1
0
mirror of https://github.com/livingcomputermuseum/cpus-pdp8.git synced 2026-01-13 15:37:04 +00:00

using top s3 ram

This commit is contained in:
brad 2010-04-14 13:25:35 +00:00
parent 2cb8c22e68
commit fc6b7ec578
4 changed files with 330 additions and 271 deletions

View File

@ -1,6 +1,16 @@
//
// interface to async sram
// used on s3board
//
// multiplexes between to high speed SRAMs
//
module pdp8_ram(clk, reset, addr, data_in, data_out, rd, wr);
//`define use_sim_model 1
module pdp8_ram(clk, reset, addr, data_in, data_out, rd, wr,
sram_a, sram_oe_n, sram_we_n,
sram1_io, sram1_ce_n, sram1_ub_n, sram1_lb_n,
sram2_io, sram2_ce_n, sram2_ub_n, sram2_lb_n);
input clk;
input reset;
@ -10,11 +20,48 @@ module pdp8_ram(clk, reset, addr, data_in, data_out, rd, wr);
input rd;
input wr;
output [17:0] sram_a;
output sram_oe_n, sram_we_n;
inout [15:0] sram1_io;
output sram1_ce_n, sram1_ub_n, sram1_lb_n;
inout [15:0] sram2_io;
output sram2_ce_n, sram2_ub_n, sram2_lb_n;
`ifdef use_sim_model
ram_32kx12 ram(.A(addr),
.DI(data_in),
.DO(data_out),
.CE_N(1'b0),
.WE_N(~wr));
`else
wire [15:0] ram1_io;
//
wire sram1_ub, sram1_lb;
// common
assign sram_a = {3'b0, addr};
assign sram_oe_n = ~rd;
assign sram_we_n = ~wr;
// sram1
assign sram1_ub = 1'b1;
assign sram1_lb = 1'b1;
assign sram1_ce_n = 1'b0;
assign sram1_ub_n = ~sram1_ub;
assign sram1_lb_n = ~sram1_lb;
assign data_out = sram1_io[11:0];
assign sram1_io = ~sram_oe_n ? 16'bz : {4'b0, data_in};
// sram2 not used
assign sram2_io = 16'b0;
assign sram2_ce_n = 1'b1;
assign sram2_ub_n = 1'b1;
assign sram2_lb_n = 1'b1;
`endif
endmodule

View File

@ -697,7 +697,7 @@ $display("rf: DCIM");
case (io_select)
6'o60:
case (mb[2:0])
6'o03: // DMAR
3'o3: // DMAR
begin
// clear ac
DMA <= io_data_in;
@ -705,11 +705,13 @@ $display("rf: DCIM");
DCF <= 1'b0;
end
6'o03: // DMAW
3'o5: // DMAW
begin
// clear ac
DMA <= io_data_in;
is_write <= 1'b1;
// is_write <= 1'b1;
//debug
is_read <= 1'b1;
DCF <= 1'b0;
end
endcase // case(mb[2:0])

View File

@ -9,9 +9,9 @@ module top(rs232_txd, rs232_rxd,
button, led, sysclk,
sevenseg, sevenseg_an,
slideswitch,
ram_a, ram_oe_n, ram_we_n,
ram1_io, ram1_ce_n, ram1_ub_n, ram1_lb_n,
ram2_io, ram2_ce_n, ram2_ub_n, ram2_lb_n,
sram_a, sram_oe_n, sram_we_n,
sram1_io, sram1_ce_n, sram1_ub_n, sram1_lb_n,
sram2_io, sram2_ce_n, sram2_ub_n, sram2_lb_n,
ide_data_bus, ide_dior, ide_diow, ide_cs, ide_da);
output rs232_txd;
@ -27,22 +27,23 @@ module top(rs232_txd, rs232_rxd,
input [7:0] slideswitch;
output [17:0] ram_a;
output ram_oe_n;
output ram_we_n;
output [17:0] sram_a;
output sram_oe_n;
output sram_we_n;
inout [15:0] ram1_io;
output ram1_ce_n;
output ram1_ub_n;
output ram1_lb_n;
inout [15:0] sram1_io;
output sram1_ce_n;
output sram1_ub_n;
output sram1_lb_n;
inout [15:0] ram2_io;
output ram2_ce_n;
output ram2_ub_n;
output ram2_lb_n;
inout [15:0] sram2_io;
output sram2_ce_n;
output sram2_ub_n;
output sram2_lb_n;
inout [15:0] ide_data_bus;
output ide_dior, ide_diow;
output ide_dior;
output ide_diow;
output [1:0] ide_cs;
output [2:0] ide_da;
@ -170,12 +171,21 @@ module top(rs232_txd, rs232_rxd,
.ide_data_bus(ide_data_bus));
pdp8_ram ram(.clk(clk),
.reset(reset),
.addr(ram_addr),
.data_in(ram_data_in),
.data_out(ram_data_out),
.rd(ram_rd),
.wr(ram_wr));
.reset(reset),
.addr(ram_addr),
.data_in(ram_data_in),
.data_out(ram_data_out),
.rd(ram_rd),
.wr(ram_wr),
.sram_a(sram_a),
.sram_oe_n(sram_oe_n), .sram_we_n(sram_we_n),
.sram1_io(sram1_io), .sram1_ce_n(sram1_ce_n),
.sram1_ub_n(sram1_ub_n), .sram1_lb_n(sram1_lb_n),
.sram2_io(sram2_io), .sram2_ce_n(sram2_ce_n),
.sram2_ub_n(sram2_ub_n), .sram2_lb_n(sram2_lb_n));
endmodule

