
Documentation

I This document is only the briefest overview for CP-V.

I Additional documentation can be found in:

I The Andrews University User’s Guide, 7th Edition, 1987.

I Xerox CP-V Time-sharing Reference Manual (900907F) and
Time-sharing Users Guide (901692D).

I There is a Reference Manual and Operations Manual for most
languages.

I More technical details for museum staff is overviewed in another
set of slides.

CP-V History

I When SDS delivered the first Sigma 7 in 1966 there was only
limited diagnostic software available.

I Users wrote and shared their own software.

I In 1967–71 versions of BPM (Batch Processing Monitor) and
BTM (Batch Time-sharing Monitor) were being freely distributed
by SDS/XDS to support Batch, Real-time, Remote Batch, and
Online (time-sharing) users.

I Although UTS (Universal Time-Sharing system) was announced in
1966, it wasn’t delivered until 1971.

I This delay resulted in the name change in 1973 to CP-V or Control
Program fiVe due to bad press.

CP-V and Real-Time

I SDS had a long history of providing real-time computers to the
scientific community before the Sigma line was developed.

I The Sigma line expanded that line into the 16- and 32-bit world
(from the 12- and 24-bit).

I The SDS940 was well-known as a time-sharing system.

I These real-time characteristics made Sigma ideal for time-sharing.

I However, management badly underestimated how long it would
take to deliver the product.

I CP-V is event driven with the clocks and I/O completion being the
major hardware events.

CP-V Overview

I The V or five in CP-V stand for the five modes of operation.

I These include: batch, online, transaction processing, real-time, and
remote batch.

I Ghost can be considered another mode used internally for the
operating system or sometimes for real-time support.

I During the 1960s batch processing was the rule.

I Early time-sharing systems were developed but access was
generally limited until the 1970s.

CP-V Versions–1

I CP-V A00 was released in 1973 as a successor to UTS D00 and
supported the Xerox 560 in addition to the Sigma 6/7/9 line.

I CP-V B00 was released in early 1974 and supported real-time.

I CP-V C00 was released in late 1974 and support transaction
processing. It also supported the 7277 disk drives (100 Mb).

I CP-V D00 was released in Dec. 1975 and supported
multiprocessing Sigma 9s.

I With Xerox’s departure from the mainframe computer business
Honeywell started requiring a signed license agreement for
software, even if it was provided at no charge.

I Some copies of D00 apparently were released without this formality.

I CP-V operating system releases generally included complete source.

CP-V Versions—2

I Honeywell released CP-V E00 late in 1976. Maximum users was
doubled to 254 and multiprocessing 560s were supported.

I CP-V F00 was released by 1978 and supported the Honeywell MPC
(MicroProcessor Controlled) tapes and disk. It also extended
multi-processor support to the Sigma 6/7s, supported large Sigma
6/7s, and mapped Sigma 5s.

I Honeywell then developed CP-6 to run on 36-bit Honeywell CPUs
to provide users an upgrade path.

I Telefile provided Sigma-compatible CPUs (T85) and released
TCP-V versions G00, H00, and I00 during the 1980s to support
their hardware developments.

AP

I !AP is the Assembly Language processor or cross assembler. It
replaced SYMBOL/METASYMBOL and is MUCH faster.

I It prompts with WITH> for options and then > if no input file was
specified.

I You might enter this sample program after !AP ME OVER #:
SYSTEM SIG7

START CAL1,9 1

END START

I If you are lucky it will end with
* NO UNDEFINED SYMBOLS

* ERROR SEVERITY LEVEL: 0

* NUMBER OF ERROR LINES: 0

APL – A Programming Language

I APL is an old, cryptic, but powerful, generally interpretive
language: A Programming Language.

I !APL will come back with
TELEFILE APL

CLEAR WS

I It will then prompt with 6 spaces.

I You might use)TERM 13 if on a Datamedia 3045 or other APL
equipped keyboard (lots of strange symbols).

I Otherwise you will use mnemonics: $I for ι.

