mirror of
https://github.com/captain-amygdala/pistorm.git
synced 2026-01-30 21:31:55 +00:00
NOTE: A working keyboard must be attached to the Raspberry Pi while testing this, otherwise it's impossible to actually quit the emulator. raylib takes possession of the SSH keyboard for some reason, which makes it so you can't Ctrl+C out of the emulator over SSH, you must Ctrl+C or press Q on the Pi keyboard. A mostly working RTG implementation using raylib instead of SDL2.0 Greatly decreases the rendering overhead for 8bpp modes and gets rid of the need for hardware ARGB888 texture format support. RTG will be initialized using the resolution of the Raspberry Pi, and onbly the 320x200/320x240 modes are currently scaled to the full vertical area of the screen.
740 lines
24 KiB
C
740 lines
24 KiB
C
/**********************************************************************************************
|
|
*
|
|
* rmem - raylib memory pool and objects pool
|
|
*
|
|
* A quick, efficient, and minimal free list and arena-based allocator
|
|
*
|
|
* PURPOSE:
|
|
* - A quicker, efficient memory allocator alternative to 'malloc' and friends.
|
|
* - Reduce the possibilities of memory leaks for beginner developers using Raylib.
|
|
* - Being able to flexibly range check memory if necessary.
|
|
*
|
|
* CONFIGURATION:
|
|
*
|
|
* #define RMEM_IMPLEMENTATION
|
|
* Generates the implementation of the library into the included file.
|
|
* If not defined, the library is in header only mode and can be included in other headers
|
|
* or source files without problems. But only ONE file should hold the implementation.
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
#ifndef RMEM_H
|
|
#define RMEM_H
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
|
|
#define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll)
|
|
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
|
|
#define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll)
|
|
#else
|
|
#define RMEMAPI // We are building or using library as a static library (or Linux shared library)
|
|
#endif
|
|
|
|
#define RMEM_VERSION "v1.3" // changelog at bottom of header.
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Memory Pool
|
|
typedef struct MemNode MemNode;
|
|
struct MemNode {
|
|
size_t size;
|
|
MemNode *next, *prev;
|
|
};
|
|
|
|
// Freelist implementation
|
|
typedef struct AllocList {
|
|
MemNode *head, *tail;
|
|
size_t len;
|
|
} AllocList;
|
|
|
|
// Arena allocator.
|
|
typedef struct Arena {
|
|
uintptr_t mem, offs;
|
|
size_t size;
|
|
} Arena;
|
|
|
|
|
|
enum {
|
|
MEMPOOL_BUCKET_SIZE = 8,
|
|
MEMPOOL_BUCKET_BITS = (sizeof(uintptr_t) >> 1) + 1,
|
|
MEM_SPLIT_THRESHOLD = sizeof(uintptr_t) * 4
|
|
};
|
|
|
|
typedef struct MemPool {
|
|
AllocList large, buckets[MEMPOOL_BUCKET_SIZE];
|
|
Arena arena;
|
|
} MemPool;
|
|
|
|
|
|
// Object Pool
|
|
typedef struct ObjPool {
|
|
uintptr_t mem, offs;
|
|
size_t objSize, freeBlocks, memSize;
|
|
} ObjPool;
|
|
|
|
|
|
// Double-Ended Stack aka Deque
|
|
typedef struct BiStack {
|
|
uintptr_t mem, front, back;
|
|
size_t size;
|
|
} BiStack;
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" { // Prevents name mangling of functions
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------------
|
|
// Functions Declaration - Memory Pool
|
|
//------------------------------------------------------------------------------------
|
|
RMEMAPI MemPool CreateMemPool(size_t bytes);
|
|
RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes);
|
|
RMEMAPI void DestroyMemPool(MemPool *mempool);
|
|
|
|
RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes);
|
|
RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
|
|
RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
|
|
RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
|
|
RMEMAPI void MemPoolReset(MemPool *mempool);
|
|
RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
|
|
|
|
//------------------------------------------------------------------------------------
