Files
captain-amygdala.pistorm/emulator.c

682 lines
16 KiB
C

#include <assert.h>
#include <dirent.h>
#include <endian.h>
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "Gayle.h"
#include "ide.h"
#include "m68k.h"
#include "main.h"
//#define BCM2708_PERI_BASE 0x20000000 //pi0-1
//#define BCM2708_PERI_BASE 0xFE000000 //pi4
#define BCM2708_PERI_BASE 0x3F000000 // pi3
#define BCM2708_PERI_SIZE 0x01000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define GPCLK_BASE (BCM2708_PERI_BASE + 0x101000)
#define GPIO_ADDR 0x200000 /* GPIO controller */
#define GPCLK_ADDR 0x101000
#define CLK_PASSWD 0x5a000000
#define CLK_GP0_CTL 0x070
#define CLK_GP0_DIV 0x074
#define SA0 5
#define SA1 3
#define SA2 2
#define STATUSREGADDR \
GPIO_CLR = 1 << SA0; \
GPIO_CLR = 1 << SA1; \
GPIO_SET = 1 << SA2;
#define W16 \
GPIO_CLR = 1 << SA0; \
GPIO_CLR = 1 << SA1; \
GPIO_CLR = 1 << SA2;
#define R16 \
GPIO_SET = 1 << SA0; \
GPIO_CLR = 1 << SA1; \
GPIO_CLR = 1 << SA2;
#define W8 \
GPIO_CLR = 1 << SA0; \
GPIO_SET = 1 << SA1; \
GPIO_CLR = 1 << SA2;
#define R8 \
GPIO_SET = 1 << SA0; \
GPIO_SET = 1 << SA1; \
GPIO_CLR = 1 << SA2;
#define PAGE_SIZE (4 * 1024)
#define BLOCK_SIZE (4 * 1024)
#define GPIOSET(no, ishigh) \
do { \
if (ishigh) \
set |= (1 << (no)); \
else \
reset |= (1 << (no)); \
} while (0)
#define FASTBASE 0x07FFFFFF
#define FASTSIZE 0xFFFFFFF
#define GAYLEBASE 0xD80000 // D7FFFF
#define GAYLESIZE 0x6FFFF
#define KICKBASE 0xF80000
#define KICKSIZE 0x7FFFF
int mem_fd;
int mem_fd_gpclk;
int gayle_emulation_enabled = 1;
void *gpio_map;
void *gpclk_map;
// I/O access
volatile unsigned int *gpio;
volatile unsigned int *gpclk;
volatile unsigned int gpfsel0;
volatile unsigned int gpfsel1;
volatile unsigned int gpfsel2;
volatile unsigned int gpfsel0_o;
volatile unsigned int gpfsel1_o;
volatile unsigned int gpfsel2_o;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or
// SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio + ((g) / 10)) &= ~(7 << (((g) % 10) * 3))
#define OUT_GPIO(g) *(gpio + ((g) / 10)) |= (1 << (((g) % 10) * 3))
#define SET_GPIO_ALT(g, a) \
*(gpio + (((g) / 10))) |= \
(((a) <= 3 ? (a) + 4 : (a) == 4 ? 3 : 2) << (((g) % 10) * 3))
#define GPIO_SET \
*(gpio + 7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR \
*(gpio + 10) // clears bits which are 1 ignores bits which are 0
#define GET_GPIO(g) (*(gpio + 13) & (1 << g)) // 0 if LOW, (1<<g) if HIGH
#define GPIO_PULL *(gpio + 37) // Pull up/pull down
#define GPIO_PULLCLK0 *(gpio + 38) // Pull up/pull down clock
void setup_io();
uint32_t read8(uint32_t address);
void write8(uint32_t address, uint32_t data);
uint32_t read16(uint32_t address);
void write16(uint32_t address, uint32_t data);
void write32(uint32_t address, uint32_t data);
uint32_t read32(uint32_t address);
uint16_t read_reg(void);
void write_reg(unsigned int value);
volatile uint16_t srdata;
volatile uint32_t srdata2;
volatile uint32_t srdata2_old;
unsigned char g_kick[524288];
unsigned char g_ram[FASTSIZE + 1]; /* RAM */
unsigned char toggle;
static volatile unsigned char ovl;
static volatile unsigned char maprom;
void sigint_handler(int sig_num) {
printf("\n Exit Ctrl+C %d\n", sig_num);
exit(0);
}
void *iplThread(void *args) {
printf("thread!/n");
while (42) {
usleep(1);
}
}
int main(int argc, char *argv[]) {
