1
0
mirror of https://github.com/livingcomputermuseum/UniBone.git synced 2026-01-28 04:47:46 +00:00
Files
livingcomputermuseum.UniBone/10.02_devices/2_src/demo_io.cpp
Joerg Hoppe 2530d9cbb5 Initial
2019-04-05 11:30:26 +02:00

246 lines
7.7 KiB
C++

/* demo_io.cpp: sample UNIBUS controller with Linux GPIO logic
Copyright (c) 2018, Joerg Hoppe
j_hoppe@t-online.de, www.retrocmp.com
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
JOERG HOPPE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12-nov-2018 JH entered beta phase
demo_io:
A device to access GPIOs with /sys/class interface
Implements a combined "Switch register/display register" at 0760100
Read gets the value of the 4 switches at bits 0x000f
and the button state at MSB 0x0010
Write sets the LEDs with mask 0x000f
No active register callbacks, just polling in worker()
*/
#include <string.h>
#include "unibusadapter.hpp"
#include "unibusdevice.hpp" // definition of class device_c
#include "demo_io.hpp"
demo_io_c::demo_io_c() :
unibusdevice_c() // super class constructor
{
// static config
name.value = "DEMO_IO";
type_name.value = "demo_io_c";
log_label = "di";
default_base_addr = 0760100; // overwritten in install()?
default_intr_vector = 0;
default_intr_level = 0;
// init parameters
switch_feedback.value = false ;
// controller has only 2 register
register_count = 2 ;
switch_reg = &(this->registers[0]); // @ base addr
strcpy(switch_reg->name, "SR"); // "Switches and Display"
switch_reg->active_on_dati = false; // no controller state change
switch_reg->active_on_dato = false;
switch_reg->reset_value = 0;
switch_reg->writable_bits = 0x0000; // read only
display_reg = &(this->registers[1]); // @ base addr + 2
strcpy(display_reg->name, "DR"); // "Switches and Display"
display_reg->active_on_dati = false; // no controller state change
display_reg->active_on_dato = false;
display_reg->reset_value = 0;
display_reg->writable_bits = 0x000f; // not necessary
// map register bits to gpio pins
// BBB ARM /sys/class/gpio
// LED0: P8.25 = GPIO1_0 = 32
// LED1: P8.24 = GPIO1_1 = 33
// LED2: P8.05 = GPIO1_2 = 34
// LED3: P8.06 = GPIO1_3 = 35
// SW0: P8.23 = GPIO1_4 = 36
// SW1: P8.22 = GPIO1_5 = 37
// SW2: P8.03 = GPIO1_6 = 38
// SW3: P8.04 = GPIO1_7 = 39
// BTN: P8.12 = GPIO1_12 = 44
gpio_open(gpio_outputs[0], false, 32); // LED 0
gpio_open(gpio_outputs[1], false, 33); // LED 1
gpio_open(gpio_outputs[2], false, 34); // LED 2
gpio_open(gpio_outputs[3], false, 35); // LED 3
gpio_open(gpio_inputs[0], true, 36); // SW0
gpio_open(gpio_inputs[1], true, 37); // SW1
gpio_open(gpio_inputs[2], true, 38); // SW2
gpio_open(gpio_inputs[3], true, 39); // SW3
gpio_open(gpio_inputs[4], true, 44); // BUTTON
}
demo_io_c::~demo_io_c() {
// close all gpio value files
unsigned i ;
for (i=0 ; i < 5 ; i++)
gpio_inputs[i].close() ;
for (i=0 ; i < 4 ; i++)
gpio_outputs[i].close() ;
}
/* helper: opens the control file for a gpio
* exports, programs directions, assigns stream
*/
void demo_io_c::gpio_open(fstream& value_stream, bool is_input, unsigned gpio_number) {
const char *gpio_class_path = "/sys/class/gpio";
value_stream.close(); // if open
// 1. export pin, so it appears as .../gpio<nr>
char export_filename[80];
ofstream export_file ;
sprintf(export_filename, "%s/export", gpio_class_path);
export_file.open(export_filename);
if (!export_file.is_open()) {
printf("Failed to open %s.\n", export_filename);
return;
}
export_file << gpio_number << "\n";
export_file.close();