|
|
// Functions Declaration - Object Pool
|
|
//------------------------------------------------------------------------------------
|
|
RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len);
|
|
RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len);
|
|
RMEMAPI void DestroyObjPool(ObjPool *objpool);
|
|
|
|
RMEMAPI void *ObjPoolAlloc(ObjPool *objpool);
|
|
RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr);
|
|
RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref);
|
|
|
|
//------------------------------------------------------------------------------------
|
|
// Functions Declaration - Double-Ended Stack
|
|
//------------------------------------------------------------------------------------
|
|
RMEMAPI BiStack CreateBiStack(size_t len);
|
|
RMEMAPI BiStack CreateBiStackFromBuffer(void *buf, size_t len);
|
|
RMEMAPI void DestroyBiStack(BiStack *destack);
|
|
|
|
RMEMAPI void *BiStackAllocFront(BiStack *destack, size_t len);
|
|
RMEMAPI void *BiStackAllocBack(BiStack *destack, size_t len);
|
|
|
|
RMEMAPI void BiStackResetFront(BiStack *destack);
|
|
RMEMAPI void BiStackResetBack(BiStack *destack);
|
|
RMEMAPI void BiStackResetAll(BiStack *destack);
|
|
|
|
RMEMAPI intptr_t BiStackMargins(BiStack destack);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // RMEM_H
|
|
|
|
/***********************************************************************************
|
|
*
|
|
* RMEM IMPLEMENTATION
|
|
*
|
|
************************************************************************************/
|
|
|
|
#if defined(RMEM_IMPLEMENTATION)
|
|
|
|
#include <stdio.h> // Required for:
|
|
#include <stdlib.h> // Required for:
|
|
#include <string.h> // Required for:
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Make sure restrict type qualifier for pointers is defined
|
|
// NOTE: Not supported by C++, it is a C only keyword
|
|
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
|
|
#ifndef restrict
|
|
#define restrict __restrict
|
|
#endif
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Global Variables Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Declaration
|
|
//----------------------------------------------------------------------------------
|
|
static inline size_t __AlignSize(const size_t size, const size_t align)
|
|
{
|
|
return (size + (align - 1)) & -align;
|
|
}
|
|
|
|
static MemNode *__SplitMemNode(MemNode *const node, const size_t bytes)
|
|
{
|
|
uintptr_t n = ( uintptr_t )node;
|
|
MemNode *const r = ( MemNode* )(n + (node->size - bytes));
|
|
node->size -= bytes;
|
|
r->size = bytes;
|
|
return r;
|
|
}
|
|
|
|
static void __InsertMemNodeBefore(AllocList *const list, MemNode *const insert, MemNode *const curr)
|
|
{
|
|
insert->next = curr;
|
|
if (curr->prev==NULL) list->head = insert;
|
|
else
|
|
{
|
|
insert->prev = curr->prev;
|
|
curr->prev->next = insert;
|
|
}
|
|
curr->prev = insert;
|
|
}
|
|
|
|
static void __ReplaceMemNode(MemNode *const old, MemNode *const replace)
|
|
{
|
|
replace->prev = old->prev;
|
|
replace->next = old->next;
|
|
if( old->prev != NULL )
|
|
old->prev->next = replace;
|
|
if( old->next != NULL )
|
|
old->next->prev = replace;
|
|
}
|
|
|
|
|
|
static MemNode *__RemoveMemNode(AllocList *const list, MemNode *const node)
|
|
{
|
|
if (node->prev != NULL) node->prev->next = node->next;
|
|
else
|
|
{
|
|
list->head = node->next;
|
|
if (list->head != NULL) list->head->prev = NULL;
|
|
else list->tail = NULL;
|
|
}
|
|
|
|
if (node->next != NULL) node->next->prev = node->prev;
|
|
else
|
|
{
|
|
list->tail = node->prev;
|
|
if (list->tail != NULL) list->tail->next = NULL;
|
|
else list->head = NULL;
|
|
}
|
|
list->len--;
|
|
return node;
|
|
}
|
|
|
|
static MemNode *__FindMemNode(AllocList *const list, const size_t bytes)
|
|
{
|
|
for (MemNode *node = list->head; node != NULL; node = node->next)
|
|
{
|
|
if (node->size < bytes) continue;
|
|
// close in size - reduce fragmentation by not splitting.