int g;
const struct sched_param priority = {99};
// Some command line switch stuffles
for (g = 1; g < argc; g++) {
if (strcmp(argv[g], "--disable-gayle") == 0) {
gayle_emulation_enabled = 0;
}
}
sched_setscheduler(0, SCHED_FIFO, &priority);
mlockall(MCL_CURRENT); // lock in memory to keep us from paging out
InitGayle();
signal(SIGINT, sigint_handler);
setup_io();
// Enable 200MHz CLK output on GPIO4, adjust divider and pll source depending
// on pi model
printf("Enable 200MHz GPCLK0 on GPIO4\n");
*(gpclk + (CLK_GP0_CTL / 4)) = CLK_PASSWD | (1 << 5);
usleep(10);
while ((*(gpclk + (CLK_GP0_CTL / 4))) & (1 << 7))
;
usleep(100);
*(gpclk + (CLK_GP0_DIV / 4)) =
CLK_PASSWD | (6 << 12); // divider , 6=200MHz on pi3
usleep(10);
*(gpclk + (CLK_GP0_CTL / 4)) =
CLK_PASSWD | 5 | (1 << 4); // pll? 6=plld, 5=pllc
usleep(10);
while (((*(gpclk + (CLK_GP0_CTL / 4))) & (1 << 7)) == 0)
;
usleep(100);
SET_GPIO_ALT(4, 0); // gpclk0
// set SA to output
INP_GPIO(2);
OUT_GPIO(2);
INP_GPIO(3);
OUT_GPIO(3);
INP_GPIO(5);
OUT_GPIO(5);
// set gpio0 (aux0) and gpio1 (aux1) to input
INP_GPIO(0);
INP_GPIO(1);
// Set GPIO pins 6,7 and 8-23 to output
for (g = 6; g <= 23; g++) {
INP_GPIO(g);
OUT_GPIO(g);
}
printf("Precalculate GPIO8-23 as Output\n");
gpfsel0_o = *(gpio); // store gpio ddr
printf("gpfsel0: %#x\n", gpfsel0_o);
gpfsel1_o = *(gpio + 1); // store gpio ddr
printf("gpfsel1: %#x\n", gpfsel1_o);
gpfsel2_o = *(gpio + 2); // store gpio ddr
printf("gpfsel2: %#x\n", gpfsel2_o);
// Set GPIO pins 8-23 to input
for (g = 8; g <= 23; g++) {
INP_GPIO(g);
}
printf("Precalculate GPIO8-23 as Input\n");
gpfsel0 = *(gpio); // store gpio ddr
printf("gpfsel0: %#x\n", gpfsel0);
gpfsel1 = *(gpio + 1); // store gpio ddr
printf("gpfsel1: %#x\n", gpfsel1);
gpfsel2 = *(gpio + 2); // store gpio ddr
printf("gpfsel2: %#x\n", gpfsel2);
GPIO_CLR = 1 << 2;
GPIO_CLR = 1 << 3;
GPIO_SET = 1 << 5;
GPIO_SET = 1 << 6;
GPIO_SET = 1 << 7;
// reset cpld statemachine first
write_reg(0x01);
usleep(100);
usleep(1500);
write_reg(0x00);
usleep(100);
// load kick.rom if present
maprom = 1;
int fd = 0;
fd = open("kick.rom", O_RDONLY);
if (fd < 1) {
printf("Failed loading kick.rom, using motherboard kickstart\n");
maprom = 0;
} else {
int size = (int)lseek(fd, 0, SEEK_END);
if (size == 0x40000) {
lseek(fd, 0, SEEK_SET);
read(fd, &g_kick, size);
lseek(fd, 0, SEEK_SET);
read(fd, &g_kick[0x40000], size);
} else {
lseek(fd, 0, SEEK_SET);
read(fd, &g_kick, size);
}
printf("Loaded kick.rom with size %d kib\n", size / 1024);
}
// reset amiga and statemachine
cpu_pulse_reset();
ovl = 1;
m68k_write_memory_8(0xbfe201, 0x0001); // AMIGA OVL
m68k_write_memory_8(0xbfe001, 0x0001); // AMIGA OVL high (ROM@0x0)
usleep(1500);
m68k_init();
m68k_set_cpu_type(M68K_CPU_TYPE_68030);
m68k_pulse_reset();
if (maprom == 1) {
m68k_set_reg(M68K_REG_PC, 0xF80002);
} else {
m68k_set_reg(M68K_REG_PC, 0x0);
}
/*
pthread_t id;
int err;
//err = pthread_create(&id, NULL, &iplThread, NULL);
if (err != 0)
printf("\ncan't create IPL thread :[%s]", strerror(err));
else
printf("\n IPL Thread created successfully\n");
*/
m68k_pulse_reset();
while (42) {
m68k_execute(3000);
if (GET_GPIO(1) == 0) {
srdata = read_reg();
m68k_set_irq((srdata >> 13) & 0xff);
} else {
m68k_set_irq(0);
};
}
return 0;
}
void cpu_pulse_reset(void) {
write_reg(0x00);
