Files
captain-amygdala.pistorm/emulator.c

794 lines
19 KiB
C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <dirent.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdint.h>
#include <sched.h>
#include "m68k.h"
#include "main.h"
#include<pthread.h>
#include "Gayle.h"
#include "ide.h"
//#define BCM2708_PERI_BASE 0x20000000 //pi0-1
//#define BCM2708_PERI_BASE 0xFE000000 //pi4
#define BCM2708_PERI_BASE 0x3F000000 //pi3
#define BCM2708_PERI_SIZE 0x01000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define GPCLK_BASE (BCM2708_PERI_BASE + 0x101000)
#define GPIO_ADDR 0x200000 /* GPIO controller */
#define GPCLK_ADDR 0x101000
#define CLK_PASSWD 0x5a000000
#define CLK_GP0_CTL 0x070
#define CLK_GP0_DIV 0x074
#define SA0 5
#define SA1 3
#define SA2 2
#define STATUSREGADDR GPIO_CLR = 1<<SA0;GPIO_CLR = 1<<SA1;GPIO_SET = 1<<SA2;
#define W16 GPIO_CLR = 1<<SA0;GPIO_CLR = 1<<SA1;GPIO_CLR = 1<<SA2;
#define R16 GPIO_SET = 1<<SA0;GPIO_CLR = 1<<SA1;GPIO_CLR = 1<<SA2;
#define W8 GPIO_CLR = 1<<SA0;GPIO_SET = 1<<SA1;GPIO_CLR = 1<<SA2;
#define R8 GPIO_SET = 1<<SA0;GPIO_SET = 1<<SA1;GPIO_CLR = 1<<SA2;
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
#define GPIOSET(no, ishigh) \
do { \
if (ishigh) \
set |= (1 << (no)); \
else \
reset |= (1 << (no)); \
} while (0)
#define FASTBASE 0x07FFFFFF
//#define FASTSIZE 0xFFFFFF
#define FASTSIZE 0xFFFFFFF
#define GAYLEBASE 0xD80000 //D7FFFF
#define GAYLESIZE 0x6FFFF
int mem_fd;
int mem_fd_gpclk;
void *gpio_map;
void *gpclk_map;
// I/O access
volatile unsigned int *gpio;
volatile unsigned int *gpclk;
volatile unsigned int gpfsel0;
volatile unsigned int gpfsel1;
volatile unsigned int gpfsel2;
volatile unsigned int gpfsel0_o;
volatile unsigned int gpfsel1_o;
volatile unsigned int gpfsel2_o;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0
#define GET_GPIO(g) (*(gpio+13)&(1<<g)) // 0 if LOW, (1<<g) if HIGH
#define GPIO_PULL *(gpio+37) // Pull up/pull down
#define GPIO_PULLCLK0 *(gpio+38) // Pull up/pull down clock
void setup_io();
uint32_t read8(uint32_t address);
void write8(uint32_t address, uint32_t data);
uint32_t read16(uint32_t address);
void write16(uint32_t address, uint32_t data);
void write32(uint32_t address, uint32_t data);
uint32_t read32(uint32_t address);
uint16_t read_reg(void);
void write_reg(unsigned int value);
volatile uint16_t srdata;
volatile uint32_t srdata2;
volatile uint32_t srdata2_old;
unsigned char g_kick[524288];
unsigned char g_ram[FASTSIZE+1]; /* RAM */
unsigned char toggle;
static volatile unsigned char ovl;
static volatile unsigned char maprom;
/* Signal Handler for SIGINT */
void sigint_handler(int sig_num)
{
/* Reset handler to catch SIGINT next time.