|
|
else if (node->size <= bytes + MEM_SPLIT_THRESHOLD) return __RemoveMemNode(list, node);
|
|
else return __SplitMemNode(node, bytes);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __InsertMemNode(MemPool *const mempool, AllocList *const list, MemNode *const node, const bool is_bucket)
|
|
{
|
|
if (list->head == NULL)
|
|
{
|
|
list->head = node;
|
|
list->len++;
|
|
}
|
|
else
|
|
{
|
|
for (MemNode *iter = list->head; iter != NULL; iter = iter->next)
|
|
{
|
|
if (( uintptr_t )iter == mempool->arena.offs)
|
|
{
|
|
mempool->arena.offs += iter->size;
|
|
__RemoveMemNode(list, iter);
|
|
iter = list->head;
|
|
}
|
|
const uintptr_t inode = ( uintptr_t )node;
|
|
const uintptr_t iiter = ( uintptr_t )iter;
|
|
const uintptr_t iter_end = iiter + iter->size;
|
|
const uintptr_t node_end = inode + node->size;
|
|
if (iter==node) return;
|
|
else if (iter < node)
|
|
{
|
|
// node was coalesced prior.
|
|
if (iter_end > inode) return;
|
|
else if (iter_end==inode && !is_bucket)
|
|
{
|
|
// if we can coalesce, do so.
|
|
iter->size += node->size;
|
|
return;
|
|
}
|
|
}
|
|
else if (iter > node)
|
|
{
|
|
// Address sort, lowest to highest aka ascending order.
|
|
if (iiter < node_end) return;
|
|
else if (iter==list->head && !is_bucket)
|
|
{
|
|
if (iter_end==inode) iter->size += node->size;
|
|
else if (node_end==iiter)
|
|
{
|
|
node->size += list->head->size;
|
|
node->next = list->head->next;
|
|
node->prev = NULL;
|
|
list->head = node;
|
|
}
|
|
else
|
|
{
|
|
node->next = iter;
|
|
node->prev = NULL;
|
|
iter->prev = node;
|
|
list->head = node;
|
|
list->len++;
|
|
}
|
|
return;
|
|
}
|
|
else if (iter_end==inode && !is_bucket)
|
|
{
|
|
// if we can coalesce, do so.
|
|
iter->size += node->size;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
__InsertMemNodeBefore(list, iter, node);
|
|
list->len++;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Memory Pool
|
|
//----------------------------------------------------------------------------------
|
|
|
|
MemPool CreateMemPool(const size_t size)
|
|
{
|
|
MemPool mempool = { 0 };
|
|
|
|
if (size == 0) return mempool;
|
|
else
|
|
{
|
|
// Align the mempool size to at least the size of an alloc node.
|
|
uint8_t *const restrict buf = malloc(size*sizeof *buf);
|
|
if (buf==NULL) return mempool;
|
|
else
|
|
{
|
|
mempool.arena.size = size;
|
|
mempool.arena.mem = ( uintptr_t )buf;
|
|
mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
|
|
return mempool;
|
|
}
|
|
}
|
|
}
|
|
|
|
MemPool CreateMemPoolFromBuffer(void *const restrict buf, const size_t size)
|
|
{
|
|
MemPool mempool = { 0 };
|
|
if ((size == 0) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
|
|
else
|
|
{
|
|
mempool.arena.size = size;
|
|
mempool.arena.mem = ( uintptr_t )buf;
|
|
mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
|
|
return mempool;
|
|
}
|
|
}
|
|
|
|
void DestroyMemPool(MemPool *const restrict mempool)
|
|
{
|
|
if (mempool->arena.mem == 0) return;
|
|
else
|
|
{
|
|
void *const restrict ptr = ( void* )mempool->arena.mem;
|
|
free(ptr);
|
|
*mempool = (MemPool){ 0 };
|
|
}
|
|
}
|
|
|
|
void *MemPoolAlloc(MemPool *const mempool, const size_t size)
|
|
{
|
|
if ((size == 0) || (size > mempool->arena.size)) return NULL;
|
|
else
|
|
{
|
|
MemNode *new_mem = NULL;
|
|
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
|
|
const size_t BUCKET_SLOT = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
|
|
|
|
// If the size is small enough, let's check if our buckets has a fitting memory block.
