mirror of
https://github.com/mist-devel/mist-board.git
synced 2026-02-06 16:14:42 +00:00
273 lines
7.5 KiB
Verilog
273 lines
7.5 KiB
Verilog
// fdc.v
|
|
//
|
|
// Atari ST floppy implementation for the MIST baord
|
|
// http://code.google.com/p/mist-board/
|
|
//
|
|
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
|
|
//
|
|
// This source file is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This source file is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
module fdc (
|
|
// clocks and system interface
|
|
input clk,
|
|
input reset,
|
|
|
|
// write protection of currently selected floppy
|
|
input [1:0] drv_sel,
|
|
input drv_side,
|
|
input wr_prot,
|
|
|
|
input dma_ack,
|
|
input [2:0] status_sel,
|
|
output [7:0] status_byte,
|
|
|
|
// cpu interface
|
|
input [1:0] cpu_addr,
|
|
input cpu_sel,
|
|
input cpu_rw,
|
|
input [7:0] cpu_din,
|
|
output reg [7:0] cpu_dout,
|
|
|
|
output reg irq
|
|
);
|
|
|
|
// fdc_busy is a counter. counts down from 2 to 0. stays at 3 since that
|
|
// means that the fdc is waiting for the arm io controller
|
|
localparam STATE_IDLE = 2'd0;
|
|
localparam STATE_IRQ = 2'd1;
|
|
localparam STATE_INT_WAIT = 2'd2;
|
|
localparam STATE_IO_WAIT = 2'd3;
|
|
|
|
reg [1:0] state; // fdc busy state
|
|
|
|
// the fdc registers
|
|
reg [7:0] cmd; // write only
|
|
reg [7:0] track;
|
|
reg [7:0] sector;
|
|
reg [7:0] data;
|
|
|
|
// fdc status as reported to the io controller
|
|
assign status_byte =
|
|
(status_sel == 0)?cmd:
|
|
(status_sel == 1)?track:
|
|
(status_sel == 2)?sector:
|
|
(status_sel == 3)?data:
|
|
(status_sel == 4)?{ 4'b0000, drv_sel, drv_side, state == STATE_IO_WAIT }:
|
|
8'h00;
|
|
|
|
reg step_dir;
|
|
|
|
reg [31:0] delay;
|
|
|
|
wire cmd_type_1 = (cmd[7] == 1'b0);
|
|
wire cmd_type_2 = (cmd[7:6] == 2'b10);
|
|
|
|
// ---------------- floppy motor simulation -------------
|
|
|
|
// timer to simulate motor-on. This runs for x/8000000 seconds after each command
|
|
reg motor_start;
|
|
reg [31:0] motor_on_counter;
|
|
wire motor_on = (motor_on_counter != 0);
|
|
|
|
// motor_on_counter > 16000000 means the motor is spinning up
|
|
wire motor_spin_up_done = motor_on && (motor_on_counter <= 16000000);
|
|
|
|
always @(posedge clk or posedge motor_start) begin
|
|
if(motor_start)
|
|
// motor runs for 2 seconds if it was already on. it rus for one
|
|
// more second if if wasn't on yet (spin up)
|
|
motor_on_counter <= motor_on?32'd16000000:32'd24000000;
|
|
else begin
|
|
// let "motor" run
|
|
if(motor_on_counter != 0)
|
|
motor_on_counter <= motor_on_counter - 32'd1;
|
|
end
|
|
end
|
|
|
|
// -------------- index pulse generation ----------------
|
|
|
|
// floppy rotates at 300rpm = 5rps -> generate 5 index pulses per second
|
|
wire index_pulse = index_pulse_cnt > 32'd1500000; // 1/16 rotation
|
|
reg [31:0] index_pulse_cnt;
|
|
always @(posedge clk) begin
|
|
if(!motor_on)
|
|
index_pulse_cnt <= 32'd0;
|
|
else begin
|
|
if(index_pulse_cnt != 0)
|
|
index_pulse_cnt <= index_pulse_cnt - 32'd1;
|
|
else
|
|
index_pulse_cnt <= 32'd1600000; // 8000000/5
|
|
end
|
|
end
|
|
|
|
// status byte returned by the fdc when reading register 0
|
|
wire [7:0] status = {
|
|
motor_on,
|
|
wr_prot,
|
|
cmd_type_1?motor_spin_up_done:1'b0,
|
|
2'b00 /* track not found/crc err */,
|
|
cmd_type_1?(track == 0):1'b0,
|
|
cmd_type_1?index_pulse:(state!=STATE_IDLE),
|
|
state != STATE_IDLE
|
|
};
|
|
|
|
// CPU register read
|
|
always @(cpu_sel, cpu_addr, cpu_rw) begin
|
|
cpu_dout = 8'h00;
|
|
|
|
if(cpu_sel && cpu_rw) begin
|
|
case(cpu_addr)
