1
0
mirror of https://github.com/livingcomputermuseum/ContrAlto.git synced 2026-01-18 17:07:52 +00:00
2015-10-20 15:32:26 -07:00

640 lines
21 KiB
C#

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.IO;
using System.Text;
using System.Windows.Forms;
using Contralto.CPU;
using System.Threading;
namespace Contralto
{
/// <summary>
/// A basic & hacky debugger. To be improved.
/// </summary>
public partial class Debugger : Form
{
public Debugger(AltoSystem system)
{
_system = system;
_breakpointEnabled = new bool[1024];
InitializeComponent();
InitControls();
RefreshUI();
}
public void LoadSourceCode(string path)
{
if (path == null)
{
throw new ArgumentNullException(path, "Microcode path must be specified.");
}
StreamReader sr = new StreamReader(path);
while (!sr.EndOfStream)
{
string line = sr.ReadLine();
SourceLine src = new SourceLine(line);
int i = _sourceViewer.Rows.Add(
false, // breakpoint
GetTextForTask(src.Task),
src.Address,
src.Text);
// Give the row a color based on the task
_sourceViewer.Rows[i].DefaultCellStyle.BackColor = GetColorForTask(src.Task);
// Tag the row based on the PROM address (if any) to make it easy to find.
if (!String.IsNullOrEmpty(src.Address))
{
_sourceViewer.Rows[i].Tag = Convert.ToUInt16(src.Address, 8);
}
}
// Ensure the UI view gets refreshed to display the current MPC source
Refresh();
}
public override void Refresh()
{
base.Refresh();
RefreshUI();
}
private void RefreshUI()
{
// Registers
for(int i=0;i<32;i++)
{
_registerData.Rows[i].Cells[0].Value = OctalHelpers.ToOctal(i,2);
_registerData.Rows[i].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.R[i], 6);
_registerData.Rows[i].Cells[2].Value = OctalHelpers.ToOctal(_system.CPU.S[0][i], 6);
}
// Tasks
for (int i=0;i<16;i++)
{
_taskData.Rows[i].Cells[0].Value = GetTextForTask((TaskType)i);
_taskData.Rows[i].Cells[1].Value = GetTextForTaskState(_system.CPU.Tasks[i]);
_taskData.Rows[i].Cells[2].Value =
_system.CPU.Tasks[i] != null ? OctalHelpers.ToOctal(_system.CPU.Tasks[i].MPC, 4) : String.Empty;
}
// Other registers
_otherRegs.Rows[0].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.L, 6);
_otherRegs.Rows[1].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.T, 6);
_otherRegs.Rows[2].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.M, 6);
_otherRegs.Rows[3].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.IR, 6);
_otherRegs.Rows[4].Cells[1].Value = OctalHelpers.ToOctal(_system.CPU.ALUC0, 1);
_otherRegs.Rows[5].Cells[1].Value = OctalHelpers.ToOctal(_system.MemoryBus.MAR, 6);
_otherRegs.Rows[6].Cells[1].Value = OctalHelpers.ToOctal(_system.MemoryBus.MD, 6);
_otherRegs.Rows[7].Cells[1].Value = OctalHelpers.ToOctal(_system.MemoryBus.Cycle & 0x3f, 2);
// Disk info
_diskData.Rows[0].Cells[1].Value = _system.DiskController.ClocksUntilNextSector.ToString("0.00");
_diskData.Rows[1].Cells[1].Value = _system.DiskController.Cylinder.ToString();
_diskData.Rows[2].Cells[1].Value = _system.DiskController.SeekCylinder.ToString();
_diskData.Rows[3].Cells[1].Value = _system.DiskController.Head.ToString();
_diskData.Rows[4].Cells[1].Value = _system.DiskController.Sector.ToString();
_diskData.Rows[5].Cells[1].Value = OctalHelpers.ToOctal(_system.DiskController.KDATA, 6);
_diskData.Rows[6].Cells[1].Value = OctalHelpers.ToOctal(_system.DiskController.KADR, 6);
_diskData.Rows[7].Cells[1].Value = OctalHelpers.ToOctal(_system.DiskController.KCOM, 6);