View File

@ -1,246 +1,246 @@
// uart.v
// simple low speed async uart for RS-232
// brad@heeltoe.com 2009-2010
module uart(clk, reset,
tx_clk, tx_req, tx_ack, tx_data, tx_empty,
rx_clk, rx_req, rx_ack, rx_data, rx_empty/*,*/
/*rx_in, tx_out*/);
input clk;
input reset;
input tx_clk;
input tx_req;
output tx_ack;
input [7:0] tx_data;
// input tx_enable;
// output tx_out;
output tx_empty;
input rx_clk;
input rx_req;
output rx_ack;
output [7:0] rx_data;
// input rx_enable;
// input rx_in;
wire rx_in;
output rx_empty;
reg tx_ack;
reg rx_ack;
reg [7:0] tx_reg;
reg tx_empty;
reg tx_over_run;
reg [3:0] tx_cnt;
reg tx_out;
reg [7:0] rx_reg;
reg [7:0] rx_data;
reg [3:0] rx_sample_cnt;
reg [3:0] rx_cnt;
reg rx_frame_err;
reg rx_over_run;
reg rx_empty;
reg rx_d1;
reg rx_d2;
reg rx_busy;
reg [1:0] rx_uld;
reg [1:0] rx_uld_next;
reg [1:0] tx_ld;
reg [1:0] tx_ld_next;
// require rx_req to deassert before sending next char
always @(posedge rx_clk or posedge reset)
if (reset)
rx_uld <= 2'b00;
else
rx_uld <= rx_uld_next;
always @(rx_req or rx_uld)
begin
rx_uld_next = rx_uld;
rx_ack = 0;
case (rx_uld)
2'b00: if (rx_req) rx_uld_next = 2'b01;
2'b01: begin
rx_ack = 1;
rx_uld_next = 2'b10;
end
2'b10: begin
rx_ack = 1;
if (~rx_req) rx_uld_next = 2'b00;
end
default: rx_uld_next = 2'b00;
endcase
end
wire uld_rx_data;
assign uld_rx_data = rx_uld == 2'b01;
// require tx_ld_req to deassert before accepting next char
always @(posedge tx_clk or posedge reset)
if (reset)
tx_ld <= 2'b00;
else
tx_ld <= tx_ld_next;
always @(tx_req or tx_ld)
begin
tx_ld_next = tx_ld;
tx_ack = 0;
case (tx_ld)
2'b00: if (tx_req) tx_ld_next = 2'b01;
2'b01: begin
tx_ack = 1;
tx_ld_next = 2'b10;
end
2'b10: begin
tx_ack = 1;
if (~tx_req) tx_ld_next = 2'b00;
end
default: tx_ld_next = 2'b00;
endcase
end
wire ld_tx_data;
assign ld_tx_data = tx_ld == 2'b01;
// uart rx
always @(posedge rx_clk or posedge reset)
if (reset)
begin
rx_reg <= 0;
rx_data <= 0;
rx_sample_cnt <= 0;
rx_cnt <= 0;
rx_frame_err <= 0;
rx_over_run <= 0;
rx_empty <= 1;
rx_d1 <= 1;
rx_d2 <= 1;
rx_busy <= 0;
end
else
begin
// synchronize the asynch signal
rx_d1 <= rx_in;
rx_d2 <= rx_d1;
// uload the rx data
if (uld_rx_data && ~rx_empty)
begin
rx_data <= rx_reg;
rx_empty <= 1;
end
// receive data only when rx is enabled
if (1/*rx_enable*/)
begin
// check if just received start of frame
if (!rx_busy && !rx_d2)
begin
rx_busy <= 1;
rx_sample_cnt <= 1;
rx_cnt <= 0;
end
// start of frame detected
if (rx_busy)
begin
rx_sample_cnt <= rx_sample_cnt + 4'd1;
