1
0
mirror of https://github.com/livingcomputermuseum/ContrAlto.git synced 2026-01-18 09:03:01 +00:00

609 lines
20 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Contralto.Memory;
namespace Contralto.IO
{
public class DiskController : IClockable
{
public DiskController(AltoSystem system)
{
_system = system;
Reset();
// Wakeup the sector task first thing
_system.CPU.WakeupTask(CPU.TaskType.DiskSector);
}
public ushort KDATA
{
get
{
return _kData;
}
set { _kData = value; }
}
public ushort KADR
{
get { return _kAdr; }
set
{
_kAdr = value;
_recNo = 0;
// "In addition, it causes the head address bit to be loaded from KDATA[13]."
_head = (_kData & 0x4) >> 2;
// "0 normally, 1 if the command is to terminate immediately after the correct cylinder
// position is reached (before any data is transferred)."
_dataXfer = (_kAdr & 0x2) != 0x2;
}
}
public ushort KCOM
{
get { return _kCom; }
set
{
_kCom = value;
// Read control bits (pg. 47 of hw manual)
_xferOff = (_kCom & 0x10) == 0x10;
_wdInhib = (_kCom & 0x08) == 0x08;
_bClkSource = (_kCom & 0x04) == 0x04;
_wffo = (_kCom & 0x02) == 0x02;
_sendAdr = (_kCom & 0x01) == 0x01;
Console.WriteLine(
"sst {0}, xferOff {1}, wdInhib {2}, bClkSource {3}, wffo {4}, sendAdr {5}",
_sectorWordTime,
_xferOff,
_wdInhib,
_bClkSource,
_wffo,
_sendAdr);
_diskBitCounterEnable = _wffo;
// Update WDINIT state based on _wdInhib.
if (_wdInhib)
{
_wdInit = true;
}
}
}
/// <summary>
/// Used by the DiskTask code to check the WDINIT signal for dispatch.
/// </summary>
public bool WDINIT
{
get { return _wdInit; }
}
public ushort KSTAT
{
get
{
return _kStat;
}
set
{
_kStat = value;
}
}
public ushort RECNO
{
get { return _recMap[_recNo]; }
}
public bool DataXfer
{
get { return _dataXfer; }
}
/// <summary>
/// This is a hack to see how the microcode expects INIT to work
/// </summary>
public bool RecordInit
{
get { return _sectorWordTime < 10; }
}
public int Cylinder
{
get { return _cylinder; }
}
public int SeekCylinder
{
get { return _destCylinder; }
}
public int Head
{
get { return _head; }
}
public int Sector
{
get { return _sector; }
}
public int Drive
{
get { return 0; }
}
public double ClocksUntilNextSector
{
get { return _sectorClocks - _elapsedSectorTime; }
}
public void Reset()
{
ClearStatus();
_recNo = 0;
_elapsedSectorTime = 0.0;
_cylinder = 0;
_sector = 0;
_head = 0;
_kStat = 0;
_wdInhib = true;
_xferOff = true;
_wdInit = false;
_diskBitCounterEnable = false;
InitSector();
}
public void Clock()
{
_elapsedSectorTime++;
// TODO: only signal sector changes if disk is loaded, etc.
if (_elapsedSectorTime > _sectorClocks)
{
//
// Next sector; save fractional part of elapsed time (to more accurately keep track of time), move to next sector
// and wake up sector task.
//
_elapsedSectorTime -= _sectorClocks;
_sector = (_sector + 1) % 12;
_kStat = (ushort)((_kStat & 0x0fff) | (_sector << 12));
// TODO: seclate semantics. Looks like if the sector task was BLOCKed when a new sector is signaled
// then the seclate flag is set.
// Reset internal state machine for sector data
_sectorWordIndex = 0;
_sectorWordTime = 0.0;
Console.WriteLine("New sector ({0}), switching to HeaderReadDelay state.", _sector);
_kData = 13;
// Load new sector in
LoadSector();
_system.CPU.WakeupTask(CPU.TaskType.DiskSector);
}
// If seek is in progress, move closer to the desired cylinder...
