1
0
mirror of https://github.com/livingcomputermuseum/UniBone.git synced 2026-01-11 23:52:51 +00:00
Josh Dersch e037b0d36d Added dato_mask to allow discerning DATOB operations to emulated registers.
This allows the RH11's RHCS1 register to function properly.  2.11BSD now boots!
2020-03-25 07:06:54 +01:00

627 lines
20 KiB
C++

/* DL11W.cpp: sample UNIBUS controller with SLU & LTC logic
Copyright (c) 2018, Joerg Hoppe
j_hoppe@t-online.de, www.retrocmp.com
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
JOERG HOPPE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12-nov-2018 JH entered beta phase
20/12/2018 djrm copied to make slu device
14/01/2019 djrm adapted to use UART2 serial port
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <assert.h>
#include <errno.h>
#include <iostream>
#include <netdb.h>
#include <netinet/in.h>
#include "utils.hpp"
#include "gpios.hpp"
#include "logsource.hpp"
#include "unibusadapter.hpp"
#include "unibusdevice.hpp" // definition of class device_c
#include "unibus.h"
#include "dl11w.hpp"
#include "rs232.hpp"
#include "rs232adapter.hpp"
//-------------------------------------------------
slu_c::slu_c() :
unibusdevice_c() {
set_workers_count(2); // receiver and transmitte have own threads
//ip_host.value = IP_HOST; // not used
//ip_port.value = IP_PORT; // not used
// static config
name.value = "DL11";
type_name.value = "slu_c";
log_label = "slu";
break_enable.value = 1; // SW4-1 default ON
error_bits_enable.value = 1; // SE4-7 default ON
// SLU has 2 Interrupt vectors: base = RCV, base+= XMT
// put in slot 1, closest to CPU
set_default_bus_params(SLU_ADDR, SLU_SLOT, SLU_VECTOR, SLU_LEVEL); // base addr, intr-vector, intr level
// controller has some register
register_count = slu_idx_count;
reg_rcsr = &(this->registers[slu_idx_rcsr]); // @ base addr
strcpy(reg_rcsr->name, "RCSR"); // Receiver Status Register
reg_rcsr->active_on_dati = false;
reg_rcsr->active_on_dato = true;
reg_rcsr->reset_value = 0;
reg_rcsr->writable_bits = 0xff;
reg_rbuf = &(this->registers[slu_idx_rbuf]); // @ base addr
strcpy(reg_rbuf->name, "RBUF"); // Receiver Buffer Register
reg_rbuf->active_on_dati = true;
reg_rbuf->active_on_dato = true; // required for "active on dati""
reg_rbuf->reset_value = 0;
reg_rbuf->writable_bits = 0x00;
reg_xcsr = &(this->registers[slu_idx_xcsr]); // @ base addr
strcpy(reg_xcsr->name, "XCSR"); // Transmitter Status Register
reg_xcsr->active_on_dati = false;
reg_xcsr->active_on_dato = true;
reg_xcsr->reset_value = XCSR_XMIT_RDY; // set
reg_xcsr->writable_bits = 0xff;
reg_xbuf = &(this->registers[slu_idx_xbuf]); // @ base addr
strcpy(reg_xbuf->name, "XBUF"); //Transmitter Buffer Register
reg_xbuf->active_on_dati = false; // no controller state change
reg_xbuf->active_on_dato = true;
reg_xbuf->reset_value = 0;
reg_xbuf->writable_bits = 0xff;
// initialize serial format
serialport.value = "ttyS2"; // labeled "UART2" on PCB