// 2. Now we have directory /sys/class/gpio<number>
// Set to input or output
char direction_filename[80];
ofstream direction_file ;
sprintf(direction_filename, "%s/gpio%d/direction", gpio_class_path, gpio_number);
direction_file.open(direction_filename);
if (!direction_file.is_open()) {
printf("Failed to open %s.\n", direction_filename);
return;
}
direction_file << (is_input ? "in" : "out") << "\n";
direction_file.close();
// 3. Open the "value" file
char value_filename[80];
sprintf(value_filename, "%s/gpio%d/value", gpio_class_path, gpio_number);
if (is_input)
value_stream.open(value_filename, fstream::in);
else
value_stream.open(value_filename, fstream::out);
if (!value_stream.is_open())
printf("Failed to open %s.\n", value_filename);
}
// read a gpio input value from its stream
unsigned demo_io_c::gpio_get_input(unsigned input_index) {
fstream *value_stream = &(gpio_inputs[input_index]);
if (!value_stream->is_open())
return 0; // ignore gpio file access errors
string val_str;
value_stream->seekg(0); // restart reading from begin
*value_stream >> val_str; // read "0" or "1"
if (val_str.length() > 0 && val_str[0] == '1')
return 1;
else
return 0;
}
// write a gpio output value into its stream
void demo_io_c::gpio_set_output(unsigned output_index, unsigned value) {
fstream *value_stream = &(gpio_outputs[output_index]);
if (!value_stream->is_open())
// ignore file access errors
return;
value_stream->seekp(0); // restart writing from begin
// LED voltage signals are inverted: "ON" = 0.
if (value)
*value_stream << "0\n";
else
*value_stream << "1\n";
value_stream->flush(); // now!
}
// background worker.
// udpate LEDS, poll switches direct to register flipflops
void demo_io_c::worker(void) {
timeout_c timeout;
while (!worker_terminate) {
timeout.wait_ms(100);
unsigned i;
uint16_t register_bitmask, register_value = 0; // bit assembly
// 1. read the switch values from /sys/class/gpio<n>/value pseudo files
// into UNIBUS register value bits
for (i = 0; i < 5; i++) {
register_bitmask = (1 << i);
if (gpio_get_input(i) != 0)
register_value |= register_bitmask;
}
// update UNIBUS "display" registers
set_register_dati_value(switch_reg, register_value, __func__);
// 2. write the LED values from UNIBUS register value bits
// into /sys/class/gpio<n>/value pseudo files
// LED control from switches or UNIBUS "DR" register?
if (! switch_feedback.value)
register_value = get_register_dato_value(display_reg);
for (i = 0; i < 4; i++) {
register_bitmask = (1 << i);
gpio_set_output(i, register_value & register_bitmask);
}
}
}
// process DATI/DATO access to one of my "active" registers
// !! called asynchronuously by PRU, with SSYN asserted and blocking UNIBUS.
// The time between PRU event and program flow into this callback
// is determined by ARM Linux context switch
//
// UNIBUS DATO cycles let dati_flipflops "flicker" outside of this proc:
// do not read back dati_flipflops.
void demo_io_c::on_after_register_access(unibusdevice_register_t *device_reg,
uint8_t unibus_control) {
// nothing todo
UNUSED(device_reg);
UNUSED(unibus_control);
}
bool demo_io_c::on_param_changed(parameter_c *param) {
UNUSED(param) ;
return true ;
}
void demo_io_c::on_power_changed(void) {
if (power_down) { // power-on defaults
}
}
// UNIBUS INIT: clear all registers
void demo_io_c::on_init_changed(void) {
// write all registers to "reset-values"
if (init_asserted) {
reset_unibus_registers();
INFO("demo_io_c::on_init()");
}
}