Refer http://en.cppreference.com/w/c/program/signal */
printf("\n User provided signal handler for Ctrl+C \n");
/* Do a graceful cleanup of the program like: free memory/resources/etc and exit */
exit(0);
}
void* iplThread(void *args){
printf("thread!/n");
//srdata2_old = read_reg();
//toggle = 0;
while(42){
//printf("thread!/n");
if (GET_GPIO(1) == 0){
srdata = read_reg();
if (srdata != srdata2_old){
srdata2 = ((srdata >> 13)&0xff);
//printf("STATUS: %d\n", srdata2);
srdata2_old = srdata;
m68k_set_irq(srdata2);
toggle = 1;
}
} else {
if (toggle != 0){
/*
srdata = read_reg();
srdata2 = ((srdata >> 13)&0xff);
srdata2_old = srdata;
m68k_set_irq(srdata2);
*/
m68k_set_irq(0);
//printf("STATUS: 0\n");
toggle = 0;
}
}
usleep(1);
}
}
int main() {
int g;
const struct sched_param priority = {99};
sched_setscheduler(0, SCHED_RR , &priority);
printf("YES locked in memory\n");
mlockall(MCL_CURRENT); // lock in memory to keep us from paging out
InitGayle();
/*
int fd;
ide0 = ide_allocate("cf");
fd = open("hd0.img", O_RDWR);
if (fd == -1){
printf("HDD Image hd0.image failed open\n");
}else{
ide_attach(ide0, 0, fd);
ide_reset_begin(ide0);
printf("HDD Image hd0.image attached\n");
}
*/
signal(SIGINT, sigint_handler);
setup_io();
//Enable 200MHz CLK output on GPIO4, adjust divider and pll source depending on pi model
printf("Enable GPCLK0 on GPIO4\n");
*(gpclk+ (CLK_GP0_CTL/4)) = CLK_PASSWD | (1 << 5);
usleep(10);
while ( (*(gpclk+(CLK_GP0_CTL/4))) & (1 << 7));
usleep(100);
*(gpclk+(CLK_GP0_DIV/4)) = CLK_PASSWD | (6 << 12); //divider , 6=200MHz on pi3
usleep(10);
*(gpclk+(CLK_GP0_CTL/4)) = CLK_PASSWD | 5 | (1 << 4); //pll? 6=plld, 5=pllc
usleep(10);
while (((*(gpclk+(CLK_GP0_CTL/4))) & (1 << 7))== 0);
usleep(100);
SET_GPIO_ALT(4,0); //gpclk0
//set SA to output
INP_GPIO(2);
OUT_GPIO(2);
INP_GPIO(3);
OUT_GPIO(3);
INP_GPIO(5);
OUT_GPIO(5);
//set gpio0 (aux0) and gpio1 (aux1) to input
INP_GPIO(0);
INP_GPIO(1);
// Set GPIO pins 6,7 and 8-23 to output
for (g=6; g<=23; g++)
{
INP_GPIO(g);
OUT_GPIO(g);
}
printf ("Precalculate GPIO8-23 aus Output\n");
gpfsel0_o =*(gpio); //store gpio ddr
printf ("gpfsel0: %#x\n", gpfsel0_o);
gpfsel1_o =*(gpio+1); //store gpio ddr
printf ("gpfsel1: %#x\n", gpfsel1_o);
gpfsel2_o =*(gpio+2); //store gpio ddr
printf ("gpfsel2: %#x\n", gpfsel2_o);
// Set GPIO pins 8-23 to input
for (g=8; g<=23; g++)
{
INP_GPIO(g);
}
printf ("Precalculate GPIO8-23 as Input\n");
gpfsel0 =*(gpio); //store gpio ddr
printf ("gpfsel0: %#x\n", gpfsel0);
gpfsel1 =*(gpio+1); //store gpio ddr
printf ("gpfsel1: %#x\n", gpfsel1);
gpfsel2 =*(gpio+2); //store gpio ddr
printf ("gpfsel2: %#x\n", gpfsel2);
GPIO_CLR = 1<<2;
GPIO_CLR = 1<<3;
GPIO_SET = 1<<5;
GPIO_SET = 1<<6;
GPIO_SET = 1<<7;
//reset cpld statemachine first
write_reg(0x01);
usleep(100);
usleep(1500);
write_reg(0x00);
usleep(100);
maprom = 0;
FILE * fp;
fp = fopen("kick.rom", "rb");
if (!fp)
{
printf("kick.rom cannot be opened\n");
} else {
printf("kick.rom found, using that instead of motherboard rom\n");
while (1)
{
unsigned int reads = fread(&g_kick, sizeof(g_kick), 1, fp);
if (reads == 0){
printf("failed loading kick.rom\n");
}else{
printf("loaded kick.rom\n");
maprom = 1;
}
break;
}
}
ovl=1;
m68k_write_memory_8(0xbfe201,0x0001); //AMIGA OVL
m68k_write_memory_8(0xbfe001,0x0001); //AMIGA OVL high (ROM@0x0)
usleep(1500);
m68k_init();
m68k_set_cpu_type(M68K_CPU_TYPE_68EC030);
m68k_pulse_reset();
srdata2_old = read_reg();
printf("STATUS: %d\n", srdata2_old);
toggle = 0;
/*
pthread_t id;
int err;
//err = pthread_create(&id, NULL, &iplThread, NULL);
if (err != 0)
printf("\ncan't create IPL thread :[%s]", strerror(err));
else
printf("\n IPL Thread created successfully\n");
*/
m68k_pulse_reset();
while(42) {
m68k_execute(150);
//usleep(1);
//printf("IRQ:0x%06x\n",CheckIrq());
/*
if (CheckIrq() == 1)
m68k_set_irq(2);
else
m68k_set_irq(0);
*/
if (GET_GPIO(1) == 0 || CheckIrq() == 1){