I Example: $I 10 should give you: 1 2 3 4 5 6 7 8 9 10

I)OFF HOLD will return you to !TEL.)OFF will log you off.

BASIC

I !BASIC will come back with
VER. C02

I The CP-V Basic prompt is >

I You might enter the following program:

I >10 FOR K=1 to 10

>20 PRINT K,K*K,K*K*K

>30 NEXT K

I You might follow that with >RUN, >LIST, or >SAVE ON TESTB

commands.

I >SYSTEM will return you to !TEL; >BYE will log you off.

I >ACC GAMEB will allow you to load various games there.

COBOL – COmmon Business Oriented Language

I COBOL is available.

I At AU COBOL programs did everything from student records,
accounting, alumni, to play OTHELLO.

I The COBOL compiler was enhanced beyond the 1968 ANSI
standard and supplemented by many subroutines.

I Screen programs were developed under George’s guidance by 1975,
specifically NIDA for Name, IDentification, and Address.

I By 1978 George had Dan develop a COBOL shared library which
cost several vendors (Honeywell, Telefile, Western) many millions
of dollars in lost memory sales.

I Soon we also had COBOL pure procedure and shared processors.

I The compiler has self-modifying code!

FORT and F77

I !FORT is the powerful extended Fortran IV version.

I !F77 is based on the Fortran 77 standard which
Xerox/Honeywell only completed to the 1976 draft standard.

I However, this version does pass the certification test suite due to
work done at Andrews University sponsored by Telefile.

I !FORT ME OVER # will prompt for input.

I For a good joke type in GOTO JAIL after column 6.

I You will need to enter “esc F” (end of file) to exit. Or try:

I DO 100 I=1,100

100 OUTPUT I

STOP

END

Other Langauges

I During the 1980s Andrews University ported the C langauge onto
Sigma/CP-V.

I Various implementations of LISP, SNOBOL, and PASCAL also
kicked around.

I These are all in various states of resurrection.

I Other common processors of the time included: RPG, IDP,

CIRC-AC/DC/TR, and EDMS.

I There may also have been FORTH, SL/1, and ALGOL. Only time
will tell what has survived.

BATCH

I Batch jobs could be submitted via punch cards and the card reader
or as a file via the !BATCH processor.

I !BATCH fid submits the file fid as if it came in via the card
reader.

I You will receive information regarding job number and job status.

I Job status may be WAITING n TO RUN or RUNNING.

I There are 8 batch partitions ranging in size from small to large to
encourage a good job mix (high throughput).

I Getting good production (batch job flow) while keeping good
online response was the holy grail of the systems programmer.

EDIT, Line Editor—1

I The system editor is entered via !E fid or !EDIT fid where fid

is a file identification.

I It may also be entered via !B fid or !BUILD fid if the fid is a
new file; or even !E B fid.

I There is both a line edit and screen edit mode.

I Typical line edit commands are IN, TY, SE, MK, DE, typically
followed by a line range.

I Line ranges are from 0.001 to 9999.999 (and beyond).

I Edit files are keyed files with a key max of 3.

I Edit keys are displayed as value/1000, thus key 1.000 corresponds
with X’0003E8’.

EDIT, Line Editor—2

I *TA [A, F, C] sets tab simulator for the appropriate language. A
programmer typically spent a lot of time within the editor!

I *HX [ON/OFF] toggles output of subsequent lines in hexadecimal.

I *FT range,/string/ will find and type string in range.

I *AD range will add to the end of existing records.

I A rich assortment of intrarecord commands to substitute, delete,
precede, follow, or overwrite is available and sadly missed in most
DOS/Windows editors. Use the HELP command for more info.

I The concept of a record is foreign to modern editors.

I Example: *SE10-20,/str/;3/xyz/P/abc/ would select all
records between 10 and 20 with the string str and precede the
third occurrance in each record of xyz with abc.

EDIT, Line Editor—3

I *TY- will type all lines.

I *TY0+ will type a screen full of lines starting with 0

I *+ will print a screen full of lines starting at the end of the current
selection.

I *= is equivalent to *+ due to common typographic errors.