baudrate.value = 9600;
mode.value = "8N1";
rs232adapter.rs232 = &rs232;
}
slu_c::~slu_c() {
}
bool slu_c::on_param_changed(parameter_c *param) {
if (param == &enabled) {
if (enabled.new_value) {
// enable SLU: setup COM serial port
// setup for BREAK and parity evaluation
rs232adapter.rcv_termios_error_encoding = true;
if (rs232.OpenComport(serialport.value.c_str(), baudrate.value, mode.value.c_str(),
true)) {
ERROR("Can not open serial port %s", serialport.value.c_str());
return false; // reject "enable"
}
// lock serial port and settings
serialport.readonly = true;
baudrate.readonly = true;
mode.readonly = true;
INFO("Serial port %s opened", serialport.value.c_str());
char buff[256];
sprintf(buff, "\n\rSerial port %s opened\n\r", serialport.value.c_str());
rs232.cputs(buff);
} else {
// disable SLU
rs232.CloseComport();
// unlock serial port and settings
serialport.readonly = false;
baudrate.readonly = false;
mode.readonly = false;
INFO("Serial port %s closed", serialport.value.c_str());
}
} else if (param == &priority_slot) {
rcvintr_request.set_priority_slot(priority_slot.new_value);
// XMT INTR: lower priority => nxt slot, and next vector
xmtintr_request.set_priority_slot(priority_slot.new_value + 1);
} else if (param == &intr_vector) {
rcvintr_request.set_vector(intr_vector.new_value);
xmtintr_request.set_vector(intr_vector.new_value + 4);
} else if (param == &intr_level) {
rcvintr_request.set_level(intr_level.new_value);
xmtintr_request.set_level(intr_level.new_value);
}
return unibusdevice_c::on_param_changed(param); // more actions (for enable)
}
//--------------------------------------------
// calc static INTR condition level.
// Change of that condition calculated by intr_request_c.is_condition_raised()
bool slu_c::get_rcv_intr_level(void) {
return rcv_done && rcv_intr_enable;
}
// Update RCSR and optionally generate INTR
void slu_c::set_rcsr_dati_value_and_INTR(void) {
uint16_t val = (rcv_active ? RCSR_RCVR_ACT : 0) | (rcv_done ? RCSR_RCVR_DONE : 0)
| (rcv_intr_enable ? RCSR_RCVR_INT_ENB : 0);
switch (rcvintr_request.edge_detect(get_rcv_intr_level())) {
case intr_request_c::INTERRUPT_EDGE_RAISING:
// set register atomically with INTR, if INTR not blocked
unibusadapter->INTR(rcvintr_request, reg_rcsr, val);
break;
case intr_request_c::INTERRUPT_EDGE_FALLING:
// BR4 is tied to monitor and enable, so raised INTRs may get canceled
unibusadapter->cancel_INTR(rcvintr_request);
set_register_dati_value(reg_rcsr, val, __func__);
break;
default:
set_register_dati_value(reg_rcsr, val, __func__);
}
}
// PDP-11 writes into RCSR
void slu_c::eval_rcsr_dato_value(void) {
uint16_t val = get_register_dato_value(reg_rcsr);
rcv_intr_enable = val & RCSR_RCVR_INT_ENB ? 1 : 0;
rcv_rdr_enb = val & RCSR_RDR_ENB ? 1 : 0;
if (rcv_rdr_enb)
rcv_done = 0; // raising edge clears rcv_done
// if rcvr_done and int enable goes high: INTR
set_rcsr_dati_value_and_INTR();
}
// Update RBUF, readonly