// TODO: move bitfields to enums / constants, this is getting silly.
if ((_kStat & 0x0040) != 0)
{
_elapsedSeekTime++;
if (_elapsedSeekTime > _seekClocks)
{
_elapsedSeekTime -= _seekClocks;
if (_cylinder < _destCylinder)
{
_cylinder++;
}
else if (_cylinder > _destCylinder)
{
_cylinder--;
}
// Are we *there* yet?
if (_cylinder == _destCylinder)
{
// clear Seek bit
_kStat &= 0xffbf;
}
}
}
//
// Spin the disk platter and read in words as applicable.
//
SpinDisk();
//
// Update the WDINIT signal; this is based on WDALLOW (!_wdInhib) which sets WDINIT (this is done
// in KCOM way above).
// WDINIT is reset when BLOCK (a BLOCK F1 is being executed) and WDTSKACT (the disk word task is running) are 1.
//
if (_system.CPU.CurrentTask.Priority == (int)CPU.TaskType.DiskWord &&
_system.CPU.CurrentTask.BLOCK)
{
_wdInit = false;
}
}
public void ClearStatus()
{
// "...clears KSTAT[13]." (chksum error flag)
_kStat &= 0xfffb;
}
public void IncrementRecord()
{
// "Advances the shift registers holding the KADR register so that they present the number and read/write/check status of the
// next record to the hardware."
// "RECORD" in this context indicates the sector field corresponding to the 2 bit "action" field in the KADR register
// (i.e. one of Header, Label, or Data.)
// INCRECNO shifts the data over two bits to select from Header->Label->Data.
_kAdr = (ushort)(_kAdr << 2);
_recNo++;
if (_recNo > 3)
{
// sanity check for now
throw new InvalidOperationException("Unexpected INCRECORD past rec 3.");
}
}
public void Strobe()
{
//
// "Initiates a disk seek operation. The KDATA register must have been loaded previously,
// and the SENDADR bit of the KCOMM register previously set to 1."
//
// sanity check: see if SENDADR bit is set, if not we'll signal an error (since I'm trusting that
// the official Xerox uCode is doing the right thing, this will help ferret out emulation issues.
// eventually this can be removed.)
if (!_sendAdr)
{
throw new InvalidOperationException("STROBE while SENDADR bit of KCOM not 1. Unexpected.");
}
_destCylinder = (_kData & 0x0ff8) >> 3;
// set "seek fail" bit based on selected cylinder (if out of bounds) and do not
// commence a seek if so.
if (_destCylinder > 202)
{
_kStat |= 0x0080;
}
else
{
// Otherwise, start a seek.
// Clear the fail bit.
_kStat &= 0xff7f;
// Set seek bit
_kStat |= 0x0040;
// And figure out how long this will take.
_seekClocks = CalculateSeekTime();
_elapsedSeekTime = 0.0;
}
}
private double CalculateSeekTime()
{
// How many cylinders are we moving?
int dt = Math.Abs(_destCylinder - _cylinder);
//
// From the Hardware Manual, pg 43:
// "Seek time (approx.): 15 + 8.6 * sqrt(dt) (msec)
//
double seekTimeMsec = 15.0 + 8.6 * Math.Sqrt(dt);
return seekTimeMsec / AltoSystem.ClockInterval;
}
/// <summary>
/// "Rotates" the emulated disk platter one clock's worth.
/// </summary>
private void SpinDisk()
{
//
// Roughly: If transfer is enabled:
// Select data word based on elapsed time in this sector.
// On a new word, wake up the disk word task if not inhibited.
//
// If transfer is not enabled BUT the disk word task is enabled,
// we will still wake up the disk word task if the appropriate clock
// source is selected.
//
// We simulate the movement of a sector under the heads by dividing
// the sector into word-sized timeslices. Not all of these slices
// will actually contain valid data -- some are empty, used by the microcode
// for lead-in or inter-record delays, but the slices are still used to
// keep things in line time-wise; the real hardware uses a crystal-controlled clock
// to generate these slices during these periods (and the clock comes from the
// disk itself when actual data is present). For our purposes, the two clocks
// are one and the same.