EDIT – Display

I Display is the screen edit side of the editor.

I Logically it is implemented as a shared library.

I This shared library :PDD is also used by the word processor TXT.

I In fact, it was implemented there first and programmers would
convert their programs into TXT and edit them there.

I DI invokes it; the arrow keys and various control sequences move
around. esc H brings up a help screen which is terminal type
sensitive.

LYNX

I The CP-V post-C00 access to the !LOADER is through !LYNX.

I Thus PO-Boot tape CPCU doesn’t have it.

I There it is only available through !LOAD in batch, !LOAD.X if the
X files are restored, or !PASS2 (which is generally used to generate
the operating system).

I !LYNX fid takes its options from file fid.

I !LYNX # over * will generate lmn * from the object #.

I !LYNX (MO) LYNX.:SYS will give you a map of LYNX (but only if
you have access to it).

I PO-Boot tape CPCU does have !LINK # OVER *

PCL – Peripheral Conversion Language—1

I !PCL is often invoked indirectly via a !COPY, !LIST, or

!DELETE command in !TEL.

I Of course, these are often shortened to !C, !L, or !D.

I The !PCL prompt is < after the salutation of PCL HERE.

I Within !PCL you can use the full range of commands including
<DELETEALL, <COPYALL, <WEOF, etc.

I !PCL commands can come from a file: !PCL fid

I FL lists files faster (FL,.:SYS or FL Q.:SYS).

I The wild card character is @: !FL MONDMP@.:SYS.

I LIST.X and LISTR.X X.:SYS were commonly used.

PCL – Peripheral Conversion Language—2

I Additional useful PCL (TEL) commands are as follows:

I !COPY fid to ME(X) [displays file in hex]

I !COPY fid to ME(K) [shows the file keys]

I !COPY fid OVER fid(LN) [adds edit keys]

I !COPY fid(C) OVER fid(LN) [uncompressed file]

I !COPY fid1 INTO fid2 [copies one file into another]

I !COPY fid1 TO fid2 [same as ON?]

SORT/MERGE

I The !SORT processor would sort files on multiple keys, various key
lengths, and in various directions.

I !SET F:SORTIN/fid1; !SET F:SORTOUT/fid2

I In batch use !ASSIGN commands.

I !SORT

I .REC(reclen)

I .KEY(beginpt1,len1),(beginpt2,len2)

I esc F (in batch use a !EOD)

I There are also subroutines available to pass a card image of
information to !SORT for internal program use.

SPLIST - Symbiont Lister

I AU developed SPLIST to manage the print symbiont.

I Aka SPOOL and UNSPOOL are just copies but will roll symbionts
to/from tape.

I SPLIST’s main prompt is <. For symbionts the prompt is -.

I Without <LOOK it justs lists everything when you enter a blank
line. With LOOK it stops and lets you enter a page number and
then displays the current symbiont starting at that page.

I It has a powerful parser so that you can select by <FORM=0 AND

ID>10 AND PAGE<99 for example.

I -DELETE lets you purge the output queue (75 slots).

I -FILE=fid will direct subsequent output to file fid.

TELL (and TELLG)

I !TELL was George Plue’s early attempt to make the system
friendly or perhaps add some artificial intelligence.

I !TELL ME ’HI’ AT 16:34 should give you the message ’HI’ at
that given time.

I !TELL ME WHEN JOB 111 IS COMPLETED should send you a
message when job 111 has printed.

I !TELL ME WHEN JOB 111 IS DONE should tell you when job 111
has finished running.

I !TELL communicates with the ghost job TELLG who keeps track of
the various requests and does the behind the scenes work.

TXT, word processor

I The Xerox provided word processor was known as TEXT.

I As was typical of that era it was not WYSIWYG (what you see is
what you get), meaning control codes were not rendered on the
screen, but rather performed when a printout was requested.

I In 1978 Frank Clark at AU started writing TXT and it was used for
many school papers, even dissertations.

I It supported proportional fonts on the Diablo printing terminals
and HP laser printers.