_diskData.Rows[8].Cells[1].Value = OctalHelpers.ToOctal(_system.DiskController.KSTAT, 6);
_diskData.Rows[9].Cells[1].Value = _system.DiskController.RECNO.ToString();
for (ushort i = 0; i < 1024; i++)
{
_memoryData.Rows[i].Cells[1].Value = OctalHelpers.ToOctal(_system.MemoryBus.DebugReadWord(i), 6);
}
// Find the right source line
HighlightSourceLine(_system.CPU.CurrentTask.MPC);
// Exec state
switch(_execState)
{
case ExecutionState.Stopped:
ExecutionStateLabel.Text = "Stopped";
break;
case ExecutionState.SingleStep:
ExecutionStateLabel.Text = "Stepping";
break;
case ExecutionState.AutoStep:
ExecutionStateLabel.Text = "Stepping (auto)";
break;
case ExecutionState.Running:
ExecutionStateLabel.Text = "Running";
break;
case ExecutionState.BreakpointStop:
ExecutionStateLabel.Text = "Stopped (bkpt)";
break;
}
}
private void InitControls()
{
for (int i = 0; i < 32; i++)
{
_registerData.Rows.Add(-1, -1 ,-1);
}
for (int i = 0; i < 16; i++)
{
_taskData.Rows.Add("0", "0", "0");
}
for (ushort i=0;i<1024;i++)
{
_memoryData.Rows.Add(OctalHelpers.ToOctal(i, 6), OctalHelpers.ToOctal(_system.MemoryBus.DebugReadWord(i), 6));
}
_otherRegs.Rows.Add("L", "0");
_otherRegs.Rows.Add("T", "0");
_otherRegs.Rows.Add("M", "0");
_otherRegs.Rows.Add("IR", "0");
_otherRegs.Rows.Add("ALUC0", "0");
_otherRegs.Rows.Add("MAR", "0");
_otherRegs.Rows.Add("MD", "0");
_otherRegs.Rows.Add("MCycle", "0");
_diskData.Rows.Add("Cycles", "0");
_diskData.Rows.Add("Cylinder", "0");
_diskData.Rows.Add("D.Cylinder", "0");
_diskData.Rows.Add("Head", "0");
_diskData.Rows.Add("Sector", "0");
_diskData.Rows.Add("KDATA", "0");
_diskData.Rows.Add("KADR", "0");
_diskData.Rows.Add("KCOM", "0");
_diskData.Rows.Add("KSTAT", "0");
_diskData.Rows.Add("RECNO", "0");
for (int i=0;i<16;i++)
{
_debugTasks.Rows.Add(true, GetTextForTask((TaskType)i));
}
}
/// <summary>
/// Handle breakpoint placement on column 0.
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void SourceViewCellClick(object sender, DataGridViewCellEventArgs e)
{
// Check for breakpoint column click.
if (e.ColumnIndex == 0)
{
// See if this is a source line, if so check/uncheck the box
// and set/unset a breakpoint for the line
if (_sourceViewer.Rows[e.RowIndex].Tag != null)
{
bool value = (bool)_sourceViewer.Rows[e.RowIndex].Cells[0].Value;
_sourceViewer.Rows[e.RowIndex].Cells[0].Value = !value;
ModifyBreakpoint((UInt16)_sourceViewer.Rows[e.RowIndex].Tag, !value);
}
}
}
private void HighlightSourceLine(UInt16 address)
{
foreach (DataGridViewRow row in _sourceViewer.Rows)
{
if (row.Tag != null &&
(ushort)(row.Tag) == address)
{
_sourceViewer.ClearSelection();
row.Selected = true;
_sourceViewer.CurrentCell = row.Cells[0];
break;
}
}
}
private void ModifyBreakpoint(UInt16 address, bool set)
{
_breakpointEnabled[address] = set;
}
private string GetTextForTaskState(AltoCPU.Task task)
{
if (task == null)
{
return String.Empty;
}
else
{
// Wakeup bit
string status = task.Wakeup ? "W" : String.Empty;
// Run bit
if (task == _system.CPU.CurrentTask)
{
status += "R";
}
return status;
}
}
private string GetTextForTask(TaskType task)
{
string[] taskText =
{
"EM", // 0 - emulator
String.Empty,
String.Empty,
String.Empty,
"KS", // 4 - disk sector
String.Empty,
String.Empty,
"EN", // 7 - ethernet
"MR", // 8 - memory refresh
"DW", // 9 - display word
"CU", // 10 - cursor
