/*------------------------------------------------------------------------/ / Bitbanging MMCv3/SDv1/SDv2 (in SPI mode) control module for PFF / Modified to support the Z80 SoC hardware spi interface /-------------------------------------------------------------------------/ / / Copyright (C) 2014, ChaN, all right reserved. / / * This software is a free software and there is NO WARRANTY. / * No restriction on use. You can use, modify and redistribute it for / personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY. / * Redistributions of source code must retain the above copyright notice. / /--------------------------------------------------------------------------/ */ #include "diskio.h" static unsigned char buffer[512]; static DWORD buffer_sector = 0xffffffff; // SPI data is read and written via port 0. Writing to the port starts a spi transfer, // reading the port returns the last byte received during a transfer but doesn't start // a transfer by itself __sfr __at 0x00 DataPort; // SPI control port is a single write only port bit used for spi select (ss) __sfr __at 0x01 ControlPort; void dly_us(unsigned int n) { while(n--) { } } void forward(BYTE n) { } /*-------------------------------------------------------------------------*/ /* Platform dependent macros and functions needed to be modified */ /*-------------------------------------------------------------------------*/ #define INIT_PORT() init_port() /* Initialize MMC control port (CS/CLK/DI:output, DO:input) */ #define DLY_US(n) dly_us(n) /* Delay n microseconds */ #define FORWARD(d) forward(d) /* Data in-time processing function (depends on the project) */ #define CS_H() ControlPort=1 /* Set MMC CS "high" */ #define CS_L() ControlPort=0 /* Set MMC CS "low" */ /*-------------------------------------------------------------------------- Module Private Functions ---------------------------------------------------------------------------*/ /* Definitions for MMC/SDC command */ #define CMD0 (0x40+0) /* GO_IDLE_STATE */ #define CMD1 (0x40+1) /* SEND_OP_COND (MMC) */ #define ACMD41 (0xC0+41) /* SEND_OP_COND (SDC) */ #define CMD8 (0x40+8) /* SEND_IF_COND */ #define CMD16 (0x40+16) /* SET_BLOCKLEN */ #define CMD17 (0x40+17) /* READ_SINGLE_BLOCK */ #define CMD24 (0x40+24) /* WRITE_BLOCK */ #define CMD55 (0x40+55) /* APP_CMD */ #define CMD58 (0x40+58) /* READ_OCR */ /* Card type flags (CardType) */ #define CT_MMC 0x01 /* MMC ver 3 */ #define CT_SD1 0x02 /* SD ver 1 */ #define CT_SD2 0x04 /* SD ver 2 */ #define CT_SDC (CT_SD1|CT_SD2) /* SD */ #define CT_BLOCK 0x08 /* Block addressing */ static BYTE CardType; /* b0:MMC, b1:SDv1, b2:SDv2, b3:Block addressing */ /*-----------------------------------------------------------------------*/ /* Transmit a byte to the MMC via SPI */ /*-----------------------------------------------------------------------*/ #define XMIT_MMC(a) DataPort=a /*-----------------------------------------------------------------------*/ /* Receive a byte from the MMC (bitbanging) */ /*-----------------------------------------------------------------------*/ static BYTE rcvr_mmc (void) { DataPort = 0xff; // some additional delay to give spi transmitter some // time to finish __asm nop nop __endasm; return DataPort; } /*-----------------------------------------------------------------------*/ /* Skip bytes on the MMC (bitbanging) */ /*-----------------------------------------------------------------------*/ static void skip_mmc ( UINT n /* Number of bytes to skip */ ) { do { DataPort = 0xff; } while (--n); } /*-----------------------------------------------------------------------*/ /* Deselect the card and release SPI bus */ /*-----------------------------------------------------------------------*/ static void release_spi (void) { CS_H(); rcvr_mmc(); } /*-----------------------------------------------------------------------*/ /* Send a command packet to MMC */ /*-----------------------------------------------------------------------*/ static BYTE