void slu_c::set_rbuf_dati_value(void) {
uint16_t val = 0;
if (error_bits_enable.value) {
val = (rcv_or_err ? RBUF_OR_ERR : 0) | (rcv_fr_err ? RBUF_FR_ERR : 0)
| (rcv_p_err ? RBUF_P_ERR : 0);
if (val) // set general error flag
val |= RBUF_ERROR;
}
val |= rcv_buffer; // received char in bits 7..0
set_register_dati_value(reg_rbuf, val, __func__);
}
bool slu_c::get_xmt_intr_level() {
return xmt_ready && xmt_intr_enable;
}
// Update Transmit Status Register XCSR and optionally generate INTR
void slu_c::set_xcsr_dati_value_and_INTR(void) {
uint16_t val = (xmt_ready ? XCSR_XMIT_RDY : 0) | (xmt_intr_enable ? XCSR_XMIT_INT_ENB : 0)
| (xmt_maint ? XCSR_MAINT : 0) | (xmt_break ? XCSR_BREAK : 0);
switch (xmtintr_request.edge_detect(get_xmt_intr_level())) {
case intr_request_c::INTERRUPT_EDGE_RAISING:
// set register atomically with INTR, if INTR not blocked
unibusadapter->INTR(xmtintr_request, reg_xcsr, val);
break;
case intr_request_c::INTERRUPT_EDGE_FALLING:
// BR4 is tied to monitor and enable, so raised INTRs may get canceled
unibusadapter->cancel_INTR(xmtintr_request);
set_register_dati_value(reg_xcsr, val, __func__);
break;
default:
set_register_dati_value(reg_xcsr, val, __func__);
}
}
void slu_c::eval_xcsr_dato_value(void) {
uint16_t val = get_register_dato_value(reg_xcsr);
bool old_break = xmt_break;
xmt_intr_enable = val & XCSR_XMIT_INT_ENB ? 1 : 0;
xmt_maint = val & XCSR_MAINT ? 1 : 0;
xmt_break = val & XCSR_BREAK ? 1 : 0;
// if xmt_ready and int enable goes high: INTR
set_xcsr_dati_value_and_INTR();
if (old_break != xmt_break) {
// re-evaluate break state on bit change
if (break_enable.value)
rs232.SetBreak(xmt_break);
else
rs232.SetBreak(0);
}
}
void slu_c::eval_xbuf_dato_value(void) {
// transmit data buffer contains only the character in bits 7..0
xmt_buffer = get_register_dato_value(reg_xbuf) & 0xff;
}
// process DATI/DATO access to one of my "active" registers
// !! called asynchronuously by PRU, with SSYN asserted and blocking UNIBUS.
// The time between PRU event and program flow into this callback
// is determined by ARM Linux context switch
//
// UNIBUS DATO cycles let dati_flipflops "flicker" outside of this proc:
// do not read back dati_flipflops.
void slu_c::on_after_register_access(unibusdevice_register_t *device_reg,
uint8_t unibus_control, uint16_t dato_mask) {
UNUSED(dato_mask);
// if (unibus_control == UNIBUS_CONTROL_DATO) // bus write
// set_register_dati_value(device_reg, device_reg->active_dato_flipflops, __func__);
if (unibusadapter->line_INIT)
return; // do nothing wile reset
switch (device_reg->index) {
case slu_idx_rcsr:
if (unibus_control == UNIBUS_CONTROL_DATO) { // bus write into RCSR
pthread_mutex_lock(&on_after_rcv_register_access_mutex); // signal changes atomic against UNIBUS accesses
eval_rcsr_dato_value(); // may generate INTR
set_rcsr_dati_value_and_INTR();
// ignore reader enable
pthread_mutex_unlock(&on_after_rcv_register_access_mutex);
