short)ps_read(type, addr);
// bit 1 rmb, bit 2 mmb
if (mouse_buttons & 0x06) {
*res = (unsigned int)((result ^ ((mouse_buttons & 0x02) << 9)) // move rmb to bit 10
& (result ^ ((mouse_buttons & 0x04) << 6))); // move mmb to bit 8
return 1;
}
*res = (unsigned int)(result & 0xfffd);
return 1;
}
return 0;
break;
case CIABPRB:
if (swap_df0_with_dfx) {
uint32_t result = (uint32_t)ps_read(type, addr);
// SEL0 = 0x80, SEL1 = 0x10, SEL2 = 0x20, SEL3 = 0x40
if (((result >> SEL0_BITNUM) & 1) != ((result >> (SEL0_BITNUM + swap_df0_with_dfx)) & 1)) { // If the value for SEL0/SELx differ
result ^= ((1 << SEL0_BITNUM) | (1 << (SEL0_BITNUM + swap_df0_with_dfx))); // Invert both bits to swap them around
}
*res = result;
return 1;
}
return 0;
break;
default:
break;
}
if (move_slow_to_chip && addr >= 0x080000 && addr <= 0x0FFFFF) {
// A500 JP2 connects Agnus' A19 input to A23 instead of A19 by default, and decodes trapdoor memory at 0xC00000 instead of 0x080000.
// We can move the trapdoor to chipram simply by rewriting the address.
addr += 0xB80000;
*res = ps_read(type, addr);
return 1;
}
if (move_slow_to_chip && addr >= 0xC00000 && addr <= 0xC7FFFF) {
// Block accesses through to trapdoor at slow ram address, otherwise it will be detected at 0x080000 and 0xC00000.
*res = 0;
return 1;
}
if (addr >= cfg->custom_low && addr < cfg->custom_high) {
if (addr >= PISCSI_OFFSET && addr < PISCSI_UPPER) {
*res = handle_piscsi_read(addr, type);
return 1;
}
if (addr >= PINET_OFFSET && addr < PINET_UPPER) {
*res = handle_pinet_read(addr, type);
return 1;
}
if (addr >= PIGFX_RTG_BASE && addr < PIGFX_UPPER) {
*res = rtg_read((addr & 0x0FFFFFFF), type);
return 1;
}
if (addr >= PI_AHI_OFFSET && addr < PI_AHI_UPPER) {
*res = handle_pi_ahi_read(addr, type);
return 1;
}
if (custom_read_amiga(cfg, addr, &target, type) != -1) {
*res = target;
return 1;
}
}
break;
default:
break;
}
if (ovl || (addr >= cfg->mapped_low && addr < cfg->mapped_high)) {
if (handle_mapped_read(cfg, addr, &target, type) != -1) {
*res = target;
return 1;
}
}
return 0;
}
unsigned int m68k_read_memory_8(unsigned int address) {
if (platform_read_check(OP_TYPE_BYTE, address, &platform_res)) {
return platform_res;
}
if (address & 0xFF000000)
return 0;
return (unsigned int)ps_read_8((uint32_t)address);
}
unsigned int m68k_read_memory_16(unsigned int address) {
if (platform_read_check(OP_TYPE_WORD, address, &platform_res)) {
return platform_res;
}
if (address & 0xFF000000)
return 0;
if (address & 0x01) {
return ((ps_read_8(address) << 8) | ps_read_8(address + 1));
}
return (unsigned int)ps_read_16((uint32_t)address);
}
unsigned int m68k_read_memory_32(unsigned int address) {
if (platform_read_check(OP_TYPE_LONGWORD, address, &platform_res)) {
return platform_res;
}
if (address & 0xFF000000)
return 0;
if (address & 0x01) {
uint32_t c = ps_read_8(address);
c |= (be16toh(ps_read_16(address+1)) << 8);
c |= (ps_read_8(address + 3) << 24);
return htobe32(c);
}
uint16_t a = ps_read_16(address);
uint16_t b = ps_read_16(address + 2);
return (a << 16) | b;
}
static inline int32_t platform_write_check(uint8_t type, uint32_t addr, uint32_t val) {
switch (cfg->platform->id) {
case PLATFORM_MAC:
switch (addr) {
case 0xEFFFFE: // VIA1?
if (val & 0x10 && !ovl) {
ovl = 1;
m68ki_cpu.ovl = 1;
printf("[MAC] OVL on.\n");
handle_ovl_mappings_mac68k(cfg);
} else if (ovl) {
ovl = 0;
m68ki_cpu.ovl = 0;
printf("[MAC] OVL off.\n");
handle_ovl_mappings_mac68k(cfg);
}
break;
}
break;
case PLATFORM_AMIGA:
switch (addr) {
case INTREQ:
return amiga_handle_intrq_write(val);
break;
case CIAAPRA:
if (ovl != (val & (1 << 0))) {
ovl = (val & (1 << 0));
m68ki_cpu.ovl = ovl;
printf("OVL:%x\n", ovl);
}
return 0;
break;
case SERDAT: {
char *serdat = (char *)&val;
// SERDAT word. see amiga dev docs appendix a; upper byte is control codes, and bit 0 is always 1.