// sample at middle of data
if (rx_sample_cnt == 7)
begin
if ((rx_d2 == 1) && (rx_cnt == 0))
rx_busy <= 0;
else
begin
rx_cnt <= rx_cnt + 4'd1;
// start storing the rx data
if (rx_cnt > 0 && rx_cnt < 9)
rx_reg[rx_cnt - 1] <= rx_d2;
if (rx_cnt == 4'd9)
begin
//$display("rx_cnt %d, rx_reg %o",
// rx_cnt, rx_reg);
rx_busy <= 0;
// check if end of frame received correctly
if (rx_d2 == 0)
rx_frame_err <= 1;
else
begin
rx_empty <= 0;
rx_frame_err <= 0;
// check for overrun
rx_over_run <= (rx_empty) ?
1'b0 : 1'b1;
end
end
end
end
end
end
// if (!rx_enable)
// rx_busy <= 0;
end
// uart tx
always @ (posedge tx_clk or posedge reset)
if (reset)
begin
tx_empty <= 1'b1;
tx_out <= 1'b1;
tx_cnt <= 4'b0;
tx_reg <= 0;
tx_over_run <= 0;
end
else
begin
if (ld_tx_data)
begin
if (!tx_empty)
tx_over_run <= 1;
else
begin
tx_reg <= tx_data;
tx_empty <= 0;
end
end
if (/*tx_enable &&*/!tx_empty)
begin
tx_cnt <= tx_cnt + 4'b1;
case (tx_cnt)
4'd0: tx_out <= 0;
4'd1: tx_out <= tx_reg[0];
4'd2: tx_out <= tx_reg[1];
4'd3: tx_out <= tx_reg[2];
4'd4: tx_out <= tx_reg[3];
4'd5: tx_out <= tx_reg[4];
4'd6: tx_out <= tx_reg[5];
4'd7: tx_out <= tx_reg[6];
4'd8: tx_out <= tx_reg[7];
4'd9: begin
tx_out <= 1;
tx_cnt <= 0;
tx_empty <= 1;
end
endcase
end
// if (!tx_enable)
// tx_cnt <= 0;
end
endmodule
// uart.v
// simple low speed async uart for RS-232
// brad@heeltoe.com 2009-2010
module uart(clk, reset,
tx_clk, tx_req, tx_ack, tx_data, tx_empty,
rx_clk, rx_req, rx_ack, rx_data, rx_empty/*,*/
/*rx_in, tx_out*/);
input clk;
input reset;
input tx_clk;
input tx_req;
output tx_ack;
input [7:0] tx_data;
// input tx_enable;
// output tx_out;
output tx_empty;
input rx_clk;
input rx_req;
output rx_ack;
output [7:0] rx_data;
// input rx_enable;
// input rx_in;
wire rx_in;
output rx_empty;
reg tx_ack;
reg rx_ack;
reg [7:0] tx_reg;
reg tx_empty;
reg tx_over_run;
reg [3:0] tx_cnt;
reg tx_out;
reg [7:0] rx_reg;
reg [7:0] rx_data;
reg [3:0] rx_sample_cnt;
reg [3:0] rx_cnt;
reg rx_frame_err;
reg rx_over_run;
reg rx_empty;
reg rx_d1;
reg rx_d2;
reg rx_busy;
reg [1:0] rx_uld;
reg [1:0] rx_uld_next;
reg [1:0] tx_ld;
reg [1:0] tx_ld_next;
// require rx_req to deassert before sending next char
always @(posedge rx_clk or posedge reset)
if (reset)
rx_uld <= 2'b00;
else
rx_uld <= rx_uld_next;
always @(rx_req or rx_uld)
begin
rx_uld_next = rx_uld;
rx_ack = 0;
case (rx_uld)
2'b00: if (rx_req) rx_uld_next = 2'b01;
2'b01: begin
rx_ack = 1;
rx_uld_next = 2'b10;
end
2'b10: begin
rx_ack = 1;
if (~rx_req) rx_uld_next = 2'b00;
end