}
break;
case slu_idx_rbuf: { // DATI/DATO: is read only, but write also clears "rcvr_done"
// signal data has been read from bus
pthread_mutex_lock(&on_after_rcv_register_access_mutex);
rcv_done = 0;
set_rcsr_dati_value_and_INTR();
pthread_mutex_unlock(&on_after_rcv_register_access_mutex);
}
break;
case slu_idx_xcsr:
if (unibus_control == UNIBUS_CONTROL_DATO) { // bus write
pthread_mutex_lock(&on_after_xmt_register_access_mutex);
eval_xcsr_dato_value(); // may trigger INTR
set_xcsr_dati_value_and_INTR();
pthread_mutex_unlock(&on_after_xmt_register_access_mutex);
}
break;
case slu_idx_xbuf:
if (unibus_control == UNIBUS_CONTROL_DATO) { // bus write into XBUF
pthread_mutex_lock(&on_after_xmt_register_access_mutex);
eval_xbuf_dato_value();
xmt_ready = 0; // signal worker: xmt_data pending
set_xcsr_dati_value_and_INTR();
// on_after_register_access_cond used for xmt worker
pthread_cond_signal(&on_after_xmt_register_access_cond);
pthread_mutex_unlock(&on_after_xmt_register_access_mutex);
}
break;
default:
break;
}
}
void slu_c::on_power_changed(void) {
if (power_down) { // power-on defaults
}
}
// UNIBUS INIT: clear all registers
void slu_c::on_init_changed(void) {
// write all registers to "reset-values"
if (init_asserted) {
reset_unibus_registers();
rcv_active = 0;
rcv_done = 0;
rcv_intr_enable = 0;
rcv_or_err = 0;
rcv_fr_err = 0;
rcv_p_err = 0;
rcv_buffer = 0;
xmt_ready = 1;
xmt_intr_enable = 0;
xmt_maint = 0;
xmt_break = 0;
rcvintr_request.edge_detect_reset();
xmtintr_request.edge_detect_reset();
// INFO("slu_c::on_init()");
}
}
// background worker.
void slu_c::worker_rcv(void) {
timeout_c timeout;
rs232byte_t rcv_byte;
// poll with frequency > baudrate, to see single bits
//unsigned poll_periods_us = 1000000 / baudrate.value;
/* Receiver not time critical? UARTs are buffering
So if thread is swapped out and back a burst of characters appear.
-> Wait after each character for transfer time before polling
RS232 again.
*/
unsigned poll_periods_us = (rs232.CharTransmissionTime_us * 9) / 10;
// poll a bit faster to be ahead of char stream.
// don't oversample: PDP-11 must process char in that time
worker_init_realtime_priority(rt_device);
while (!workers_terminate) {
timeout.wait_us(poll_periods_us);
if (unibusadapter->line_INIT)
continue; // do nothing while reset
// "query
// rcv_active: can only be set by polling the UART input GPIO pin?
// at the moments, it is only sent on maintenance loopback xmt
/* read serial data, if any */
if (rs232adapter.rs232byte_rcv_poll(&rcv_byte)) {
pthread_mutex_lock(&on_after_rcv_register_access_mutex); // signal changes atomic against UNIBUS accesses
rcv_or_err = rcv_fr_err = rcv_p_err = 0;
if (rcv_done) // not yet cleared? overrun!
rcv_or_err = 1;
rcv_buffer = rcv_byte.c;
if (rcv_byte.format_error)
rcv_fr_err = rcv_p_err = 1;
rcv_done = 1;
rcv_active = 0;
set_rbuf_dati_value();
set_rcsr_dati_value_and_INTR(); // INTR!