// printf("Status Reg%x\n",read_reg());
usleep(100000);
write_reg(0x02);
// printf("Status Reg%x\n",read_reg());
}
int cpu_irq_ack(int level) {
printf("cpu irq ack\n");
return level;
}
unsigned int m68k_read_memory_8(unsigned int address) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
return g_ram[address - FASTBASE];
}
if (maprom == 1) {
if (address > KICKBASE && address < KICKBASE + KICKSIZE) {
return g_kick[address - KICKBASE];
}
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
return readGayleB(address);
}
}
if (address < 0xffffff) {
return read8((uint32_t)address);
}
return 0;
}
unsigned int m68k_read_memory_16(unsigned int address) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
return be16toh(*(uint16_t *)&g_ram[address - FASTBASE]);
}
if (maprom == 1) {
if (address > KICKBASE && address < KICKBASE + KICKSIZE) {
return be16toh(*(uint16_t *)&g_kick[address - KICKBASE]);
}
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
return readGayle(address);
}
}
if (address < 0xffffff) {
return (unsigned int)read16((uint32_t)address);
}
return 0;
}
unsigned int m68k_read_memory_32(unsigned int address) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
return be32toh(*(uint32_t *)&g_ram[address - FASTBASE]);
}
if (maprom == 1) {
if (address > KICKBASE && address < KICKBASE + KICKSIZE) {
return be32toh(*(uint32_t *)&g_kick[address - KICKBASE]);
}
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
return readGayleL(address);
}
}
if (address < 0xffffff) {
uint16_t a = read16(address);
uint16_t b = read16(address + 2);
return (a << 16) | b;
}
return 0;
}
void m68k_write_memory_8(unsigned int address, unsigned int value) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
g_ram[address - FASTBASE] = value;
return;
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
writeGayleB(address, value);
return;
}
}
if (address == 0xbfe001) {
ovl = (value & (1 << 0));
printf("OVL:%x\n", ovl);
}
if (address < 0xffffff) {
write8((uint32_t)address, value);
return;
}
return;
}
void m68k_write_memory_16(unsigned int address, unsigned int value) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
*(uint16_t *)&g_ram[address - FASTBASE] = htobe16(value);
return;
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
writeGayle(address, value);
return;
}
}
if (address < 0xffffff) {
write16((uint32_t)address, value);
return;
}
return;
}
void m68k_write_memory_32(unsigned int address, unsigned int value) {
if (address > FASTBASE && address < FASTBASE + FASTSIZE) {
*(uint32_t *)&g_ram[address - FASTBASE] = htobe32(value);
return;
}
if (gayle_emulation_enabled) {
if (address > GAYLEBASE && address < GAYLEBASE + GAYLESIZE) {
writeGayleL(address, value);
}
}
if (address < 0xffffff) {
write16(address, value >> 16);
write16(address + 2, value);
return;
}
return;
}
void write16(uint32_t address, uint32_t data) {
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
uint32_t data_s = (data & 0x0000ffff) << 8;
uint32_t data_r = (~data & 0x0000ffff) << 8;
// asm volatile ("dmb" ::: "memory");
W16 *(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
// write phase
*(gpio + 7) = data_s;
*(gpio + 10) = data_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
while ((GET_GPIO(0)))
;
// asm volatile ("dmb" ::: "memory");
}