|
|
if (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE)
|
|
{
|
|
new_mem = __FindMemNode(&mempool->buckets[BUCKET_SLOT], ALLOC_SIZE);
|
|
}
|
|
else if (mempool->large.head != NULL)
|
|
{
|
|
new_mem = __FindMemNode(&mempool->large, ALLOC_SIZE);
|
|
}
|
|
|
|
if (new_mem == NULL)
|
|
{
|
|
// not enough memory to support the size!
|
|
if ((mempool->arena.offs - ALLOC_SIZE) < mempool->arena.mem) return NULL;
|
|
else
|
|
{
|
|
// Couldn't allocate from a freelist, allocate from available mempool.
|
|
// Subtract allocation size from the mempool.
|
|
mempool->arena.offs -= ALLOC_SIZE;
|
|
|
|
// Use the available mempool space as the new node.
|
|
new_mem = ( MemNode* )mempool->arena.offs;
|
|
new_mem->size = ALLOC_SIZE;
|
|
}
|
|
}
|
|
|
|
// Visual of the allocation block.
|
|
// --------------
|
|
// | mem size | lowest addr of block
|
|
// | next node | 12 byte (32-bit) header
|
|
// | prev node | 24 byte (64-bit) header
|
|
// |------------|
|
|
// | alloc'd |
|
|
// | memory |
|
|
// | space | highest addr of block
|
|
// --------------
|
|
new_mem->next = new_mem->prev = NULL;
|
|
uint8_t *const restrict final_mem = ( uint8_t* )new_mem + sizeof *new_mem;
|
|
return memset(final_mem, 0, new_mem->size - sizeof *new_mem);
|
|
}
|
|
}
|
|
|
|
void *MemPoolRealloc(MemPool *const restrict mempool, void *const ptr, const size_t size)
|
|
{
|
|
if (size > mempool->arena.size) return NULL;
|
|
// NULL ptr should make this work like regular Allocation.
|
|
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
|
|
else if ((uintptr_t)ptr - sizeof(MemNode) < mempool->arena.mem) return NULL;
|
|
else
|
|
{
|
|
MemNode *const node = ( MemNode* )(( uint8_t* )ptr - sizeof *node);
|
|
const size_t NODE_SIZE = sizeof *node;
|
|
uint8_t *const resized_block = MemPoolAlloc(mempool, size);
|
|
if (resized_block == NULL) return NULL;
|
|
else
|
|
{
|
|
MemNode *const resized = ( MemNode* )(resized_block - sizeof *resized);
|
|
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
|
|
MemPoolFree(mempool, ptr);
|
|
return resized_block;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemPoolFree(MemPool *const restrict mempool, void *const ptr)
|
|
{
|
|
const uintptr_t p = ( uintptr_t )ptr;
|
|
if ((ptr == NULL) || (p - sizeof(MemNode) < mempool->arena.mem)) return;
|
|
else
|
|
{
|
|
// Behind the actual pointer data is the allocation info.
|
|
const uintptr_t block = p - sizeof(MemNode);
|
|
MemNode *const mem_node = ( MemNode* )block;
|
|
const size_t BUCKET_SLOT = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
|
|
|
|
// Make sure the pointer data is valid.
|
|
if ((block < mempool->arena.offs) ||
|
|
((block - mempool->arena.mem) > mempool->arena.size) ||
|
|
(mem_node->size == 0) ||
|
|
(mem_node->size > mempool->arena.size)) return;
|
|
// If the mem_node is right at the arena offs, then merge it back to the arena.
|
|
else if (block == mempool->arena.offs)
|
|
{
|
|
mempool->arena.offs += mem_node->size;
|
|
}
|
|
else
|
|
{
|
|
// try to place it into bucket or large freelist.