pthread_mutex_unlock(&on_after_rcv_register_access_mutex); // signal changes atomic against UNIBUS accesses
}
}
}
void slu_c::worker_xmt(void) {
timeout_c timeout;
assert(!pthread_mutex_lock(&on_after_register_access_mutex));
// Transmitter not time critical
worker_init_realtime_priority(rt_device);
while (!workers_terminate) {
// 1. wait for xmt signal
int res = pthread_cond_wait(&on_after_xmt_register_access_cond,
&on_after_xmt_register_access_mutex);
// on_after_xmt_register_access_mutex remains locked all the time
if (res != 0) {
ERROR("SLU::worker_xmt() pthread_cond_wait = %d = %s>", res, strerror(res));
continue;
}
// 2. transmit
rs232byte_t xmt_byte;
xmt_byte.c = xmt_buffer;
xmt_byte.format_error = false;
rs232adapter.rs232byte_xmt_send(xmt_byte);
xmt_ready = 0;
set_xcsr_dati_value_and_INTR();
if (xmt_maint) { // loop back: simulate data byte coming in
pthread_mutex_lock(&on_after_rcv_register_access_mutex);
rcv_active = 1;
set_rcsr_dati_value_and_INTR();
pthread_mutex_unlock(&on_after_rcv_register_access_mutex);
}
// 3. wait for data byte being shifted out
pthread_mutex_unlock(&on_after_xmt_register_access_mutex);
timeout.wait_us(rs232.CharTransmissionTime_us);
pthread_mutex_lock(&on_after_xmt_register_access_mutex);
if (xmt_maint)
// put sent byte into rcv buffer, receiver will poll it
rs232adapter.rs232byte_loopback(xmt_byte);
xmt_ready = 1;
set_xcsr_dati_value_and_INTR();
// has rcv or xmt interrupt priority on maintennace loop back
}
assert(!pthread_mutex_unlock(&on_after_xmt_register_access_mutex));
}
void slu_c::worker(unsigned instance) {
// 2 parallel worker() instances: 0 and 1
if (instance == 0)
worker_rcv();
else
worker_xmt();
}
//--------------------------------------------------------------------------------------------------
ltc_c::ltc_c() :
unibusdevice_c() // super class constructor
{
// static config
name.value = "KW11";
type_name.value = "ltc_c";
log_label = "ltc";
// slot = 3:
set_default_bus_params(LTC_ADDR, LTC_SLOT, LTC_VECTOR, LTC_LEVEL); // base addr, intr-vector, intr level
// controller has only one register
register_count = 1;
reg_lks = &(this->registers[0]); // @ base addr
strcpy(reg_lks->name, "LKS"); // Line Clock Status Register
reg_lks->active_on_dati = false; // status polled by CPU, not active
// reg_lks->active_on_dati = true; // debugging
reg_lks->active_on_dato = true;
reg_lks->reset_value = LKS_INT_MON;
reg_lks->writable_bits = LKS_INT_ENB | LKS_INT_MON; // interrupt enable
// init parameters
frequency.value = 50;
ltc_enable.value = true;
// init controller state
intr_enable = 0;
line_clock_monitor = 0;
}
ltc_c::~ltc_c() {
}
bool ltc_c::on_param_changed(parameter_c *param) {
// no own parameter or "enable" logic here
if (param == &frequency) {
// allow all values, but complain
if (frequency.new_value != 50 && frequency.new_value != 60)
WARNING("KW11 non-standard clock value %d, regular 50 or 60", frequency.new_value) ;
// return (frequency.new_value == 50 || frequency.new_value == 60);
} else if (param == &priority_slot) {
intr_request.set_priority_slot(priority_slot.new_value);
} else if (param == &intr_level) {
intr_request.set_level(intr_level.new_value);
} else if (param == &intr_vector) {
intr_request.set_vector(intr_vector.new_value);
}
return unibusdevice_c::on_param_changed(param); // more actions (for enable)
}
// set status register, and optionally generate INTR
// intr_raise: if inactive->active transition of interrupt condition detected.
void ltc_c::set_lks_dati_value_and_INTR(bool do_intr) {
uint16_t val = (line_clock_monitor ? LKS_INT_MON : 0) | (intr_enable ? LKS_INT_ENB : 0);
if (do_intr)
// set register atomically with INTR, if INTR not blocked
unibusadapter->INTR(intr_request, reg_lks, val);
else
// set unrelated to INTR condition
set_register_dati_value(reg_lks, val, __func__);
}
// process DATI/DATO access to one of my "active" registers
void ltc_c::on_after_register_access(unibusdevice_register_t *device_reg,
uint8_t unibus_control, uint16_t dato_mask) {
pthread_mutex_lock(&on_after_register_access_mutex);
// not necessary, not harmful?