send_cmd ( BYTE cmd, /* Command byte */ DWORD arg /* Argument */ ) { BYTE n, res; if (cmd & 0x80) { /* ACMD is the command sequense of CMD55-CMD */ cmd &= 0x7F; res = send_cmd(CMD55, 0); if (res > 1) return res; } /* Select the card */ CS_H(); rcvr_mmc(); CS_L(); rcvr_mmc(); /* Send a command packet */ XMIT_MMC(cmd); /* Start + Command index */ XMIT_MMC((BYTE)(arg >> 24)); /* Argument[31..24] */ XMIT_MMC((BYTE)(arg >> 16)); /* Argument[23..16] */ XMIT_MMC((BYTE)(arg >> 8)); /* Argument[15..8] */ XMIT_MMC((BYTE)arg); /* Argument[7..0] */ n = 0x01; /* Dummy CRC + Stop */ if (cmd == CMD0) n = 0x95; /* Valid CRC for CMD0(0) */ if (cmd == CMD8) n = 0x87; /* Valid CRC for CMD8(0x1AA) */ XMIT_MMC(n); /* Receive a command response */ n = 10; /* Wait for a valid response in timeout of 10 attempts */ do { res = rcvr_mmc(); } while ((res & 0x80) && --n); return res; /* Return with the response value */ } /*-------------------------------------------------------------------------- Public Functions ---------------------------------------------------------------------------*/ /*-----------------------------------------------------------------------*/ /* Initialize Disk Drive */ /*-----------------------------------------------------------------------*/ DSTATUS disk_initialize (void) { BYTE n, cmd, ty, buf[4]; UINT tmr; CS_H(); skip_mmc(10); /* Dummy clocks */ ty = 0; if (send_cmd(CMD0, 0) == 1) { /* Enter Idle state */ if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2 */ for (n = 0; n < 4; n++) buf[n] = rcvr_mmc(); /* Get trailing return value of R7 resp */ if (buf[2] == 0x01 && buf[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */ for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state (ACMD41 with HCS bit) */ if (send_cmd(ACMD41, 1UL << 30) == 0) break; DLY_US(1000); } if (tmr && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */ for (n = 0; n < 4; n++) buf[n] = rcvr_mmc(); ty = (buf[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* SDv2 (HC or SC) */ } } } else { /* SDv1 or MMCv3 */ if (send_cmd(ACMD41, 0) <= 1) { ty = CT_SD1; cmd = ACMD41; /* SDv1 */ } else { ty = CT_MMC; cmd = CMD1; /* MMCv3 */ } for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state */ if (send_cmd(cmd, 0) == 0) break; DLY_US(1000); } if (!tmr || send_cmd(CMD16, 512) != 0) /* Set R/W block length to 512 */ ty = 0; } } CardType = ty; release_spi(); return ty ? 0 : STA_NOINIT; } /*-----------------------------------------------------------------------*/ /* Read partial sector */ /*-----------------------------------------------------------------------*/ DRESULT disk_readp ( BYTE *buff, /* Pointer to the read buffer (NULL:Read bytes are forwarded to the stream) */ DWORD sector, /* Sector number (LBA) */ UINT offset, /* Byte offset to read from (0..511) */ UINT count /* Number of bytes to read (ofs + cnt mus be <= 512) */ ) { BYTE *buff_sec = buffer; DRESULT res; BYTE d; UINT bc, tmr; if (!(CardType & CT_BLOCK)) sector *= 512; /* Convert to byte address if needed */ // check if sector is already in sector buffer if(buffer_sector == sector) { buff_sec += offset; // skip to requested bytes while(count--) *buff++ = *buff_sec++; return RES_OK; } res = RES_ERROR; if (send_cmd(CMD17, sector) == 0) { /* READ_SINGLE_BLOCK */ tmr = 1000; do { /* Wait for data packet in timeout of 100ms */ DLY_US(100); d = rcvr_mmc(); } while (d == 0xFF && --tmr); if (d == 0xFE) { /* A data packet arrived */ bc = 512 - offset - count; /* Skip leading bytes (store in buffer only) */ while(offset--) *buff_sec++ = rcvr_mmc(); /* Receive a part of the sector */ if (buff) { /* Store data to the memory */ do *buff_sec++ = *buff++ = rcvr_mmc(); while (--count); } else { /* Forward data to the outgoing stream */ do { *buff_sec++ = d = rcvr_mmc(); FORWARD(d); } while (--count); } /* Skip trailing bytes (store in buffer only) */ while(bc--) *buff_sec++ = rcvr_mmc(); /* and skip crc */ skip_mmc(2); buffer_sector = sector; res = RES_OK; } } release_spi(); return res; }