|
|
0: cpu_dout = status;
|
|
1: cpu_dout = track;
|
|
2: cpu_dout = sector;
|
|
3: cpu_dout = data;
|
|
endcase
|
|
end
|
|
end
|
|
|
|
// CPU register write
|
|
always @(negedge clk or posedge reset) begin
|
|
if(reset) begin
|
|
// clear internal registers
|
|
cmd <= 8'h00;
|
|
track <= 8'h00;
|
|
sector <= 8'h00;
|
|
data <= 8'h00;
|
|
|
|
// reset state machines and counters
|
|
state <= STATE_IDLE;
|
|
irq <= 1'b0;
|
|
motor_start <= 1'b0;
|
|
delay <= 32'd0;
|
|
|
|
end else begin
|
|
motor_start <= 1'b0;
|
|
|
|
// DMA transfer has been ack'd by io controller
|
|
if(dma_ack) begin
|
|
// fdc waiting for io controller
|
|
if(state == STATE_IO_WAIT)
|
|
state <= STATE_IRQ; // jump to end of busy phase
|
|
end
|
|
|
|
// fdc may be waiting internally (e.g. for step completion)
|
|
if(state == STATE_INT_WAIT) begin
|
|
// count down and go into irq state if done
|
|
if(delay != 0)
|
|
delay <= delay - 32'd1;
|
|
else
|
|
state <= STATE_IRQ;
|
|
end
|
|
|
|
// fdc is ending busy phase
|
|
if(state == STATE_IRQ) begin
|
|
irq <= 1'b1;
|
|
state <= STATE_IDLE;
|
|
end
|
|
|
|
// cpu is reading status register -> clear fdc irq
|
|
if(cpu_sel && cpu_rw && (cpu_addr == 0))
|
|
irq <= 1'b0;
|
|
|
|
if(cpu_sel && !cpu_rw) begin
|
|
// fdc register write
|
|
if(cpu_addr == 0) begin // command register
|
|
cmd <= cpu_din;
|
|
state <= STATE_INT_WAIT;
|
|
delay <= 31'd0;
|
|
irq <= 1'b0;
|
|
|
|
// all TYPE I and TYPE II commands start the motor
|
|
if((cpu_din[7] == 1'b0) || (cpu_din[7:6] == 2'b10))
|
|
motor_start <= 1'b1;
|
|
|
|
// ------------- TYPE I commands -------------
|
|
if(cpu_din[7:4] == 4'b0000) begin // RESTORE
|
|
track <= 8'd0;
|
|
delay <= 31'd2000000; // 250ms delay
|
|
end
|
|
|
|
if(cpu_din[7:4] == 4'b0001) begin // SEEK
|
|
track <= data;
|
|
delay <= 31'd200000; // 25ms delay
|
|
end
|
|
|
|
if(cpu_din[7:3] == 3'b001) begin // STEP
|
|
delay <= 31'd20000; // 2.5ms delay
|
|
if(cpu_din[4]) // update flag
|
|
track <= (step_dir == 1)?(track + 8'd1):(track - 8'd1);
|
|
end
|
|
|
|
if(cpu_din[7:5] == 3'b010) begin // STEP-IN
|
|
delay <= 31'd20000; // 2.5ms delay
|
|
step_dir <= 1'b1;
|
|
if(cpu_din[4]) // update flag
|
|
track <= track + 8'd1;
|
|
end
|
|
|
|
if(cpu_din[7:5] == 3'b011) begin // STEP-OUT
|
|
delay <= 31'd20000; // 2.5ms delay
|
|
step_dir <= 1'b0;
|
|
if(cpu_din[4]) // update flag
|
|
track <= track - 8'd1;
|
|
end
|
|
|
|
// ------------- TYPE II commands -------------
|
|
if(cpu_din[7:5] == 3'b100) begin // read sector
|
|
state <= STATE_IO_WAIT;
|
|
end
|
|
|
|
if(cpu_din[7:5] == 3'b101) // write sector
|
|
if(!wr_prot)
|
|
state <= STATE_IO_WAIT;
|
|
|
|
// ------------- TYPE III commands ------------
|
|
|
|
if(cpu_din[7:4] == 4'b1100) // read address
|
|
state <= STATE_IO_WAIT;
|
|
|
|
if(cpu_din[7:4] == 4'b1110) // read track
|
|
state <= STATE_IO_WAIT;
|
|
|
|
if(cpu_din[7:4] == 4'b1111) // write track
|
|
if(!wr_prot)
|
|
state <= STATE_IO_WAIT;
|
|
|
|
// ------------- TYPE IV commands -------------
|
|
if(cpu_din[7:4] == 4'b1101) begin // force intrerupt
|
|
if(cpu_din[3:0] == 4'b0000)
|
|
state <= STATE_IDLE; // immediately
|
|
else
|
|
state <= STATE_IRQ; // with irq
|
|
end
|
|
end // if (cpu_addr == 0)
|
|
|
|
if(cpu_addr == 1) // track register
|
|
track <= cpu_din;
|
|
|
|
if(cpu_addr == 2) // sector register
|
|
sector <= cpu_din;
|
|
|
|
if(cpu_addr == 3) // data register
|
|
data <= cpu_din;
|
|
|
|
end // if (cpu_sel && !cpu_rw)
|
|
end // else: !if(reset)
|
|
end // always @ (negedge clk or posedge reset)
|
|
|
|
endmodule
|
|
|
|
|