if (unibus_control == UNIBUS_CONTROL_DATO) // bus write
set_register_dati_value(device_reg, device_reg->active_dato_flipflops, __func__);
switch (device_reg->index) {
case 0: // LKS
if (unibus_control == UNIBUS_CONTROL_DATO) { // bus write
//DEBUG("LKS wrDATO, val = 0%6o", reg_lks->active_dato_flipflops) ;
intr_enable = !!(reg_lks->active_dato_flipflops & LKS_INT_ENB);
// schematic: LINE CLOCK MONITOR can only be cleared
if ((reg_lks->active_dato_flipflops & LKS_INT_MON) == 0)
line_clock_monitor = 0;
if (!intr_enable || !line_clock_monitor) {
// BR6 is tied to monitor and enable, so raised INTRs may get canceled
unibusadapter->cancel_INTR(intr_request);
}
set_lks_dati_value_and_INTR(false); // INTR only by clock, not by LKs access
} else
//DEBUG("LKS DATI, control=%d, val = 0%6o = 0%6o", (int)unibus_control, reg_lks->active_dati_flipflops, device_reg->shared_register->value ) ;
break;
default:
break;
}
pthread_mutex_unlock(&on_after_register_access_mutex);
}
void ltc_c::on_power_changed(void) {
if (power_down) { // power-on defaults
}
}
// UNIBUS INIT: clear all registers
void ltc_c::on_init_changed(void) {
// write all registers to "reset-values"
if (init_asserted) {
reset_unibus_registers();
intr_enable = 0;
line_clock_monitor = 1;
intr_request.edge_detect_reset(); // but edge_detect() not used
// initial condition is "not signaled"
// INFO("ltc_c::on_init()");
}
}
/* background worker.
Freqnecy of clock signal edges is tied to system time, not to "wait" periods
This worker may get delayed arbitray amount of time (as every thread),
lost edges are compensated
*/
void ltc_c::worker(unsigned instance) {
UNUSED(instance); // only one
timeout_c global_time;
timeout_c timeout;
int64_t global_next_edge_ns;
// set prio to RT, but less than unibus_adapter
worker_init_realtime_priority(rt_device);
INFO("KW11 time resolution is < %u us",
(unsigned )(global_time.get_resolution_ns() / 1000));
global_time.start_ns(0);
global_next_edge_ns = global_time.elapsed_ns();
uint64_t global_edge_count = 0;
while (!workers_terminate) {
// signal egde period may change if 50/60 Hz is changed
uint64_t edge_period_ns = BILLION / (2 * frequency.value);
uint64_t wait_ns;
// overdue_ns: time which signal edge is too late
int64_t overdue_ns = (int64_t) global_time.elapsed_ns() - global_next_edge_ns;
// INFO does not work on 64 ints
// printf("elapsed [ms] =%u, overdue [us] =%u\n", (unsigned) global_time.elapsed_ms(), (unsigned) overdue_ns/1000) ;
// if overdue_ns positive, next signal edge should have occured
if (overdue_ns < 0) {
wait_ns = -overdue_ns; // wait until next edge time reached
} else {
// time for next signal edge reached
if (ltc_enable.value) {
global_edge_count++;
clock_signal = !clock_signal; // square wave
if (clock_signal) {
line_clock_monitor = 1;
pthread_mutex_lock(&on_after_register_access_mutex);
set_lks_dati_value_and_INTR(intr_enable);
pthread_mutex_unlock(&on_after_register_access_mutex);
}
} else
// clock disconnected
clock_signal = 0;
// time of next signal edge
global_next_edge_ns += edge_period_ns;
// overdue_ns now time which next signal edge is too late
overdue_ns -= edge_period_ns;
if (overdue_ns < 0)
// next edge now in future: wait exact
wait_ns = -overdue_ns;
else
// next edge still in past:
// wait shorter than signal edge period to keep up slowly
wait_ns = edge_period_ns / 2;
//if ((global_edge_count % 100) == 0)
// INFO("LTC: %u secs by edges", (unsigned)(global_edge_count/100) ) ;
}
timeout.wait_ns(wait_ns);
}
}