// ignore this upper byte as it's not viewable data, only display lower byte.
printf("%c", serdat[0]);
return 0;
break;
}
case INTENA: {
// This code is kind of strange and should probably be reworked/revoked.
uint8_t enable = 1;
if (!(val & 0x8000))
enable = 0;
if (val & 0x0007) {
ipl_enabled[1] = enable;
}
if (val & 0x0008) {
ipl_enabled[2] = enable;
}
if (val & 0x0070) {
ipl_enabled[3] = 1;
}
if (val & 0x0780) {
ipl_enabled[4] = enable;
}
if (val & 0x1800) {
ipl_enabled[5] = enable;
}
if (val & 0x2000) {
ipl_enabled[6] = enable;
}
if (val & 0x4000 && enable) {
ipl_enabled[7] = 1;
}
//printf("Interrupts enabled: M:%d 0-6:%d%d%d%d%d%d\n", ipl_enabled[7], ipl_enabled[6], ipl_enabled[5], ipl_enabled[4], ipl_enabled[3], ipl_enabled[2], ipl_enabled[1]);
return 0;
break;
}
case CIABPRB:
if (swap_df0_with_dfx) {
if ((val & ((1 << (SEL0_BITNUM + swap_df0_with_dfx)) | 0x80)) == 0x80) {
// If drive selected but motor off, Amiga is reading drive ID.
spoof_df0_id = 1;
} else {
spoof_df0_id = 0;
}
if (((val >> SEL0_BITNUM) & 1) != ((val >> (SEL0_BITNUM + swap_df0_with_dfx)) & 1)) { // If the value for SEL0/SELx differ
val ^= ((1 << SEL0_BITNUM) | (1 << (SEL0_BITNUM + swap_df0_with_dfx))); // Invert both bits to swap them around
}
ps_write(type,addr,val);
return 1;
}
return 0;
break;
default:
break;
}
if (move_slow_to_chip && addr >= 0x080000 && addr <= 0x0FFFFF) {
// A500 JP2 connects Agnus' A19 input to A23 instead of A19 by default, and decodes trapdoor memory at 0xC00000 instead of 0x080000.
// We can move the trapdoor to chipram simply by rewriting the address.
addr += 0xB80000;
ps_write(type,addr,val);
return 1;
}
if (move_slow_to_chip && addr >= 0xC00000 && addr <= 0xC7FFFF) {
// Block accesses through to trapdoor at slow ram address, otherwise it will be detected at 0x080000 and 0xC00000.
return 1;
}
if (addr >= cfg->custom_low && addr < cfg->custom_high) {
if (addr >= PISCSI_OFFSET && addr < PISCSI_UPPER) {
handle_piscsi_write(addr, val, type);
return 1;
}
if (addr >= PINET_OFFSET && addr < PINET_UPPER) {
handle_pinet_write(addr, val, type);
return 1;
}
if (addr >= PIGFX_RTG_BASE && addr < PIGFX_UPPER) {
rtg_write((addr & 0x0FFFFFFF), val, type);
return 1;
}
if (addr >= PI_AHI_OFFSET && addr < PI_AHI_UPPER) {
handle_pi_ahi_write(addr, val, type);
return 1;
}
if (custom_write_amiga(cfg, addr, val, type) != -1) {
return 1;
}
}
break;
default:
break;
}
if (ovl || (addr >= cfg->mapped_low && addr < cfg->mapped_high)) {
if (handle_mapped_write(cfg, addr, val, type) != -1) {
return 1;
}
}
return 0;
}
void m68k_write_memory_8(unsigned int address, unsigned int value) {
if (platform_write_check(OP_TYPE_BYTE, address, value))
return;
if (address & 0xFF000000)
return;
ps_write_8((uint32_t)address, value);
return;
}
void m68k_write_memory_16(unsigned int address, unsigned int value) {
if (platform_write_check(OP_TYPE_WORD, address, value))
return;
if (address & 0xFF000000)
return;
if (address & 0x01) {
ps_write_8((uint32_t)address, value & 0xFF);
ps_write_8((uint32_t)address + 1, (value >> 8) & 0xFF);
return;
}
ps_write_16((uint32_t)address, value);
return;
}
void m68k_write_memory_32(unsigned int address, unsigned int value) {
if (platform_write_check(OP_TYPE_LONGWORD, address, value))
return;
if (address & 0xFF000000)
return;
if (address & 0x01) {
ps_write_8((uint32_t)address, value & 0xFF);
ps_write_16((uint32_t)address + 1, htobe16(((value >> 8) & 0xFFFF)));
ps_write_8((uint32_t)address + 3, (value >> 24));
return;
}
ps_write_16((uint32_t)address, value >> 16);
ps_write_16((uint32_t)address + 2, value);
return;
}