srdata = read_reg();
// if (CheckIrq() == 1) srdata |= (1 << 14);
if (srdata != srdata2_old){
srdata2 = ((srdata >> 13)&0xff);
//printf("STATUS: %d\n", srdata2);
srdata2_old = srdata;
m68k_set_irq(srdata2);
toggle = 1;
}
} else {
if (toggle != 0){
srdata = read_reg();
srdata2 = ((srdata >> 13)&0xff);
srdata2_old = srdata;
m68k_set_irq(srdata2);
//printf("STATUS: 0\n");
toggle = 0;
}
}
}
return 0;
}
void cpu_pulse_reset(void){
usleep(10000);
}
int cpu_irq_ack(int level)
{
printf("cpu irq ack\n");
return level;
}
unsigned int m68k_read_memory_8(unsigned int address){
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
return readGayleB(address);
}
if(address>FASTBASE){
return g_ram[address- FASTBASE];
}
if (maprom == 1){
if (ovl == 1 && address<0x07FFFF ){
return g_kick[address];}
if (ovl == 0 && (address>0xF80000-1 && address<0xFFFFFF)){
return g_kick[address-0xF80000];}
}
return read8((uint32_t)address);
}
unsigned int m68k_read_memory_16(unsigned int address){
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
return readGayle(address);
}
if(address>FASTBASE){
uint16_t value = *(uint16_t*)&g_ram[address- FASTBASE];
value = (value << 8) | (value >> 8);
return value;
}
if (maprom == 1){
if (ovl == 1 && address<0x07FFFF ){
uint16_t value = *(uint16_t*)&g_kick[address];
return (value << 8) | (value >> 8);}
if (ovl == 0 && (address>0xF80000-1 && address<0xFFFFFF)){
//printf("kread16/n");
uint16_t value = *(uint16_t*)&g_kick[address-0xF80000];
return (value << 8) | (value >> 8);}
}
return (unsigned int)read16((uint32_t)address);
}
unsigned int m68k_read_memory_32(unsigned int address){
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
return readGayleL(address);
}
if(address>FASTBASE){
uint32_t value = *(uint32_t*)&g_ram[address- FASTBASE];
value = ((value << 8) & 0xFF00FF00 ) | ((value >> 8) & 0xFF00FF );
return value << 16 | value >> 16;
}
if (maprom == 1){
if (ovl == 1 && address<0x07FFFF){
uint32_t value = *(uint32_t*)&g_kick[address];
value = ((value << 8) & 0xFF00FF00 ) | ((value >> 8) & 0xFF00FF );
return value << 16 | value >> 16;}
if (ovl == 0 && (address>0xF80000-1 && address<0xFFFFFF)){
//printf("kread32/n");
uint32_t value = *(uint32_t*)&g_kick[address-0xF80000];
value = ((value << 8) & 0xFF00FF00 ) | ((value >> 8) & 0xFF00FF );
return value << 16 | value >> 16;}
}
uint16_t a = read16(address);
uint16_t b = read16(address+2);
return (a << 16) | b;
}
void m68k_write_memory_8(unsigned int address, unsigned int value){
if (address == 0xbfe001){
ovl = (value & (1<<0));
//printf("OVL:%x\n", ovl );
}
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
writeGayleB(address, value);
return;
}
if(address>FASTBASE){
g_ram[address- FASTBASE] = value;
return;
}
write8((uint32_t)address,value);
return;
}
void m68k_write_memory_16(unsigned int address, unsigned int value){
// if (address==0xdff030) printf("%c", value);
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
writeGayle(address,value);
return;
}
if (address == 0xbfe001)
printf("16CIA Output:%x\n", value );
if(address>FASTBASE){
uint16_t* dest = (uint16_t*)&g_ram[address- FASTBASE];
value = (value << 8) | (value >> 8);
*dest = value;
return;
}
write16((uint32_t)address,value);
return;
}
void m68k_write_memory_32(unsigned int address, unsigned int value){
if(address>GAYLEBASE && address<GAYLEBASE + GAYLESIZE){
writeGayleL(address, value);
}
if(address>FASTBASE){
uint32_t* dest = (uint32_t*)&g_ram[address- FASTBASE];
value = ((value << 8) & 0xFF00FF00 ) | ((value >> 8) & 0xFF00FF );
value = value << 16 | value >> 16;
*dest = value;
return;
}
write16(address , value >> 16);
write16(address+2 , value );
return;
}
/*
void write32(uint32_t address, uint32_t data){
write16(address+2 , data);
write16(address , data >>16 );
}
uint32_t read32(uint32_t address){
uint16_t a = read16(address+2);
uint16_t b = read16(address);
return (a>>16)|b;
}
*/