"DH", // 11 - display horizontal
"DV", // 12 - display vertical
"PA", // 13 - parity
"KW", // 14 - disk word
String.Empty,
};
if (task == TaskType.Invalid)
{
return String.Empty;
}
else
{
return taskText[(int)task];
}
}
private Color GetColorForTask(TaskType task)
{
Color[] taskColors =
{
Color.LightBlue, // 0 - emulator
Color.LightGray, // 1 - unused
Color.LightGray, // 2 - unused
Color.LightGray, // 3 - unused
Color.LightGreen, // 4 - disk sector
Color.LightGray, // 5 - unused
Color.LightGray, // 6 - unused
Color.LightSalmon, // 7 - ethernet
Color.LightSeaGreen,// 8 - memory refresh
Color.LightYellow, // 9 - display word
Color.LightPink, // 10 - cursor
Color.LightGoldenrodYellow, // 11 - display horizontal
Color.LightCoral, // 12 - display vertical
Color.LightSteelBlue, // 13 - parity
Color.Gray, // 14 - disk word
Color.LightGray, // 15 - unused
};
if (task == TaskType.Invalid)
{
return Color.White;
}
else
{
return taskColors[(int)task];
}
}
private struct SourceLine
{
public SourceLine(string sourceText)
{
//
// Mangle "<-" found in the source into the unicode arrow character, just to be neat.
//
sourceText = sourceText.Replace("<-", _arrowChar.ToString());
// See if line begins with something of the form "TNxxxxx>".
// If it does then we have extra metadata to parse out.
string[] tokens = sourceText.Split(new char[] { ' ', '\t' }, StringSplitOptions.RemoveEmptyEntries);
bool annotated = false;
// Make the compiler happy
Text = sourceText;
Address = String.Empty;
Task = TaskType.Invalid;
if (tokens.Length > 0 &&
tokens[0].Length == 8 &&
tokens[0].EndsWith(">"))
{
// Close enough. Look for the task tag and parse out the (octal) address
switch(tokens[0].Substring(0,2))
{
case "EM":
Task = TaskType.Emulator;
break;
case "SE":
Task = TaskType.DiskSector;
break;
case "EN":
Task = TaskType.Emulator;
break;
case "MR":
Task = TaskType.MemoryRefresh;
break;
case "DW":
Task = TaskType.DisplayWord;
break;
case "CU":
Task = TaskType.Cursor;
break;
case "DH":
Task = TaskType.DisplayHorizontal;
break;
case "DV":
Task = TaskType.DisplayVertical;
break;
case "PA":
Task = TaskType.Parity;
break;
case "KW":
Task = TaskType.DiskWord;
break;
default:
Task = TaskType.Invalid;
break;
}
if (Task != TaskType.Invalid)
{
try
{
// Belongs to a task, so we can grab the address out as well
Address = sourceText.Substring(2, 5);
}
catch
{
// That didn't work for whatever reason, just treat this as a normal source line.
annotated = false;
}
Text = sourceText.Substring(tokens[0].Length + 1, sourceText.Length - tokens[0].Length -1);
annotated = true;
}
else
{
// We will just display this as a non-source line
annotated = false;
}
}
if (!annotated)
{
Text = sourceText;
Address = String.Empty;
Task = TaskType.Invalid;
}
}
public string Text;
public string Address;
public TaskType Task;
}
private void Debugger_Load(object sender, EventArgs e)
{
}
private void JumpToButton_Click(object sender, EventArgs e)
{
try
{
UInt16 address = Convert.ToUInt16(JumpToAddress.Text, 8);
// find the source address that matches this, if any.
HighlightSourceLine(address);
}
catch
{
// eh, just do nothing for now
}
}
private void OnJumpAddressKeyDown(object sender, KeyEventArgs e)
{
if (e.KeyCode == Keys.Return ||
e.KeyCode == Keys.Enter)
{
try
{
UInt16 address = Convert.ToUInt16(JumpToAddress.Text, 8);
// find the source address that matches this, if any.