|
|
struct AllocList *const l = (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE) ? &mempool->buckets[BUCKET_SLOT] : &mempool->large;
|
|
__InsertMemNode(mempool, l, mem_node, (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemPoolCleanUp(MemPool *const restrict mempool, void **const ptrref)
|
|
{
|
|
if ((ptrref == NULL) || (*ptrref == NULL)) return;
|
|
else
|
|
{
|
|
MemPoolFree(mempool, *ptrref);
|
|
*ptrref = NULL;
|
|
}
|
|
}
|
|
|
|
size_t GetMemPoolFreeMemory(const MemPool mempool)
|
|
{
|
|
size_t total_remaining = mempool.arena.offs - mempool.arena.mem;
|
|
|
|
for (MemNode *n=mempool.large.head; n != NULL; n = n->next) total_remaining += n->size;
|
|
|
|
for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i].head; n != NULL; n = n->next) total_remaining += n->size;
|
|
|
|
return total_remaining;
|
|
}
|
|
|
|
void MemPoolReset(MemPool *const mempool)
|
|
{
|
|
mempool->large.head = mempool->large.tail = NULL;
|
|
mempool->large.len = 0;
|
|
for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
|
|
{
|
|
mempool->buckets[i].head = mempool->buckets[i].tail = NULL;
|
|
mempool->buckets[i].len = 0;
|
|
}
|
|
mempool->arena.offs = mempool->arena.mem + mempool->arena.size;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Object Pool
|
|
//----------------------------------------------------------------------------------
|
|
|
|
ObjPool CreateObjPool(const size_t objsize, const size_t len)
|
|
{
|
|
ObjPool objpool = { 0 };
|
|
if ((len == 0) || (objsize == 0)) return objpool;
|
|
else
|
|
{
|
|
const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
|
|
uint8_t *const restrict buf = calloc(len, aligned_size);
|
|
if (buf == NULL) return objpool;
|
|
objpool.objSize = aligned_size;
|
|
objpool.memSize = objpool.freeBlocks = len;
|
|
objpool.mem = ( uintptr_t )buf;
|
|
|
|
for (size_t i=0; i<objpool.freeBlocks; i++)
|
|
{
|
|
size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
|
|
*index = i + 1;
|
|
}
|
|
|
|
objpool.offs = objpool.mem;
|
|
return objpool;
|
|
}
|
|
}
|
|
|
|
ObjPool CreateObjPoolFromBuffer(void *const restrict buf, const size_t objsize, const size_t len)
|
|
{
|
|
ObjPool objpool = { 0 };
|
|
|
|
// If the object size isn't large enough to align to a size_t, then we can't use it.
|
|
const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
|
|
if ((buf == NULL) || (len == 0) || (objsize < sizeof(size_t)) || (objsize*len != aligned_size*len)) return objpool;
|
|
else
|
|
{
|
|
objpool.objSize = aligned_size;
|
|
objpool.memSize = objpool.freeBlocks = len;
|
|
objpool.mem = (uintptr_t)buf;
|
|
|
|
for (size_t i=0; i<objpool.freeBlocks; i++)
|
|
{
|
|
size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
|
|
*index = i + 1;
|
|
}
|
|
|
|
objpool.offs = objpool.mem;
|
|
return objpool;
|
|
}
|
|
}
|
|
|
|
void DestroyObjPool(ObjPool *const restrict objpool)
|
|
{
|
|
if (objpool->mem == 0) return;
|
|
else
|
|
{
|
|
void *const restrict ptr = ( void* )objpool->mem;
|
|
free(ptr);
|
|
*objpool = (ObjPool){0};
|
|
}
|
|
}
|
|
|
|
void *ObjPoolAlloc(ObjPool *const objpool)
|
|
{
|
|
if (objpool->freeBlocks > 0)
|
|
{
|
|
// For first allocation, head points to the very first index.
|
|
// Head = &pool[0];
|
|
// ret = Head == ret = &pool[0];
|
|
size_t *const restrict block = ( size_t* )objpool->offs;
|
|
objpool->freeBlocks--;
|
|
|
|
// after allocating, we set head to the address of the index that *Head holds.