//
// Move the disk forward one clock
_sectorWordTime++;
// If we have reached a new word timeslice, do something appropriate.
if (_sectorWordTime > _wordDuration)
{
// Save the fractional portion of the timeslice for the next slice
_sectorWordTime -= _wordDuration;
//
// Pick out the word that just passed under the head. This may not be
// actual data (it could be the pre-header delay, inter-record gaps or sync words)
// and we may not actually end up doing anything with it, but we may
// need it to decide whether to do anything at all.
//
ushort diskWord = _sectorData[_sectorWordIndex].Data;
Console.WriteLine("Sector Word {0}:{1}", _sectorWordIndex, OctalHelpers.ToOctal(diskWord));
bool bWakeup = false;
//
// If the word task is enabled AND the write ("crystal") clock is enabled
// then we will wake up the word task now.
//
if (!_wdInhib && !_bClkSource)
{
Console.WriteLine("Disk Word task wakeup due to word clock.");
bWakeup = true;
}
//
// If the clock is enabled OR the WFFO bit is set (go ahead and run the bit clock)
// then we will wake up the word task and read in the data if transfers are not
// inhibited. TODO: this should only happen on reads.
//
if (_wffo || _diskBitCounterEnable)
{
if (!_xferOff)
{
Console.WriteLine("KDATA loaded.");
_kData = diskWord;
}
if (!_wdInhib)
{
Console.WriteLine("Disk Word task wakeup due to word read.");
bWakeup = true;
}
}
//
// If the WFFO bit is cleared (wait for the sync word to be read)
// then we check the word for a "1" (the sync word) to enable
// the clock. This occurs late in the cycle so that the NEXT word
// (not the sync word) is actually read. TODO: this should only happen on reads.
//
if (!_wffo && diskWord == 1)
{
Console.WriteLine("Sync word hit; starting bit clock for next word");
_diskBitCounterEnable = true;
}
if (bWakeup)
{
_system.CPU.WakeupTask(CPU.TaskType.DiskWord);
}
// Last, move to the next word.
_sectorWordIndex++;
}
}
private void LoadSector()
{
// Fill in sector with test data; eventually actually load real disk data!
// Header (2 words data, 1 word cksum)
for (int i = _headerOffset + 1; i < _headerOffset + 3; i++)
{
// actual data to be loaded from disk / cksum calculated
_sectorData[i] = new DataCell(0xbeef, CellType.Data);
}
_sectorData[_headerOffset + 3].Data = CalculateChecksum(_sectorData, _headerOffset + 1, 2);
// Label (8 words data, 1 word cksum)
for (int i = _labelOffset + 1; i < _labelOffset + 9; i++)
{
// actual data to be loaded from disk / cksum calculated
_sectorData[i] = new DataCell(0xdead, CellType.Data);
}
_sectorData[_labelOffset + 9].Data = CalculateChecksum(_sectorData, _labelOffset + 1, 8);
// sector data (256 words data, 1 word cksum)
for (int i = _dataOffset + 1; i < _dataOffset + 257; i++)
{
// actual data to be loaded from disk / cksum calculated
_sectorData[i] = new DataCell((ushort)(0x7000 + i), CellType.Data);
}
_sectorData[_dataOffset + 257].Data = CalculateChecksum(_sectorData, _dataOffset + 1, 256);
}
private void InitSector()
{
// Fill in sector with default data (basically, fill in non-data areas).