default: rx_uld_next = 2'b00;
endcase
end
wire uld_rx_data;
assign uld_rx_data = rx_uld == 2'b01;
// require tx_ld_req to deassert before accepting next char
always @(posedge tx_clk or posedge reset)
if (reset)
tx_ld <= 2'b00;
else
tx_ld <= tx_ld_next;
always @(tx_req or tx_ld)
begin
tx_ld_next = tx_ld;
tx_ack = 0;
case (tx_ld)
2'b00: if (tx_req) tx_ld_next = 2'b01;
2'b01: begin
tx_ack = 1;
tx_ld_next = 2'b10;
end
2'b10: begin
tx_ack = 1;
if (~tx_req) tx_ld_next = 2'b00;
end
default: tx_ld_next = 2'b00;
endcase
end
wire ld_tx_data;
assign ld_tx_data = tx_ld == 2'b01;
// uart rx
always @(posedge rx_clk or posedge reset)
if (reset)
begin
rx_reg <= 0;
rx_data <= 0;
rx_sample_cnt <= 0;
rx_cnt <= 0;
rx_frame_err <= 0;
rx_over_run <= 0;
rx_empty <= 1;
rx_d1 <= 1;
rx_d2 <= 1;
rx_busy <= 0;
end
else
begin
// synchronize the asynch signal
rx_d1 <= rx_in;
rx_d2 <= rx_d1;
// uload the rx data
if (uld_rx_data && ~rx_empty)
begin
rx_data <= rx_reg;
rx_empty <= 1;
end
// receive data only when rx is enabled
if (1/*rx_enable*/)
begin
// check if just received start of frame
if (!rx_busy && !rx_d2)
begin
rx_busy <= 1;
rx_sample_cnt <= 1;
rx_cnt <= 0;
end
// start of frame detected
if (rx_busy)
begin
rx_sample_cnt <= rx_sample_cnt + 4'd1;
// sample at middle of data
if (rx_sample_cnt == 7)
begin
if ((rx_d2 == 1) && (rx_cnt == 0))
rx_busy <= 0;
else
begin
rx_cnt <= rx_cnt + 4'd1;
// start storing the rx data
if (rx_cnt > 0 && rx_cnt < 9)
rx_reg[rx_cnt - 1] <= rx_d2;
if (rx_cnt == 4'd9)
begin
//$display("rx_cnt %d, rx_reg %o",
// rx_cnt, rx_reg);
rx_busy <= 0;
// check if end of frame received correctly
if (rx_d2 == 0)
rx_frame_err <= 1;
else
begin
rx_empty <= 0;
rx_frame_err <= 0;
// check for overrun
rx_over_run <= (rx_empty) ?
1'b0 : 1'b1;
end
end
end
end
end
end
// if (!rx_enable)
// rx_busy <= 0;
end
// uart tx
always @ (posedge tx_clk or posedge reset)
if (reset)
begin
tx_empty <= 1'b1;
tx_out <= 1'b1;
tx_cnt <= 4'b0;
tx_reg <= 0;
tx_over_run <= 0;
end
else
begin
if (ld_tx_data)
begin
if (!tx_empty)
tx_over_run <= 1;
else
begin
tx_reg <= tx_data;
tx_empty <= 0;
end
end
if (/*tx_enable &&*/!tx_empty)
begin
tx_cnt <= tx_cnt + 4'b1;
case (tx_cnt)
4'd0: tx_out <= 0;
4'd1: tx_out <= tx_reg[0];
4'd2: tx_out <= tx_reg[1];
4'd3: tx_out <= tx_reg[2];
4'd4: tx_out <= tx_reg[3];
4'd5: tx_out <= tx_reg[4];
4'd6: tx_out <= tx_reg[5];
4'd7: tx_out <= tx_reg[6];
4'd8: tx_out <= tx_reg[7];
4'd9: begin
tx_out <= 1;
tx_cnt <= 0;
tx_empty <= 1;
end
endcase
end
// if (!tx_enable)
// tx_cnt <= 0;
end
endmodule