void write8(uint32_t address, uint32_t data) {
if ((address & 1) == 0)
data = data + (data << 8); // EVEN, A0=0,UDS
else
data = data & 0xff; // ODD , A0=1,LDS
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
uint32_t data_s = (data & 0x0000ffff) << 8;
uint32_t data_r = (~data & 0x0000ffff) << 8;
// asm volatile ("dmb" ::: "memory");
W8 *(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
// write phase
*(gpio + 7) = data_s;
*(gpio + 10) = data_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
while ((GET_GPIO(0)))
;
// asm volatile ("dmb" ::: "memory");
}
uint32_t read16(uint32_t address) {
volatile int val;
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
// asm volatile ("dmb" ::: "memory");
R16
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
// read phase
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
while (!(GET_GPIO(0)))
;
GPIO_CLR = 1 << 6;
val = *(gpio + 13);
GPIO_SET = 1 << 6;
// asm volatile ("dmb" ::: "memory");
return (val >> 8) & 0xffff;
}
uint32_t read8(uint32_t address) {
int val;
uint32_t addr_h_s = (address & 0x0000ffff) << 8;
uint32_t addr_h_r = (~address & 0x0000ffff) << 8;
uint32_t addr_l_s = (address >> 16) << 8;
uint32_t addr_l_r = (~address >> 16) << 8;
// asm volatile ("dmb" ::: "memory");
R8 *(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = addr_h_s;
*(gpio + 10) = addr_h_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
*(gpio + 7) = addr_l_s;
*(gpio + 10) = addr_l_r;
GPIO_CLR = 1 << 7;
GPIO_SET = 1 << 7;
// read phase
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
while (!(GET_GPIO(0)))
;
GPIO_CLR = 1 << 6;
val = *(gpio + 13);
GPIO_SET = 1 << 6;
// asm volatile ("dmb" ::: "memory");
val = (val >> 8) & 0xffff;
if ((address & 1) == 0)
val = (val >> 8) & 0xff; // EVEN, A0=0,UDS
else
val = val & 0xff; // ODD , A0=1,LDS
return val;
}
/******************************************************/
void write_reg(unsigned int value) {
STATUSREGADDR
*(gpio) = gpfsel0_o;
*(gpio + 1) = gpfsel1_o;
*(gpio + 2) = gpfsel2_o;
*(gpio + 7) = (value & 0xffff) << 8;
*(gpio + 10) = (~value & 0xffff) << 8;
GPIO_CLR = 1 << 7;
GPIO_CLR = 1 << 7; // delay
GPIO_SET = 1 << 7;
GPIO_SET = 1 << 7;
// Bus HIGH-Z
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
}
uint16_t read_reg(void) {
uint32_t val;
STATUSREGADDR
// Bus HIGH-Z
*(gpio) = gpfsel0;
*(gpio + 1) = gpfsel1;
*(gpio + 2) = gpfsel2;
GPIO_CLR = 1 << 6;
GPIO_CLR = 1 << 6; // delay
GPIO_CLR = 1 << 6;
GPIO_CLR = 1 << 6;
val = *(gpio + 13);
GPIO_SET = 1 << 6;
return (uint16_t)(val >> 8);
}
//
// Set up a memory regions to access GPIO
//
void setup_io() {
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR | O_SYNC)) < 0) {
printf("can't open /dev/mem \n");
exit(-1);
}
/* mmap GPIO */
gpio_map = mmap(
NULL, // Any adddress in our space will do
BCM2708_PERI_SIZE, // Map length
PROT_READ | PROT_WRITE, // Enable reading & writting to mapped memory
MAP_SHARED, // Shared with other processes
mem_fd, // File to map
BCM2708_PERI_BASE // Offset to GPIO peripheral
);
close(mem_fd); // No need to keep mem_fd open after mmap
if (gpio_map == MAP_FAILED) {
printf("gpio mmap error %d\n", (int)gpio_map); // errno also set!
exit(-1);
}
gpio = ((volatile unsigned *)gpio_map) + GPIO_ADDR / 4;
gpclk = ((volatile unsigned *)gpio_map) + GPCLK_ADDR / 4;
} // setup_io