//
// header delay, 22 words
for (int i=0; i < _headerOffset; i++)
{
_sectorData[i] = new DataCell(0, CellType.Gap);
}
_sectorData[_headerOffset] = new DataCell(1, CellType.Sync);
// inter-reccord delay between header & label (10 words)
for (int i = _headerOffset + 4; i < _labelOffset; i++)
{
_sectorData[i] = new DataCell(0, CellType.Gap);
}
_sectorData[_labelOffset] = new DataCell(1, CellType.Sync);
// inter-reccord delay between label & data (10 words)
for (int i = _labelOffset + 10; i < _dataOffset; i++)
{
_sectorData[i] = new DataCell(0, CellType.Gap);
}
_sectorData[_dataOffset] = new DataCell(1, CellType.Sync);
// read-postamble
for (int i = _dataOffset + 257; i < _sectorWords;i++)
{
_sectorData[i] = new DataCell(0, CellType.Gap);
}
}
private ushort CalculateChecksum(DataCell[] sectorData, int offset, int length)
{
//
// From the uCode, the Alto's checksum algorithm is:
// 1. Load checksum with constant value of 521B (0x151)
// 2. For each word in the record, cksum <- word XOR cksum
// 3. Profit
//
ushort checksum = 0x151;
for(int i = offset; i < length;i++)
{
// Sanity check that we're checksumming actual data
if (sectorData[i].Type != CellType.Data)
{
throw new InvalidOperationException("Attempt to checksum non-data area of sector.");
}
checksum = (ushort)(checksum ^ sectorData[i].Data);
}
return checksum;
}
private ushort _kData;
private ushort _kAdr;
private ushort _kCom;
private ushort _kStat;
private int _recNo;
private ushort[] _recMap =
{
0, 2, 3, 1
};
// KCOM bits
private bool _xferOff;
private bool _wdInhib;
private bool _bClkSource;
private bool _wffo;
private bool _sendAdr;
// Transfer bit
private bool _dataXfer;
// Current disk position
private int _cylinder;
private int _destCylinder;
private int _head;
private int _sector;
// bit clock flag
private bool _diskBitCounterEnable;
// WDINIT signal
private bool _wdInit;
// Sector timing. Based on table on pg. 43 of the Alto Hardware Manual
private double _elapsedSectorTime; // elapsed time in this sector (in clocks)
private const double _sectorDuration = (40.0 / 12.0); // time in msec for one sector
private const double _sectorClocks = _sectorDuration / 0.00017; // number of clock cycles per sector time.
private int _sectorWordIndex;
private double _sectorWordTime;
// From altoconsts23.mu: [all constants in octal, for reference]
// $MFRRDL $177757; DISK HEADER READ DELAY IS 21 WORDS
// $MFR0BL $177744; DISK HEADER PREAMBLE IS 34 WORDS <<-- used for writing
// $MIRRDL $177774; DISK INTERRECORD READ DELAY IS 4 WORDS
// $MIR0BL $177775; DISK INTERRECORD PREAMBLE IS 3 WORDS <<-- writing
// $MRPAL $177775; DISK READ POSTAMBLE LENGTH IS 3 WORDS
// $MWPAL $177773; DISK WRITE POSTAMBLE LENGTH IS 5 WORDS <<-- writing, clearly.
private const int _sectorWords = 269 + 22 + 34; // Based on : 269 data words (+ cksums) / sector, + X words for delay / preamble / sync
private const double _wordDuration = (_sectorClocks / (double)_sectorWords);
private const double _headerReadDelay = 17;
private const double _interRecordDelay = 4;
// offsets in words for start of data in sector
private const int _headerOffset = 22;
private const int _labelOffset = _headerOffset + 14;
private const int _dataOffset = _labelOffset + 20;
// The data for the current sector
private enum CellType
{
Data,
Gap,
Sync,
}
private struct DataCell
{
public DataCell(ushort data, CellType type)
{
Data = data;
Type = type;
}
public ushort Data;
public CellType Type;
public override string ToString()
{
return String.Format("{0} {1}", Data, Type);
}
}
private DataCell[] _sectorData = new DataCell[_sectorWords];
// Cylinder seek timing. Again, see the manual.
// Timing varies based on how many cylinders are being traveled during a seek; see
// CalculateSeekTime() for more.
private double _elapsedSeekTime;
private double _seekClocks;
private AltoSystem _system;
}
}