HighlightSourceLine(address);
}
catch
{
// eh, just do nothing for now
}
}
}
private void OnStepButtonClicked(object sender, EventArgs e)
{
SetExecutionState(ExecutionState.SingleStep);
ExecuteStep();
SetExecutionState(ExecutionState.Stopped);
}
private void OnAutoStepButtonClicked(object sender, EventArgs e)
{
//
// Continuously step (and update the UI)
// until the "Stop" button is pressed or something bad happens.
//
_execThread = new Thread(new System.Threading.ParameterizedThreadStart(ExecuteProc));
_execThread.Start(ExecutionType.Auto);
SetExecutionState(ExecutionState.AutoStep);
}
private void RunButton_Click(object sender, EventArgs e)
{
//
// Continuously execute, but do not update UI
// until the "Stop" button is pressed or something bad happens.
//
//if (_execThread == null)
{
_execThread = new Thread(new System.Threading.ParameterizedThreadStart(ExecuteProc));
_execThread.Start(ExecutionType.Normal);
SetExecutionState(ExecutionState.Running);
}
}
private void RunToNextTaskButton_Click(object sender, EventArgs e)
{
//
// Continuously execute until the next task switch but do not update UI
// until the "Stop" button is pressed or something bad happens.
//
//if (_execThread == null)
{
_execThread = new Thread(new System.Threading.ParameterizedThreadStart(ExecuteProc));
_execThread.Start(ExecutionType.NextTask);
SetExecutionState(ExecutionState.Running);
}
}
private void OnStopButtonClicked(object sender, EventArgs e)
{
if (_execThread != null &&
_execThread.IsAlive)
{
// Signal for the exec thread to end
_execAbort = true;
// Wait for the thread to exit.
_execThread.Join();
_execThread = null;
}
SetExecutionState(ExecutionState.Stopped);
}
private void ResetButton_Click(object sender, EventArgs e)
{
_system.Reset();
}
private void ExecuteStep()
{
_system.SingleStep();
Refresh();
}
private void ExecuteProc(object param)
{
ExecutionType execType = (ExecutionType)param;
StepDelegate refUI = new StepDelegate(RefreshUI);
StepDelegate inv = new StepDelegate(Invalidate);
while (true)
{
switch (execType)
{
case ExecutionType.Auto:
{
// Execute a single step, then update UI and
// sleep to give messages time to run.
_system.SingleStep();
this.BeginInvoke(refUI);
this.BeginInvoke(inv);
System.Threading.Thread.Sleep(10);
}
break;
case ExecutionType.Step:
case ExecutionType.Normal:
case ExecutionType.NextTask:
{
// Just execute one step, do not update UI.
_system.SingleStep();
}
break;
}
if (_execAbort ||
_breakpointEnabled[_system.CPU.CurrentTask.MPC] ||
(execType == ExecutionType.NextTask && _system.CPU.NextTask != null && _system.CPU.NextTask != _system.CPU.CurrentTask))
{
// Stop here as we've hit a breakpoint or have been stopped Update UI
// to indicate where we stopped.
this.BeginInvoke(refUI);
this.BeginInvoke(inv);
if (!_execAbort)
{
SetExecutionState(ExecutionState.BreakpointStop);
}
_execAbort = false;
break;
}
}
}
private void SetExecutionState(ExecutionState state)
{
_execState = state;
this.BeginInvoke(new StepDelegate(RefreshUI));
}
private enum ExecutionType
{
None = 0,
Step,
Auto,
Normal,
NextTask,
}
private enum ExecutionState
{
Stopped = 0,
SingleStep,
AutoStep,
Running,
BreakpointStop,
}
private delegate void StepDelegate();
private AltoSystem _system;
// Unicode character for the Arrow used by Alto microcode
private const char _arrowChar = (char)0x2190;
// Thread used for execution other than single-step
private Thread _execThread;
private bool _execAbort;
private ExecutionState _execState;
// Debugger breakpoints; one entry per address since we only need
// to worry about a 10 bit address space, this is fast and uses little memory.
private bool[] _breakpointEnabled;
}
}