I Although internally it used non-edit files, its command structure
and file display was much like EDIT.

I Its prompt was -?- and it has an extensive -?- HELP command.

CCI – Control Command Interpreter

I Batch uses a different command processor than online.

I CCI interprets the JCL submitted for batch jobs.

I JCL means Job Control Language.

I Commands such as !JOB, !LIMIT, !ASSIGN, and !RUN are used.

I Later versions of the operating system replaced the !ASSIGN with
!SET, !RUN with !lmn, and !LOAD with !LYNX to make it similar
to the online environment.

DELTA—1

I Technically DELTA is not a command processor.

I However, it resides in the special processor region (like !TEL).

I DELTA is the system level debugger.

I Delta command are cryptic. Useful commands are below.

I ;I= (tab) will tell you the current instrution and go to it.

I There you can use) to single step.

I You can also linefeed (cntrl J) and ˆ to go one location down
(higher addresss) or up (lower address). This is useful for skipping
instructions.

DELTA—2

I . refers to the current location. .;B sets a breakpoint there.

I ;S will retrive symbols. .;BT is a tracing breakpoint. 1;B resets
breakpoint 1.

I .A000;1 will set the lower search bound (;2 for upper).

I value;w will search for value; .FFFFEF0F;M would set the search
mask.

I 999;R will up the default from 80 for using relative symbols.

I ’ABCD’= will convert (up to 4 bytes) to EBCDIC.

I location/ will open location. (I=/(S= will interpret the value as
integer/short floating.

I !RUN * UNDER DELTA;, !U n/l *., and esc esc !DELTA are
common ways to invoke !DELTA.

LOGON

I If you enter the !TEL command !LOGON it will log you off!

I !LOGON handles logging users onto and off the system.

I HI TCP-V HERE - L. C. M. C0F

08:15 DEC 18,’14 ON LN E USER# 17 LINE# E

LOGON PLEASE:

is its prompt.

I Echoplex (esc E) will be turned off so you won’t be able to see
what you are typing.

I If the museum Sigma 9 is up and running, try entering LCM GUEST

SIGMA9

I When you log off it will give you the CPU time uses (in minutes),
connect time (in HH:MM), interactions, and “charge” in $.

TEL – Terminal Executive Language

I TEL is the normal command processor used by online users.

I Its command prompt is ! lovingly known as the “bang.”

I Historically, there was also !EASY intended for BASIC users.

I From !TEL you can invoke various languages and utilities.

I You can also inquire about system, user, or terminal status:
!DISPLAY, !STATUS/!SHOW, and !TERMINAL

I You can control device and file streams via !LDEV/!LIST and
!SET commands.

I You can also log off the system: !OFF

Online Usage

I Many escape sequences will be encountered online.

I esc Q will return with !! if the system is up/running.

I esc R will reprint the current input line.

I esc X will delete the current input line.

I esc Y, cntrl Y, and esc esc generally return you to !TEL. From
there you can continue (GO) or abort (Q) the current job step.

I esc E toggles echoplex (seeing what you type).

I Many other terminal modes can be listed via the !T command.

Online Modes

I esc T toggles tab simulation. *TA A/F/C in !EDIT will set your
tabs for the corresponding language (AP, FORTRAN, COBOL). If
tab simulation is off and !EDIT encounters a tab it will tell you.

I esc U toggles upper case restrict.

I esc P toggles paper tape.

I esc S toggles space insertion (so tabs are not inserted).

I esc (/) forces lower case shift off/on.

I esc C toggles relative tabbing.

I esc O toggles backspace edit mode.

I Usually on screen terminals rubout will do a backspace space
backspace sequence.

I esc lf and esc cr do local linefeeds/carriage returns.

More TEL commands

I !TABS will list what tabs are set, !TABS 10,19,37 will set those
tab stops.

I !T 37 sets the terminal type to 37. !T 13 may be valid on an
APL terminal (Datamedia 3045).

I

KEYIN

I KEYIN processes some but not all operator commands.

I KEYIN is loaded as a monitor overlay but runs as a ghost.