|
|
// Head = &pool[*Head * pool.objsize];
|
|
objpool->offs = (objpool->freeBlocks != 0)? objpool->mem + (*block*objpool->objSize) : 0;
|
|
return memset(block, 0, objpool->objSize);
|
|
}
|
|
else return NULL;
|
|
}
|
|
|
|
void ObjPoolFree(ObjPool *const restrict objpool, void *const ptr)
|
|
{
|
|
uintptr_t block = (uintptr_t)ptr;
|
|
if ((ptr == NULL) || (block < objpool->mem) || (block > objpool->mem + objpool->memSize*objpool->objSize)) return;
|
|
else
|
|
{
|
|
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
|
|
// *p = index of Head in relation to the buffer;
|
|
// Head = p;
|
|
size_t *const restrict index = ( size_t* )block;
|
|
*index = (objpool->offs != 0)? (objpool->offs - objpool->mem)/objpool->objSize : objpool->memSize;
|
|
objpool->offs = block;
|
|
objpool->freeBlocks++;
|
|
}
|
|
}
|
|
|
|
void ObjPoolCleanUp(ObjPool *const restrict objpool, void **const restrict ptrref)
|
|
{
|
|
if (ptrref == NULL) return;
|
|
else
|
|
{
|
|
ObjPoolFree(objpool, *ptrref);
|
|
*ptrref = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Double-Ended Stack
|
|
//----------------------------------------------------------------------------------
|
|
BiStack CreateBiStack(const size_t len)
|
|
{
|
|
BiStack destack = { 0 };
|
|
if (len == 0) return destack;
|
|
|
|
uint8_t *const buf = malloc(len*sizeof *buf);
|
|
if (buf==NULL) return destack;
|
|
destack.size = len;
|
|
destack.mem = ( uintptr_t )buf;
|
|
destack.front = destack.mem;
|
|
destack.back = destack.mem + len;
|
|
return destack;
|
|
}
|
|
|
|
BiStack CreateBiStackFromBuffer(void *const buf, const size_t len)
|
|
{
|
|
BiStack destack = { 0 };
|
|
if (len == 0 || buf == NULL) return destack;
|
|
else
|
|
{
|
|
destack.size = len;
|
|
destack.mem = destack.front = ( uintptr_t )buf;
|
|
destack.back = destack.mem + len;
|
|
return destack;
|
|
}
|
|
}
|
|
|
|
void DestroyBiStack(BiStack *const restrict destack)
|
|
{
|
|
if (destack->mem == 0) return;
|
|
else
|
|
{
|
|
uint8_t *const restrict buf = ( uint8_t* )destack->mem;
|
|
free(buf);
|
|
*destack = (BiStack){0};
|
|
}
|
|
}
|
|
|
|
void *BiStackAllocFront(BiStack *const restrict destack, const size_t len)
|
|
{
|
|
if (destack->mem == 0) return NULL;
|
|
else
|
|
{
|
|
const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
|
|
// front end arena is too high!
|
|
if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
|
|
else
|
|
{
|
|
uint8_t *const restrict ptr = ( uint8_t* )destack->front;
|
|
destack->front += ALIGNED_LEN;
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
void *BiStackAllocBack(BiStack *const restrict destack, const size_t len)
|
|
{
|
|
if (destack->mem == 0) return NULL;
|
|
else
|
|
{
|
|
const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
|
|
// back end arena is too low
|
|
if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
|
|
else
|
|
{
|
|
destack->back -= ALIGNED_LEN;
|
|
uint8_t *const restrict ptr = ( uint8_t* )destack->back;
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BiStackResetFront(BiStack *const destack)
|
|
{
|
|
if (destack->mem == 0) return;
|
|
else destack->front = destack->mem;
|
|
}
|
|
|
|
void BiStackResetBack(BiStack *const destack)
|
|
{
|
|
if (destack->mem == 0) return;
|
|
else destack->back = destack->mem + destack->size;
|
|
}
|
|
|
|
void BiStackResetAll(BiStack *const destack)
|
|
{
|
|
BiStackResetBack(destack);
|
|
BiStackResetFront(destack);
|
|
}
|
|
|
|
inline intptr_t BiStackMargins(const BiStack destack)
|
|
{
|
|
return destack.back - destack.front;
|
|
}
|
|
|
|
#endif // RMEM_IMPLEMENTATION
|
|
|
|
/*******
|
|
* Changelog
|
|
* v1.0: First Creation.
|
|
* v1.1: bug patches for the mempool and addition of object pool.
|
|
* v1.2: addition of bidirectional arena.
|
|
* v1.3:
|
|
* optimizations of allocators.
|
|
* renamed 'Stack' to 'Arena'.
|
|
* replaced certain define constants with an anonymous enum.
|
|
* refactored MemPool to no longer require active or deferred defragging.
|
|
********/
|