void write16(uint32_t address, uint32_t data)
{
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
uint32_t data_s = (data & 0x0000ffff) << 8;
uint32_t data_r = (~data & 0x0000ffff) << 8;
// asm volatile ("dmb" ::: "memory");
W16
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
//write phase
*(gpio + 7) = data_s;
*(gpio + 10) = data_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
while ((GET_GPIO(0)));
// asm volatile ("dmb" ::: "memory");
}
void write8(uint32_t address, uint32_t data)
{
if ((address & 1) == 0)
data = data + (data << 8); //EVEN, A0=0,UDS
else data = data & 0xff ; //ODD , A0=1,LDS
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
uint32_t data_s = (data & 0x0000ffff) << 8;
uint32_t data_r = (~data & 0x0000ffff) << 8;
// asm volatile ("dmb" ::: "memory");
W8
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
//write phase
*(gpio + 7) = data_s;
*(gpio + 10) = data_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
while ((GET_GPIO(0)));
// asm volatile ("dmb" ::: "memory");
GPIO_SET = 1 << 7;
}
uint32_t read16(uint32_t address)
{
volatile int val;
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
// asm volatile ("dmb" ::: "memory");
R16
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
//read phase
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
while (!(GET_GPIO(0)));
GPIO_CLR = 1 << 6;
asm volatile ("nop" ::);
asm volatile ("nop" ::);
asm volatile ("nop" ::);
val = *(gpio + 13);
GPIO_SET = 1 << 6;
// asm volatile ("dmb" ::: "memory");
return (val >>8)&0xffff;
}
uint32_t read8(uint32_t address)
{
int val;
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
// asm volatile ("dmb" ::: "memory");
R8
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
//read phase
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
while (!(GET_GPIO(0)));
GPIO_CLR = 1 << 6;
asm volatile ("nop" ::);
asm volatile ("nop" ::);
asm volatile ("nop" ::);
val = *(gpio + 13);
GPIO_SET = 1 << 6;
// asm volatile ("dmb" ::: "memory");
val = (val >>8)&0xffff;
if ((address & 1) == 0)
val = (val >> 8) & 0xff ; //EVEN, A0=0,UDS
else
val = val & 0xff ; //ODD , A0=1,LDS
return val;
}
/******************************************************/
void write_reg(unsigned int value)
{
asm volatile ("dmb" ::: "memory");
STATUSREGADDR
asm volatile ("nop" ::);
asm volatile ("nop" ::);
asm volatile ("nop" ::);
//Write Status register
GPIO_CLR = 1 << SA0;
GPIO_CLR = 1 << SA1;
GPIO_SET = 1 << SA2;
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = (value & 0xffff) << 8;
*(gpio + 10) = (~value & 0xffff) << 8;
GPIO_CLR = 1 << 7;
GPIO_CLR = 1 << 7; //delay
GPIO_SET = 1 << 7;
GPIO_SET = 1 << 7;
//Bus HIGH-Z
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
asm volatile ("dmb" ::: "memory");
}
uint16_t read_reg(void)
{
uint32_t val;
asm volatile ("dmb" ::: "memory");
STATUSREGADDR
asm volatile ("nop" ::);
asm volatile ("nop" ::);
asm volatile ("nop" ::);
//Bus HIGH-Z
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
GPIO_CLR = 1 << 6; //delay
GPIO_CLR = 1 << 6;
GPIO_CLR = 1 << 6;
val = *(gpio + 13);
GPIO_SET = 1 << 6;
asm volatile ("dmb" ::: "memory");
return (uint16_t)(val >> 8);
}
//
// Set up a memory regions to access GPIO
//
void setup_io()
{
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
printf("can't open /dev/mem \n");
exit(-1);
}
/* mmap GPIO */
gpio_map = mmap(
NULL, //Any adddress in our space will do
BCM2708_PERI_SIZE, //Map length
PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory
MAP_SHARED, //Shared with other processes
mem_fd, //File to map
BCM2708_PERI_BASE //Offset to GPIO peripheral
);
close(mem_fd); //No need to keep mem_fd open after mmap
if (gpio_map == MAP_FAILED) {
printf("gpio mmap error %d\n", (int)gpio_map);//errno also set!
exit(-1);
}
gpio = ((volatile unsigned *)gpio_map) + GPIO_ADDR/4;
gpclk = ((volatile unsigned *)gpio_map) + GPCLK_ADDR/4;
} // setup_io