I As such it has its own dedicated ghost table slot as user 1.

I Device retries do not get processed by KEYIN.

I KEYIN does process DATE, TIME, ZAP, GJOB, ON, ONB, DELE,

MOUN, REQU, DISP, and X commands.

I When the system is sick console input commands might give the
message LATER.

RECOVER/RVGHOST

I RECOVER lives in limbo land of being a monitor overlay and ghost.

I Technically it is not an overlay since it doesn’t get loaded with nor
run with the running monitor.

I However, it gets loaded into location X’4000’ and thus overlays
monitor procedure while processing monitor data.

I RECOVER is associated with crash recovery, closing files, saving
symbionts, logging off users, and otherwise cleaning things up.

I RVGHOST processes a special kind of crash file, DUMPFILE, which is
used in a Single User Abort.

I DUMPFILE is copied onto a normal MONDMPx file, where 0 ≤ x ≤ 7,
for normal processing by ANLZ. DUMPFILE is a random file with 1
granule per genned system memory page + users.

GHOST1

I GHOST1 also runs as user 1 and is instrumental in bringing the
system up.

I After certain monitor initialization the monitor exits with interrupts
on to the scheduler with two users, GHOST1 and ALLOCAT.

I GHOST1 has to determine what type of boot is occurring: tape,
disk, crash recovery, and act accordingly.

I GHOST1 tries to retain the input/output symbionts and device
partitioning information.

I GHOST1 exits by transforming into FILL and the system is up.

I FIX sometimes exits by transforming into GHOST1.

I GHOST1 also kicks off MOOSE, but at AU we made that DAY.

ALLOCAT

I ALLOCAT is the granule allocation ghost and user 2.

I His data area contains the HGPs or Head Granule Pointers.

I ALLOCAT gets called to run when either the “in-core” stacks of
granules are too high or too low.

I These “stacks” are actually queues for faster processing.

I These queues contain word entries with generalized disk addresses.

I Whereas, ALLOCAT’s data is maintained as a bit table.

I A generalized disk address contains a DCT index in bits 11–15,
and the relative sector number in bits 8–10, 16–31.

I Bits 8–10 were interpretted differently by different
vendors/users/releases (big/little endian).

RBBAT

I RBBAT is the symbiont processing ghost and user 3.

I Unlike ALLOCAT, RBBAT does not have a dedicated swap area for
his data so it is often lost.

I Hence the common message by GHOST1: Batch Queue Lost.

I SPLIST/SPOOL/UNSPOOL makes a copy of RBBAT’s data in
RBDATA.:SYS

I DAY may copy it periodically onto RBDATA1 for processing by
SPLIST/SPOOL via the <CRASH option.

I RBBAT will occasionally experience “morning sickness” and will
need to be revived via a crash.

FIX/FILL/DAY

I FIX is an essential part of the operating system but was not
working well in CP-V C00.

I As such we typically had it exit (except on PO boots).

I The main idea was to process bad files (750x type errors).

I FIX sometimes exitted to GHOST1.

I GHOST1 exits to FILL and starts MOOSE/DAY.

I The DAY ghost prints the date and uptime on the console every 30
minutes, and will nag the operator about allowing online/batch
users, and low granules.

ERR:FIL

I The monitor logs errors into “in-core” error buffers.

I When full these error buffers get written to disk.

I The ERR:FIL ghost is responsible for moving these error log
entries into ERRFILE.:SYS.

I Typically, every week, after the weekly save, this file would be
summarized via ELLA and deleted.

9DIAG

I Intermittant hardware errors are the bane of technical support.

I Collecting information on intermittant errors is key to solving them.

I 9DIAG was written with this in mind.

I Typically it uses 1% or 10% of the CPU time to run the main 4
CPU diagnostics: 9AUTO, 9SUFFIX, 9FLOAT, and 9DECIMAL.

I Some tests have to be skipped to be compatible with CP-V, such
as LPSD, XPSD, MMC.

I However, a vast part of the complex SIGMA 9 CPU can be tested
every few seconds.

